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Abstract
Time-dependent density functional theory is used to calculate the total and subshell
photoionization cross sections of C60. The core of 60 C4+ ions is smeared into a classical
jellium shell before treating the correlated motion of the 240 valence electrons quantum
mechanically. The calculation reveals two collective plasmon resonances in the total cross
section in agreement with the experiment. It is found that a phase-coherent superposition of
amplitudes leading to enhancements in the ionization from various C60 subshells in two
distinct energy regions essentially builds the plasmons. While the result shows good
qualitative agreement with the experiments, the limitation of the model to describe the data in
quantitative detail is discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In atomic processes many intriguing phenomena observed
in experiments are due to correlated electron motion. For
surfaces and bulk matter, i.e., essentially infinitely extended
objects, electron correlations induce collective phenomena,
which are described in terms of plasmons or other ‘quasi-
particles’. For large finite systems such as clusters, one type
of plasmon excitation can be classically visualized as a surface
resonance where the negative charge density (delocalized
electrons) oscillates as an incompressible fluid against the
positive background density (ions). The dipole frequency ωs

of this surface oscillator is related to the characteristic plasma
frequency ω0 by ωs = ω0/

√
3. Using ultraviolet spectroscopy,

a giant surface-plasmon was first observed at about 20 eV
photon energy for gas phase C60 [1]. This measurement
coincided with a theoretical prediction [2] that described the
carbon core structure in a tight-binding model [3] and the
response of C60 to an external electromagnetic field by the
random-phase approximation. Accounting for the truncated
icosahedron structure of the core in some approximate way
other theoretical studies were also reported [4, 5].

Almost simultaneously, a different class of calculations
of the photoionization of C60 has emerged where 60 C4+

ions are represented by a classical jellium shell [6–8]. The
jellium model of the ion core disregards the motion of the
120 very tightly bound 1s electrons and treats the dynamics
of the remaining 240 delocalized valence electrons self-
consistently. This model gives rise to a single-electron ground-
state potential having distinct edges at the positions of inner
and outer radii of C60 and a nearly flat interior. Since free
electrons (or quasi-free electrons in the interior of the potential)
cannot absorb photons, the photoelectrons are created at the
edges of the potential; this can be inferred from the form of
the dipole matrix element known as ‘acceleration gauge’ which
involves dV/dr where V is the potential energy. The localized
creation of electron waves produces path differences which
lead to interferences in the photoionization cross section. More
specifically, as a consequence of the geometry of the potential,
the theory has predicted that the photoionization cross section
should contain four oscillation frequencies [9]. Initially, three
of them were identified in the measurement of photoionization
cross sections of two outer valence orbitals of C60 which are
in very good agreement with the jellium-based calculation
[10]. The fourth one, which provides information about
the thickness of the electron hull, was seen in a subsequent
experiment [11].
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Over the last few years a different kind of modelling of the
C60 core has been established where the jellium approximation
is only applied to 60 bare carbon nuclei, instead of 60 C4+. The
field due to the 120 1s electrons is calculated self-consistently
by using the Hartree–Fock 1s atomic orbitals [12, 13]. The
ground-state radial potential in this approach produces a
cusp-shaped bottom. While calculations using such a cusp-
bottom potential may produce good total photoabsorption
cross sections, they predict only a single oscillation frequency
in the photo cross section corresponding to the position of the
cusp. Hence, they are inadequate to explain the experimental
photoionization data [10] that contain multiple frequencies as
mentioned above.

Going beyond these geometrical effects, which are single
electron in nature, the description of plasmon resonances
in C60 requires inclusion of many-body effects through
electron correlation. Two practically equivalent approaches to
include the correlation are (i) the random-phase approximation
(RPA) and (ii) the time-dependent local density approximation
(TDLDA). Both types of calculations have revealed the surface
plasmon resonance [2, 6, 12, 13]. In addition, our recent
calculation using the jellium-based TDLDA approach for
singly ionized C60 has revealed the existence of a second
collective resonance at a higher energy in agreement with
the simultaneous experimental detection of this resonance [8].
While there is some discussion on the exact nature of this
high-energy resonance [14], from the underlying asymmetric
(compressional) mode of vibration of the electron cloud and
from the proximity of this resonance frequency to the plasma
frequency of the system, we called this feature a volume-like
plasmon [15], being well aware of the fact that a volume
plasmon in the strict sense cannot be excited by a dipole
perturbation.

In an experiment on photoionization of the neutral C60 a
similar high-energy resonance feature at about 40 eV photon
energy [16] was observed, indicating that the occurrence
of a high-energy plasmon is most likely generic in the
photoionization of any fullerene system. Therefore, an effort
to gain a detailed theoretical understanding to develop better
insights of the collective behaviour that affects the photo
response properties of these systems of hollow geometry is
well motivated. In this paper, we describe in detail our
calculations and present results for the photoionization of
neutral C60. For a better grasp on the underlying mechanism,
the cross sections for independent subshells are also presented
and it is shown how the cumulative superposition of various
subshell cross sections builds up the plasmon resonances. The
results are compared with measurements where available.

2. Details of the method

2.1. The jellium model

The jellium potential representing 60 C4+ ions is constructed
as a uniform charge density over a spherical shell with radius
R and thickness �. A constant pseudopotential V0 is added
[6]. R is taken to be the known radius of C60, 3.54 Å. The
Kohn–Sham equations for a system of 240 electrons are solved
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Figure 1. Top panel: LDA ground-state radial wavefunctions for
the highest and the lowest � of n = 1 (σ ) and n = 2 (π ) families.
Bottom panel: radial potential averaged over orbital-specific
potentials (see the text), and occupied π and σ level energies.

to obtain the single-electron ground-state orbitals in the local
density approximation (LDA), and the parameters V0 and
� are determined by requiring both charge neutrality and
obtaining the experimental value, 7.54 eV, of the first C60

ionization potential. This procedure yields a value of � of
1.5 Å, in excellent agreement with the value inferred from the
experiment [10].

In addition, we include an appropriate correction to
eliminate unphysical electron self-interactions for the ith
subshell that renders the LDA potential orbital-specific
[17, 18],

V i(r) = Vjel(r) +
∫

dr′ ρ(r′) − ρi(r′)
r − r′

+ (VXC[ρ(r)] − VXC[ρi(r)]), (1)

where the terms on the right-hand side of the equation
are, respectively, the jellium-electron, direct and exchange-
correlation potentials. As the exact form of VXC is unknown
in a local formalism like LDA (since the exact exchange
interaction is non-local), we employ a widely used parametric
formulation [19]. In the bottom panel of figure 1 we show
the radial potential ‘averaged’ over all the subshells. We
stress that this potential with the two edges corresponding
to the inner and outer radii, and a nearly flat bottom is quite
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physical. This has become obvious from the role that it plays
for the interpretation of the multiple frequencies in the Fourier
transform of the measured photoelectron data [10].

In the bottom panel of figure 1 the ground-state en-
ergy levels for n = 1 (σ ), n = 2 (π ) groups are also
shown. This conforms to the electron-momentum spec-
troscopic determination of C60’s electronic structure being
composed of a π and σ band [20]. Our approach is
akin to [6] but for a crucial exception; in the ground-
state configuration (in the harmonic oscillator nomencla-
ture) 1s21p61d101f141g181h221i261j302s22p6 1k342d102f141l18

2g182h10 we keep the 1 l subshell almost half-empty by fill-
ing it with only 18 electrons. This is done to ensure that
two important properties of the system: (i) the two high-
est occupied molecular orbitals, HOMO and HOMO-1, are
of 2 h and 2 g characters, respectively—a result well known
from the quantum chemical calculations [21] supported by
photoemission and inverse photoemission spectra [22], and
from energy-resolved electron-momentum density measure-
ments [20]; and (ii) the HOMO level is about half-filled—a
consequence of the fact that the real system is slightly non-
spherical, splitting some σ and π levels of higher angular
momentum resulting in partially occupied 1 l and 2 h levels
[4, 23]. It is remarkable that as a consequence of this artificial
manipulation in a frame limited by the spherical geometry, our
calculated ratio of HOMO and HOMO-1 cross sections, which
is predominantly determined by the occupancy ratio of 2 h and
2 g levels (10/18 = 0.56), agrees so well with the experiment
on an absolute scale [10].

Note in the top panel of figure 1 that, owing to strong
electronic delocalization, both n = 1 (σ�) and n = 2
(π�) radial wavefunctions roughly occupy the same radial
region, where � denotes the orbital angular momentum with
respect to the centre of C60. π wavefunctions have one
radial node, as opposed to the nodeless σ wavefunctions. In
addition, all radial wavefunctions of π symmetry are nearly
the same, independent of �, and the same is true for the σ

orbitals; this is in contrast to the situation in atoms where the
radial wavefunctions of n� orbitals with different � are very
different. As an indicator of the accuracy of the wavefunctions,
the calculated static dipole polarizability of the system is
92.84 Å3, which is reasonably close to the measured value
76.5 ± 8.0 Å3 [24].

2.2. Dynamical response

A time-dependent LDA (TDLDA) approach [25–27] is used
to calculate the dynamical response of the molecule to the
external dipole field z. Since the molecule is rotationally
invariant, Green’s function for a parameter E can be expanded
in the spherical basis:

G(r, r′;E) =
∑
lm

Glm(r, r ′;E)Y ∗
lm(�)Ylm(�′), (2)

where the radial component Glm(r, r ′;E) satisfies the radial
equation(

1

r2

∂

∂r
r2 ∂

∂r
− �(� + 1)

r2
− VLDA + E

)
Glm(r, r ′;E)

= δ(r − r ′)
r2

. (3)

Glm is constructed with homogeneous solutions jl(r;E) and
hl(r;E) of equation (3), satisfying boundary conditions at
r = 0 and r = ∞ respectively, as

Glm(r, r ′;E) = jl(r<;E)hl(r>;E)

W [jl, hl]
, (4)

where the Wronskian

W [j, h] = r2[j (r) dh(r)/dr − dj (r)/drh(r)]r=c (5)

and is independent of the arbitrary constant c. Using Green’s
function, the independent particle (IP) susceptibility is then
constructed by the ground-state single-electron orbitals φi and
energies εi as

χ0(r, r′;ω) =
∑

i

φ∗
i (r)φi(r′)G(r, r′; εi + h̄ω)

+
∑

i

φi(r)φ∗
i (r

′)G∗(r, r′; εi − h̄ω), (6)

where the index i runs over the occupied states only.
The external perturbation z representing the dipole

interaction of electrons with the linearly polarized light,
induces a frequency-dependent complex change in the electron
density. This can, in principle, be written as

δρ(r;ω) =
∫

χ(r, r′;ω)z′ dr′, (7)

where the full susceptibility χ incorporates the dynamical
electron correlation. Using instead the IP susceptibility
(equation (6)), the induced density can, equivalently, be written
as

δρ(r;ω) =
∫

χ0(r, r′;ω)δV (r′;ω) dr′, (8)

in which

δV (r′;ω) = z +
∫

δρ(r′;ω)

|r − r′| dr′+
[
∂Vxc
∂ρ

]
ρ=ρ0

δρ(r;ω), (9)

where the second and third terms on the right-hand side
are, respectively, the induced change of the Coulomb and
the exchange-correlation potentials. Obviously, besides
including the external perturbation z, δV incorporates the
dynamical field produced through many-electron interactions
and, thereby, plays the role of an effective perturbation to the
molecule.

χ is related to χ0 by the matrix equation

χ = χ0

[
1 − ∂V

∂ρ
χ0

]−1

, (10)

involving the variation of the ground-state potential V with
respect to the ground-state density ρ. Equation (10) can be
solved for χ using the matrix inversion method [28]. δρ and,
hence, δV can then be directly obtained via equations (7) and
(9), respectively. Using the golden rule the photoabsorption
cross section σPA is finally evaluated from the imaginary part
of the polarizability α, and thereby, of δρ as

σPA(ω) = 4πω

c
Im[α(ω)] = 8πω

cE

∫
z Im[δρ(r;ω)] dr′,

(11)

where E is the magnitude of the external electric field.
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It is also simple to derive an equivalent expression for the
cross section in terms of δV directly as

σPA(ω) = 4π2γω
∑
i,j

fi(1 − fj )|〈j |δV (r′;ω)|i〉|2

× δ(h̄ω − εj + εi), (12)

where δV (r′;ω) = δV (r ′;ω)Y10(�) to validate the dipole
selection and fi are Fermi occupation factors. Clearly, the
index j scans the complete set of the single-electron excited
as well as continuum states. Setting i to an occupied bound
state (n�) and j to the allowed continuum states (k�′), one
can derive a formal expression for the photoionization cross
section as the sum of the independent subshell cross sections
σn�→k�′ , corresponding to a dipole transition n� → k�′,

σPI(ω) =
∑
n�

σn�→k�′ ∼
∑
n�

2(2� + 1)|〈φk�′ |δV |φn�〉|2. (13)

The radial component Pk� of the final continuum wavefunction
φk� has the appropriate asymptotic behaviour:

lim
r→∞ Pk�(r) ∼ lim

r→∞[cos(δ�)F�(kr) + sin(δ�)G�(kr)]

= sin

(
kr − 1

2
π +

z

k
ln(2kr) + ζ� + δ�

)
(14)

where F� and G� are respectively the regular and irregular
spherical Coulomb functions, and ζ� = arg �(� + 1 − iz/k) is
the Coulomb phase shift associated with the asymptotic charge
z seen by the ejected electron.

Obviously, if we insert the result δρ0 (obtained either
replacing χ by χ0 in equation (7) or, equivalently, δV by z in
equation (8)) in equation (11), we find the independent particle
(IP) LDA result of the absorption cross section. Similarly,
replacing δV in equation (13) by z yields the IP ionization
cross section.

3. Results and discussion

3.1. Total cross section

The total photoionization cross section calculated in the
TDLDA is presented in figure 2 as a function of the photon
energy and is compared with the corresponding results from
the LDA calculation that omits electron correlations. The
comparison shows two regions of enhancement, plasmon
resonances, in the TDLDA cross section. The low-energy
resonance, that peaks at 16.5 eV, is seen to be also infested by a
host of single-electron autoionizing resonances. This plasmon
structure is the well-known giant dipole surface plasmon
resonance. At 38.0 eV energy the second resonant structure
emerges. This is expected given the recent experiment–theory
joint study on C60 ions [8] and the determination of the feature
in the experiment directly on neutral C60 [16]. Unlike the
16.5 eV resonance this structure exhibits a far weaker effect
of single-electron resonances but a rather long decay range
extending up to about 90 eV. Note that the enhancement
caused by each of the resonances from the corresponding
LDA result is roughly about an order of magnitude at their
respective peaks. Furthermore, the calculation shows that
the 16.5 eV and 38.0 eV plasmon resonances account for the
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Figure 2. Total photoionization cross sections of C60 calculated in
the LDA and TDLDA. The TDLDA result shows plasmon
resonances at 16.5 eV and 38 eV photon energies.

oscillator strengths of about 130 and 30, respectively. Since
the total oscillator strength for the photoabsorption process is
the number of electrons (240 in this case) [29], this means
that two-thirds of the total strength of the C60 photoabsorption
process over the full range from the lowest discrete excitation
to infinite energy is contained in the two collective plasmon
resonances.

The emergence of plasmon resonances can be thought of
as originating from the formation of collective states under the
influence of the external electromagnetic field. A good way
to visualize the mechanism is to consider explicitly, in terms
of many-body ground |�0〉 and excited collective |�m〉 states,
the complex polarizability α, that results from electrons’ dipole
interactions with the photon [26],

α(ω) = −
∑
m

[ |〈�m|ζ |�0〉|2
h̄ω − �m + iδ

− |〈�m|ζ |�0〉|2
h̄ω + �m + iδ

]
, (15)

where ζ = ∑
i zi are dipole interactions, �m = Em − E0

are many-body excitation energies and δ is an infinitesimal
positive quantity. To a good approximation, |�0〉 can be
constructed as a linear combination of Slater determinants of
single-electron ground state φi’s. Combining equation (15)
with equation (11), the absorption cross section can be
expressed as

σPA(ω)

= 4πω

c
δ
∑
m

[ |〈�m|ζ |�0〉|2
[h̄ω − �m]2 + δ2

− |〈�m|ζ |�0〉|2
[h̄ω + �m]2 + δ2

]
.

(16)

The above expression suggests that the formation of resonance
structures in the cross section at the photon energy �m is due
to excitations of the ground state �0 to all possible collective
excited states �m that the system can support.
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Theoretical studies of the dipole photoionization of solid
spheres, such as metal clusters, predicted one plasmon
resonance, indicating effectively one allowed collective
excited state and, therefore, a single collective excitation
[25, 30]. For large enough solid spheres another structure
at a higher energy has also been predicted, but it is found
to be far weaker than the main resonance and is suspected
to originate from a non-local quantum-specific effect [25].
Moving from a solid sphere to a hollow shell, the geometry
alters significantly. One direct effect of this change is an
alteration in the distribution of ground-state single-electron
energy levels (figure 1). This happens for the following
reason: the hollow C60 geometry enables the electrons to move
inside a spherical shell far from the molecular centre (large r),
causing considerable weakening of the centrifugal barrier
potential �(� + 1)/r2. Simultaneously, the narrower radial
well of C60 compared to the relatively wide well of a solid
system considerably separates the n = 1 and n = 2 radial
levels. As a result, all � levels for a given n tend to
cluster, thereby inducing considerable separation between π

and σ families in the ground-state spectrum of C60 (as seen
in figure 1). In contrast, for a solid sphere a far broader
radial potential and associated smaller values of r cause all
single electron levels to mix together instead. It is therefore
expected that this change in geometry from solid to shell
also influences the formation of collective excited states of
the respective systems. The hollow geometry allows for two
many-body excited states, as opposed to one for the solid
geometry. Therefore, in contrast to a metal cluster case, the
photoionization cross section of C60 exhibits two plasmon
resonances corresponding to the two collective excited states
with excitation energies of about 16.5 eV and 38 eV.
In the semi-classical interpretation of plasmon these
two states can be identified with the symmetric and
asymmetric eigenmodes of vibration of a classical dielectric
shell [31].

3.2. Subshell cross sections

Since the collective excitations are embedded in the
single-electron ionization channels, they provide alternative
ionization channels degenerate with single-electron channels.
Thus, the autoionization of these collective excited states
induce resonance structures in the subshell cross sections.
The cross sections for four outer π subshells, 2 h, 2 g, 2 f
and 2 d, are presented in the top panel of figure 3. Both
TDLDA and LDA results are shown for comparison purposes.
All the TDLDA curves feature the low-energy resonance with
the peak position being exactly at 16.5 eV, while the LDA
curves at this energy region are seen to be practically flat.
The spectral appearance of the resonance at rather the same
energy in all subshell cross sections is expected since it is
the same collective excitation which is degenerate with all
energetically accessible π ionization continua. It may be noted
that the 2 h cross section, in both the LDA and TDLDA, is
somewhat weaker than the others in this energy region. This is
simply because 2 h being partially filled with only 10 electrons
provides fewer oscillators compared to the other completely
filled subshells.
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Figure 3. Upper panel: LDA and TDLDA cross sections for the
four outer π subshells of C60. The ionization thresholds of the
subshells are also indicated. Lower panel: LDA and TDLDA total
cross sections for all π electrons.

Beyond 30 eV, the geometry-dependent quantum
interference (confinement) oscillations appear both in LDA
and TDLDA curves for all the subshells, although the TDLDA
cross sections are larger. It is, however, easy to see that
these confinement oscillations are not at all in phase from
one subshell to another. In fact, it was shown that in the
high-energy limit the oscillations in the n� cross section is 90◦

out-of-phase with respect to the n(� ± 1) cross section [9].
Therefore, in the sum over �, these geometric oscillations
largely cancel one another so that the appearance of the
second collective resonance is evident. In other words, this
second collective resonance contributes to each of the subshell
cross sections, but it is mostly masked by the confinement
oscillations. Only in the total cross section, where the
confinement oscillations largely cancel out, does it emerge
clearly. This is shown in the bottom panel of figure 3 which
displays total π cross sections,

∑
� σ2�. The sum kills the

oscillations to uncover the plasmon-induced enhancement in
the TDLDA result at 38 eV. Evidently, therefore, a mechanism
of constructive superpositions of independent subshell cross
sections is responsible for building the plasmon resonances in
the total π ionization cross section. While the phenomenon is
very clear for the 16.5 eV resonance, for the 38 eV resonance
the effect is somewhat masked.

Figure 4 delineates this phenomenon of constructive
build-up for five outer σ subshells: 1 l, 1 k, 1 j, 1 i and 1 h.
A resonant feature maximizes for each subshell just at 38 eV
and accumulates the strength to create a large resonance in
the total σ TDLDA cross section. Comparison between the
LDA and TDLDA results for total π and total σ cross sections
also suggests a stronger relative enhancement in σ than in π
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Figure 4. Upper panel: LDA and TDLDA cross sections for the five
outer σ subshells of C60. Lower panel: LDA and TDLDA total
photoionization cross sections for all σ electrons of C60.

from the 38 eV plasmon; the value of the ratio of TDLDA and
LDA cross sections for total σ at 38 eV is roughly 30, while
that for total π is about 6.5. This stronger influence of the
high-energy plasmon on σ subshells dominates the effects of
geometric oscillations on the TDLDA 1� results. However, it
is noteworthy that the outermost 1 l channel, that opens at 11.5
eV, well below the giant plasmon resonance, hardly contributes
to this 16.5 eV resonance, as seen in figure 4. In summary,
therefore, over the entire plasmon-active energy region the
π ionization cross section contribution dominates the 16.5 eV
resonance, while both π and σ cross sections jointly contribute
(roughly equally) to the 38 eV resonance.

The general phenomenon can be characterized by the
Fano formalism [32] to perturbatively include the effects of
interchannel coupling upon the final state wavefunction of
each of the perturbed dipole matrix elements, Mn�(E):

Mn�(E) = Dn�(E)

+
∑

n′�′ 
=n�

∫
dE′ 〈ψn′�′(E′)

∣∣ 1
|rn�−rn′�′ |

∣∣ψn�(E)〉
E − E′ Dn′�′(E′)

(17)

where Dn� is the unperturbed (LDA) n� matrix element,
ψn�(E)’s are the unperturbed final continuum state
wavefunctions of the single-electron channels and the sum is
over all of the photoionization channels except the n� channel.
The matrix element within the integral of equation (17)
is known as the interchannel coupling matrix element; the
fact that each of the n� initial state orbital overlaps strongly
with all other C60 orbitals, as seen in figure 1, ensures that
these interchannel coupling matrix elements will be strong.

Further, the existence of both low- and high-energy plasmons
at exactly the same energies for all the subshells (figures 3
and 4) implies the various dipole matrix elements are ‘in-
phase’ over the two energy regions, and hence the various
terms in the sum in equation (17) will add up coherently,
leading to the dramatic increase. Therefore, a phase-coherent
interchannel coupling phenomenology must be responsible for
the resonant enhancement in each subshell cross section.

3.3. Comparison with experiment

In figure 5 the calculated total cross section is compared
with the experimental measurements [1, 16]. As can
be seen, the experimental data produce a smoother curve
without any evidence of autoionizing resonances, which
exists in the theoretical TDLDA result. In the context
of the photoabsorption of metal clusters, studies indicate
two effects from the finite temperature of the experimental
sample: (i) coupling of the electronic motion with the
temperature-induced vibration modes of the ion core [33], and
(ii) significant fluctuation of the cluster shape around the shape
at absolute zero [34, 35]. In addition, the jellium model
potential used in the present calculation over-delocalizes the
valence electrons. Owing to this, the calculated wavefunctions
of the valence electrons are too diffuse, compared to the true
wavefunctions, i.e., the calculated wavefunctions are spread
out over too large a distance. Since the autoionization rate
involves a matrix element of 1/r12, the more spread out
wavefunctions translate to a value of the matrix element of
1/r12 that is too small. As a consequence, the model predicts
autoionization rates that are too small, thereby producing
widths that are too narrow, as seen in the comparison with
experiment.

In order to account for the difficulties of autoionization
rates that are too small, and these additional decay channels,
the theoretical cross section is convoluted with a small
width. This is effected by introducing a Lorentzian of
0.4 eV width into equation (12) in place of the delta function.
The convoluted result, also shown in figure 5, exhibits
good qualitative agreement with the data, better than the
un-convoluted result; in particular, the narrow autoionizing
resonances have vanished in the convoluted result. In fact,
they are not gone, and their oscillator strength is still there.
Only with the extra width that was added, they no longer
show up as spikes. There still, however, remain significant
disagreements in the details of the result, as discussed below.

The theoretical plasmon resonance energies are somewhat
below experiment. The theoretical peak at 16.5 eV for the low-
energy resonance occurs at 3.5 eV below the experimental
position of 20 eV. The redshift occurring for the high-energy
resonance is somewhat less—about 2.0 eV. In addition, there
are two very significant discrepancies. Firstly, as seen in
figure 5, the nonresonant background experimental cross
sections is about three times larger than what theory (with the
extra width) predicts. Secondly, the theoretical resonances are
narrower than those of the corresponding measured profiles;
for example, the width of the low-energy plasmon that
our calculation yields is about 3.5 eV, as opposed to the
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Figure 5. TDLDA total photoionization cross section of C60

compared with the experimental data of Hertel et al [1] and
Reincöster et al [16]. In a separate curve, the TDLDA result with
0.4 eV Lorentzian width is also shown. The separations between the
theoretically determined and measured plasmon positions are
indicated.

experimental width of 10 eV reported in [1]. However, what
is remarkable is that over the entire plasmon region, from
threshold up to 90 eV photon energy, the total oscillator
strength predicted by theory is ∼175, which is very close to the
oscillator strength sum evaluated using the experimental data.
The implication is that, although the theoretical resonances
are higher and narrower than their experimental counterparts,
the total oscillator strength in each plasmon agrees rather well
with experiment.

In a jellium model, the plasmon resonances decay via
the degenerate single-electron channels. The absence of
any other decay mechanism leads to the fact that the major
portion of the oscillator strength available to the system is
exhausted by the collective resonances, keeping the non-
resonant background of the cross section rather low. The
real system, however, cannot be treated as being composed
of 240 completely delocalized valence electrons, as in the
jellium model. There would be effects from the independent
local ion sites, at least for relatively more tightly bound
electrons, that would somewhat reduce the degree of electronic
delocalization. Some probability of ionization from this local
ion sites, positioned appropriately, will therefore exist. These
new channels, not present in a jellium model, will provide
additional decay paths for the plasmon in a real system,
thus increasing their widths as seen in the experimental data.
Photoelectron emission from this local ion sites may also be
responsible for the large non-resonant background value in the
experimental cross sections.

Furthermore, an approximate effect of inclusion of ion
sites is the existence of some kind of average restoring force
to the collective motion of the electrons. From a classical
perspective the consequence of this additional restoring force

is an up-shift of the oscillation frequency of the plasmons
from their jellium model values. Also, since for a classical
oscillator the force is proportional to the square of the
frequency, this shift must be quadratic in nature. Indeed,√

(38)2 + [(20)2 − (16.5)2] = 39.6 eV, which is very close to
the experimental position of 40 eV of the high-energy plasmon
resonance.

4. Conclusion

The photoionization cross section of C60 is calculated in a
TDLDA framework that includes all essential many-body
correlations to treat the motion of 240 delocalized electrons.
The carbon ion core is represented by a spherical jellium
shell. The total cross section result reveals two plasmons
characteristic to the C60 photoionization cross section. To
acquire detailed insight in the mechanism that creates these
resonances, the individual π and σ subshell cross sections
are also analysed. A phase-coherent interchannel coupling
mechanism is found to cause enhancements in subshell cross
sections. It is seen that the constructive superposition of
enhancements from various subshells exactly at the energies
of plasmon excitations generates the collective resonances.

The results are also compared with the available
measurements. While good qualitative agreement is
found, there remain significant discrepancies in quantitative
comparison. These discrepancies are attributed to the
known over-delocalization of electrons intrinsic to a jellium
model. It is inferred that further improvement can only
be accomplished by going beyond the jellium framework
to treat the ions appropriately placed depending on the
molecular symmetry. Non-jellium molecular orbital-type
density functional calculations [36], can, in principle, be more
accurate. Nevertheless, as shown earlier [10], the jellium
model prediction agrees reasonably with these results, as well
as with the experimental data, for the ratio of the HOMO
and HOMO-1 cross sections of C60. However, the inclusion
of many-body effects for a dynamical process is far more
conveniently adoptable in a jellium framework. Indeed,
no time-dependent calculation has so far been done in a
framework of the type of [36]. To this end, therefore, our
results represent the best that a jellium model can produce
and may indicate that the jellium result augmented with
appropriate extra width to include an average effect of all
omitted decay channels may provide an improved comparison
with the experiment.

Finally, note that a wealth of detail in the subshell
cross sections washes out in the total cross section, e.g., the
confinement oscillations in the vicinity of the higher-energy
plasmon. Thus, experimental photoelectron studies of the
photoionization of C60 would be most valuable.
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