Journal of Materials Chemistry A

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Z. Wu, K. Parvez, X. Feng and K. Muellen, *J. Mater. Chem. A*, 2014, DOI: 10.1039/C4TA00958D.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Dynamic Article Links
View Article Online
DOI: 10.1039/C4TA00958D

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/MaterialsA

PAPER

Journal of Materials Chemistry A Accepted Manuscript

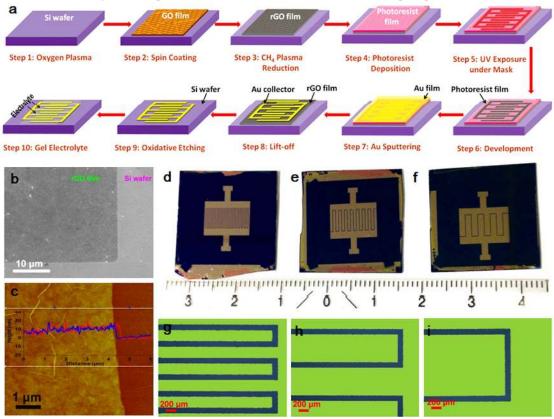
Photolithographic Fabrication of High-Performance All-Solid-State Graphene-based Planar Micro-Supercapacitors With Different Interdigital Fingers

Zhong-Shuai Wu, a Khaled Parvez, a Xinliang Feng*, and Klaus Müllen*, a

5 Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Here we demonstrated the fabrication of ultrahigh rate, all-solid-state, planar interdigital graphene-based micro-supercapacitors (MSCs) manufactured by methane plasma-assisted reduction and photolithographic micro-fabrication of graphene oxide films on silicon wafers. Notably, the electrochemical performances of MSCs are significantly enhanced by increasing the number of the interdigital fingers from 8 to 32 and minimizing the finger width from 1175 to 219 μm, highlighting the critical importance of adjusting the number and widths of the fingers in the fabrication of high-performance MSCs. The fabricated graphene-based MSCs delivered an area capacitance of 116 μF/cm² and a stack capacitance of 25.9 F/cm³. Further, they offered a power density of 1270 W/cm³ that is much higher than electrolytic capacitors, an energy density of ~3.6 mWh/cm³ that is comparable to lithium thin-film batteries, and superior cycling stability of ~98.5% retention after 50 000 cycles. More importantly, the microdevice can well operate at ultrahigh scan rate of up to 2000 V/s, which is three orders of magnitude higher than that of conventional supercapacitors.

Introduction


20 The rapid development of miniaturized, wearable and implantable electronic devices has significantly increased the demand for micro-electrochemical energy storage devices.¹⁻⁵ supercapacitors (MSCs) as a novel class of micro/nano-scale power sources have attracted widespread attention due to their 25 extremely short ion diffusion pathways. 6-8 In principle, MSCs can provide various unique features, such as an ultrahigh power density that is several orders of magnitude higher than that of batteries and conventional supercapacitors, a large rate capability, environmental safety, almost zero maintenance, and superior 30 cycling lifetime (millions of cycles). MSCs offer sufficient peak power for numerous on-chip uses that can be directly coupled with micro-electromechanical systems, energy harvesting microdevices, energy storage units (micro-batteries and capacitors), micro-sensors, biomedical implants, and active radiofrequency 35 identification tags. 8-11

Graphene-based MSCs with an in-plane geometry have emerged as promising micro-electrochemical energy storage devices that can take full advantage of the planar device configuration and graphene for charge storage. ^{10, 12} In contrast to conventional sandwich-type supercapacitors, graphene-based planar interdigital MSCs allow for making the entire device much thinner, smaller, and more flexible on any substrate. ^{12, 13} The electrolyte ions are confined within narrow interspaces between the electrode fingers and can be readily transported to offer an ⁴⁵ ultrahigh power capability due to the short ion diffusion distance.

separator layer normally used in conventional supercapacitors is not required in MSCs. 14-17 Therefore, planar MSCs bear the merits of easy fabrication for micro-patterned electrodes, facile adjustment of the interspaces and electrode 50 fingers in micro-patterns, and elaborated integration into electronics on the same substrate.⁶ Significant advancements in graphene-based MSCs have been made through the fabrication of novel graphene-based materials (such as graphene sheets, graphene quantum dots, hybrids of graphene/carbon nanotubes, 55 and graphene/MnO₂), and the development of thin-film microfabrication technologies. 9, 10, 12, 18-23 However, further improvement of the electrochemical performance of MSCs through the elaborated adjustment of the number and widths of the interdigital fingers remains a great challenge.

To address this, here we describe the fabrication of ultrahighrate, all-solid-state, planar, and interdigital graphene-based MSCs
manufactured by methane plasma-assisted reduction and
photolithographic micro-fabrication of graphene oxide (GO)
films on silicon wafers. The capacitance, rate capability, and
55 power/energy densities of MSCs are greatly enhanced by
increasing the number of fingers (from 8 to 32) and narrowing the
finger width (from 1175 to 219 μm). The resultant binder-free
graphene-based MSCs deliver an area capacitance of ~116
μF/cm² and a stack capacitance of ~25.9 F/cm³. Further, they
70 exhibit: a power density of 1270 W/cm³ at a discharge time of
~0.5 ms, much higher than that of electrolytic capacitors (10²~10³
W/cm³); an energy density of ~3.6 mWh/cm³, comparable to that
of lithium thin-film batteries; and superior cycling stability

measured up to 2000 V/s, three orders of magnitude higher than that of conventional supercapacitors.²⁴

Fig. 1 (a) Schematic diagram of the fabrication of all-solid-state graphene-based planar MSCs on a silicon wafer fabricated using a photolithography technique. (b) Scanning electron microscopy and (c) Atomic force microscopy images of methane plasma reduced GO (rGO) films. Inset in (c) is the height profile of the thickness of the fabricated film. (d-f) Optical images of graphene-based MSCs with a interdigital configuration with (d) 32 (MSCs(32)), (e) 16 (MSCs(16)), and (f) 8 (MSCs(8)) fingers. (g-i) Optical images of the fingers in (g) MSCs(32), (h) MSCs(16), and (i) MSCs(8).

Experimental

Published on 14 March 2014. Downloaded by Max-Planck Institute fur Polymerforschung on 18/03/2014 11:38:11.

Fabrication of all-solid-state graphene-based MSCs

First, GO was synthesized from natural flake graphite with Hummers method, reported in our previous work.²⁵⁻²⁷ Then, a 15 stable GO dispersion (2.5 mg mL⁻¹) obtained after 2 h by sonication was spin-coated several times at 2000 rpm for 60 s (Headway Research Inc.) to achieve a desirable uniform GO film on the oxygen plasma-treated silicon wafer (300 nm SiO₂ layer, Si-Mat) using 300 W rf power for 10 min (Plasma System 200-G, 20 Technics Plamsa GmbH). Subsequently, the fabricated GO films were rapidly reduced at 700 °C for 20 s with the methane (CH₄) plasma (AIXTRON, Nanoinstruments Black Magic) with a heating rate of 50 °C/min to form the reduced graphene oxide films. The designed flow rate of CH₄ gas into plasma chamber 25 was ~100 sccm. The plasma was operated with a 15 kHz waveform drive, and ignited with a high-voltage of 800 V. The chamber pressure during plasma treatment was ~6.20 Torr. After that, standard photolithography techniques were used for patterning graphene micro-electrodes. Specially, a positive 30 photoresist G1805 was spin coated on the surface of the graphene film at a speed of 4000 rpm for 30 s. The resulting photoresist

film was soft baked for 60 s at 115 °C on a hot plate, and the baked photoresist film was patterned from a mask with a UV exposure (Karl Süss MJB3 Mask Aligner, vacuum contact) for 4 35 s. Hard bake thus was conducted for 60 s at 115 °C on a hot plate. After this, the sample was developed for 30 s in the ma-D330 developer. After photoresist rinsing in DI water and drying, thin Au layer (30 nm, Premion, 99.9985% metals basis, Alfa Aesar) was deposited on their surface. The thermal evaporation rate of 40 Au was controlled at ~ 2.0 Å/s and the chamber pressure is ~ 3.75 x 10⁻⁶ Torr (EDWARDS FL400). And the photoresist was lifted off in acetone with assistance of sonication for several minutes. The resulting Au micro-patterns of the desired electrode geometry were produced and served as a protection mask against 45 oxygen plasma etching (Plasma System 200-G, Technics Plamsa GmbH, with 20 sccm O2 flow and 100~200 W rf power under the vacuum of less than 0.05 mbar) of the graphene to create the patterns of graphene micro-electrodes on SiO₂/Si wafer. Afterwards, 5 µL H₂SO₄/PVA gel electrolyte was carefully drop-50 casted onto the surface of interdigital electrodes and solidified overnight. Finally, one on-chip all solid-state graphene-based

View Article Online DOI: 10.1039/C4TA00958D

Published on 14 March 2014. Downloaded by Max-Planck Institute fur Polymerforschung on 18/03/2014 11:38:11.

MSC was achieved.

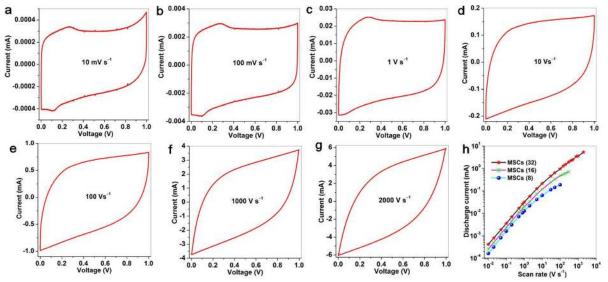
Materials characterization

Materials characterization were conducted by scanning electron microscopy (SEM, Gemini 1530 LEO), energy dispersive X-ray 5 (EDX) and mapping analysis (Hitachi SU8000 SEM coupled with a Bruker XFlash Detector 5010), optical microscopy, atomic force microscopy (AFM, Veeco Dimension 3100), X-ray diffraction (XRD) pattern (SEIFERT XRD 3000 TT Bragg-Brentano diffractometer with Cu Ka radiation between 10° and 10 60° and an incident wavelength of 0.15418 nm), Raman spectra (Bruker, 532 nm) and X-ray photoelectron spectroscopy (XPS, Omicron Multiprobe equipped with the monochromatic Al K_{\alpha} source, electron analyzer resolution of 0.9 eV). The electrical conductivity of the graphene film was measured by a standard 15 four-point probe system with a Kiethley 2700 Multimeter.

Electrochemical measurement

Cyclic voltammerty (CV) tested at the scan rates of 0.01~2000 V s⁻¹ and electrochemical impedance spectroscopy (EIS) recorded in the frequency range of 1~100 kHz with a 5 mV ac amplitude 20 were carried out by a CHI 760D electrochemical workstation. The H₂SO₄/PVA gel electrolyte was prepared by mixing 6.0 g H₂SO₄ and 6.0 g PVA (Mw=85,000~124,000, Sigma Aldrich) in 60 ml deionized water and heated at 80 °C for 1 h under vigorous stirring.²⁷ The detailed calculation of the specific capacitance, 25 power density and energy density was shown in ESI†.

Result and discussion


Fig.1a illustrates the fabrication process of all-solid-state graphene-based, interdigital MSCs on a silicon wafer using a photolithography technique. First, a GO thin film was prepared 30 by spin-coating a GO dispersion²⁵⁻²⁷ (Fig. S1 in the ESI†) on a modified silicon wafer (with 300 nm SiO₂ layer), which was treated with oxygen plasma before use (Steps 1 and 2). Next, the obtained GO film was rapidly reduced by methane (CH₄) plasma treatment at 700 °C for 20 s (Step 3). SEM and AFM images 35 revealed large-area uniformity and continuity for the reduced graphene films, with a thickness of ~15 nm (Figs. 1b,c, and Fig. S2†). XRD, XPS, and four-point probe measurements further confirmed the efficient reduction of the graphene film with a dspacing of ~3.36 Å, a high C/O ratio of ~9.2, and electrical 40 conductivity of ~345 S/cm (Table S1†, ESI). 28 A standard photolithography technique was then applied to pattern the graphene micro-electrodes on the SiO₂/Si wafer. Briefly, a positive photoresist spin-coated on graphene film was patterned using a custom-designed mask with UV exposure (Steps 4 and 5). 45 After development (Step 6), an e-beam thermal evaporation was performed to deposit a thin Au layer on the surface (Step 7) and the remaining photoresist was lifted off in acetone with a shortterm sonication (Step 8). The resulting patterned Au layer with the designed device configuration was then generated and acted 50 as a protection mask against oxygen plasma etching to manufacture the desired interdigital graphene electrode micropatterns (Step 9). EDX elemental mapping analysis clearly reveals the uniform distribution of Au element on the fingers and Si element from SiO₂ layer on Si water along the interspace in the 55 MSCs, and show the smooth boundary between adjacent

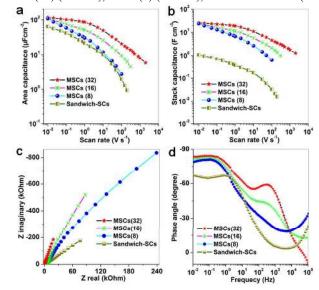
interspace and the fingers (Fig. S3†). Finally, a polymer gel electrolyte of H₂SO₄/polyvinyl alcohol (H₂SO₄/PVA) was dropcasted onto the interdigital electrode and allowed to solidify overnight (Step 10), thus achieving graphene-based interdigital 60 MSCs with an in-plane geometry. By applying this procedure, graphene-based MSCs with different numbers of interdigital fingers (8, 16, and 32) were fabricated on the same total surface of the cell (Fig. S4†), and the corresponding microdevices were denoted as MSCs(8), MSCs(16), and MSCs(32), as shown in Figs. 65 1d-f. The widths of MSCs(8), MSCs(16), and MSCs(32) were 1175, 538, and 219 µm, respectively, (Figs. 1g-i), while the width of the interspaces between the fingers, the length of the fingers, and the thickness (~15 nm) of the graphene films were kept the constant (Fig. S4†).

The electrochemical behavior of MSCs(32) was first examined by cyclic voltammetry (CV) measurements at scan rates ranging from 0.01 to 2000 V s⁻¹ (Fig. 2a-g) and galvanostatic charge and discharge curves at current densities from 1 to 400 μA/cm² (Fig. S5†). Notably, MSCs(32) exhibited a typical electrical double-75 layer capacitive feature with a nearly rectangular CV shape, even at an ultrahigh scan rate of 1000 V s⁻¹ (Fig.2f), indicative of its extreme power capability. Remarkably, MSCs(32) allowed operation at an extremely high discharge rate, up to 2000 V s⁻¹, while maintaining excellent capacitance (Fig.2g), which is 80 characteristic of high instantaneous power. The rate of 2000 V s⁻¹ is at least three orders of magnitude higher than that of conventional supercapacitors, and is the highest value for any high-power MSCs reported to date (See Table S2†, ESI). Furthermore, MSCs(32) displayed excellent cycling stability, 85 e.g., $\sim 98.5\%$ of the initial capacitance ($\sim 20.6 \mu F/cm^2$) was maintained after 50,000 cycles at a large scan rate of 100 V s⁻¹ (Fig. S6†).

To evaluate the influence of the number and width of the fingers on the electrochemical performance of graphene-based 90 MSCs, MSCs(32), MSCs(16) (Fig. S7†), and MSCs(8) (Fig. S8†) with different numbers of interdigital fingers were investigated further. The maximum scan rate of MSCs(32) was up to ~2000 V/s, much higher than that of MSCs(8) (~100 V/s) and MSCs(16) (~300 V/s) (Fig. 2h). Accordingly, MSCs(32) delivered a higher 95 discharge current than MSCs(8) and MSCs(16) at a given scan rate. For example, at a scan rate of 200 V/s, discharge currents of 0.19, 0.47, and 0.95 mA were obtained for MSCs(8), MSCs(16) and MSCs(32), respectively. This result suggests that the greater the number of fingers in the MSCs, the higher the scan rate (or 100 discharge current), and thus more power could be extracted from the microdevices. Increasing the finger number or narrowing the finger width efficiently decreases the average ionic diffusion pathway between the adjacent fingers, and consequently reduces the electrolyte resistance with low ion transport limitations.¹⁵ 105 This result further highlights the crucial role of the device architecture in determining the electrochemical performance of MSCs.

The area capacitance and stack capacitance of graphene-based MSCs(8), MSCs(16), and MSCs(32) are shown in Figs. 3a and 110 3b. For comparison, graphene-based sandwich-supercapacitors (denoted as sandwich-SCs) are also included in the plots. At a low scan rate of 10 mV/s, the area capacitance and stack capacitance of MSCs(32) were calculated to be $\sim 116 \mu F/cm^2$ and ~25.9 F/cm³, respectively, which were higher than those of

Fig. 2 (a-g) CV curves of graphene based MSCs(32) obtained at different scan rates of (a) 0.01, (b) 0.1, (c) 1, (d) 10, (e) 100, (f) 1000, and (g) 2000 V s⁻¹. (h) A plot of the discharge current as a function of scan rate for MSCs(8), MSCs(16) and MSCs(32).


MSCs(16) (\sim 111 µF/cm² and \sim 24.7 F/cm³) and MSCs(8) (\sim 108 $\mu F/cm^2$ and $\sim 24.0 F/cm^3$). Moreover, the rate capability of MSCs(32) outperforms that of MSCs(16) and MSCs(8). Upon 10 increasing the scan rates, the capacitance of MSCs(32) slowly declines. In this case, an area capacitance of ~20.6 μF/cm² and a stack capacitance of ~4.6 F/cm³ were maintained at 100 V s⁻¹. Even at an ultrafast scan rate of 2000 Vs⁻¹, MSCs(32) still retained an area capacitance of ~5.7 μF/cm² and a stack ₁₅ capacitance of ~1.3 F/cm³. In sharp contrast, an area capacitance and stack capacitance of $\sim 4.5 \, \mu \text{F/cm}^2$ and $\sim 1.0 \, \text{F/cm}^3$, respectively, were provided in MSCs(16) at 300 V s⁻¹, and of $\sim 2.7 \,\mu\text{F/cm}^2$ and $\sim 0.6 \,\text{F/cm}^3$, respectively, for MSCs(8) at 100 V s⁻¹. Thereby, it can be concluded that, on a given total area, (i) 20 narrowing the width of the fingers in MSCs can shorten the ion diffusion pathway, and (ii) increasing the number of the fingers in MSCs can increase the length of the interface between the activematerial electrode and electrolyte, thus contributing to the improved double-layer storage and enhanced rate capability of 25 MSCs. On the other hand, sandwich-SCs with H₂SO₄/PVA gel electrolyte between two MPG film (~15 nm) electrodes were examined. The obtained area and stack capacitances (~64 µF/cm² and ~ 1.1 F/cm³) and rate capability (~ 2.0 μ F/cm² and ~ 0.03 F/cm³ at 100 V s⁻¹) for sandwich-SCs were much lower than 30 those of the above three MSCs with different numbers of interdigital fingers, suggesting the superiority of the in-plane geometry over the stack geometry for the enhancement of electrochemical performance. 13 Additionally, the largest scan rate (~200 V/s) of sandwich-SCs observed was higher than that (100 35 V/s) of MSCs(8), possibly due to the long ion diffusion pathway of the sandwich-SCs (>1175 µm).

Published on 14 March 2014. Downloaded by Max-Planck Institute fur Polymerforschung on 18/03/2014 11:38:11.

We next investigated the electrochemical impedance of graphene-based MSCs(32), MSCs(16), MSCs(8), and sandwich-SCs, as shown in Fig. 3c. Remarkably, the Nyquist plots of ⁴⁰ MSCs(32) exhibited a larger slope at a high frequency, which was closer to the Y-axis than that of MSCs(16) and MSCs(8),

indicating better electrical double layer capacitive behavior in MSCs with a greater number of interdigital fingers. In addition, the slopes of all three microdevices were superior to those of sandwich-SCs, further emphasizing the importance of device geometry in capacitive performance.

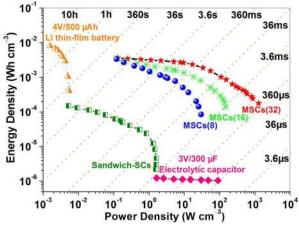

The phase angle as a function of the frequency for MSCs(32), MSCs(16), MSCs(8), and sandwich-SCs is presented in Fig. 3d. The characteristic frequency f_0 at a phase angle of -45° was 50 ~1572 Hz for MSCs(32), which was much higher than that of MSCs(16) (~69 Hz), MSCs(8) (~15 Hz), and sandwich-SCs (~13

Fig. 3 (a,b) Comparison of (a) area capacitance and (b) stack capacitance of graphene-based MSCs(32), MSCs(16), MSCs(8), and sandwich-SCs as a function of scan rate. (c,d) Comparison of (c) Nyquist plot and (d) impedance phase angle vs. the frequency of graphene-based MSCs(32), MSCs(16), MSCs(8), and sandwich-SCs.

Published on 14 March 2014. Downloaded by Max-Planck Institute fur Polymerforschung on 18/03/2014 11:38:11.

Hz). Based on the equation, $\tau_0=1/f_0$ (time constant τ_0 is defined as the minimum time to discharge all of the energy from the device with an efficiency of more than 50%), the corresponding time constant τ_0 was calculated to be ~0.64 ms for MSC(32), 5 suggesting fast accessibility of the ions within the MPG-MSCs. In sharp contrast, MSCs(16), MSCs(8) and sandwich-SCs had a much larger τ_0 of 14.5, 66.7, and 76.9 ms, respectively, at a -45° phase angle.

10 Fig. 4 Ragone plot of all-solid-state, graphene-based MSCs(32), MSCs(16), MSCs(8), and sandwich-SCs in comparison with the well-known electrolytic capacitors²⁹ and lithium thin-film batteries.⁷

For evaluation of the energy and power densities of MSCs(8), MSCs(16), and MSCs(32), a Ragone plot is shown in Fig. 4. Data from sandwich-SCs, a commercial high-energy thin-film lithium battery (4V/500 μAh), ⁷ and a high-power aluminium electrolytic capacitor (3V/300 μF)²⁹ are included for comparison. Increasing 20 the number of interdigital fingers remarkably improved both the energy and power densities of MSCs, especially within a short discharge time from seconds to milliseconds. For example, MSCs(32) delivered a volumetric energy density of ~3.6 mWh/cm³, which was higher than that of MSCs(8) (~3.3) 25 mWh/cm³) and MSCs(16) (~3.4 mWh/cm³). Notably, this value was well comparable to that of lithium thin-film batteries (1~10 mWh/cm³). Furthermore, MSCs(32) offers an ultrahigh power density of 1270 W/cm³ discharged within an extremely short time of ~0.5 ms, superior to that of MSCs(8) (~30 W/cm³ for 10 ms 30 discharge) and MSCs(16) (~140 W/cm³ for 3.3 ms discharge). It should be emphasized that the power density of $\sim 1270 \text{ W/cm}^3$ is the highest value for any state-of-the-art ultrahigh-power MSCs reported to date (Table S2†, ESI), 6, 7, 9 and is three orders of magnitude higher than that of the conventional supercapacitors 35 (<10 W/cm³), and even superior to that of high-power electrolytic capacitors $(10^2 \sim 10^3 \text{ W/cm}^3)^{29}$

Conclusion

We described all-solid-state, graphene-based, planar MSCs fabricated using a photolithography technique. The resultant 40 microdevices showed exceptional electrochemical performance, including high area and stack capacitance, ultrahigh scan rate, ultrahigh power and energy densities, and superior cycling stability. We speculate that the performance of the graphene-

based MSCs can be enhanced by further miniaturization of the 45 finger width and the interspaces between adjacent fingers. Such graphene-based MSCs have great potential as nano/micro-scale power sources for integrating numerous miniaturized electronics and other on-chip applications.

Acknowledgements

This work was financially supported by ERC grants on NANOGRAPH and 2DMATER, DFG Priority Program SPP 1459, EU Projects GENIUS, UPGRADE and Graphene Flagship (No. CNECT-ICT-604391).

Notes and references

- 55 a Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany. Tel: +49 6131 379 150 (telephone); Fax: +49 6131 379 350 (telefax); E-mail: feng@mpip-mainz.mpg.de; muellen@mpip-mainz.mpg.de
- ^b School of Chemistry and Chemical Engineering, Shanghai Jiao 60 Tong University, 200240, Shanghai, P. R. China
 - †Electronic Supplementary Information (ESI) available: Supplementary figures, and calculation of specific capacitance, energy density and power density. See DOI: 10.1039/b000000x/ 1 P. Simon and Y. Gogotsi, Nat. Mater., 2008, 7, 845-854.
- 65 2 D. R. Rolison, R. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourga and A. M. Lubers, Chem. Soc. Rev., 2009, 38, 226-252.
 - 3 M. Koo, K. I. Park, S. H. Lee, M. Suh, D. Y. Jeon, J. W. Choi, K. Kang and K. J. Lee, *Nano Lett.*, 2012, **12**, 4810-4816.
- 70 4 L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui and Y. Cui, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 21490-21494.
- 5 M. Kaempgen, C. K. Chan, J. Ma, Y. Cui and G. Gruner, Nano Lett., 2009, 9, 1872-1876.
- 75 6 J. Chmiola, C. Largeot, P. L. Taberna, P. Simon and Y. Gogotsi, Science, 2010, 328, 480-483.
- 7 D. Pech, M. Brunet, H. Durou, P. H. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna and P. Simon, Nat. Nanotechnol., 2010, 5, 651-654.
- 80 8 Z. S. Wu, X. L. Feng and H. M. Cheng, Natl. Sci. Rev., 2013, DOI: 10.1093/nsr/nwt1003.
- W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. J. Ci, R. Vajtai, Q. Zhang, B. Q. Wei and P. M. Ajayan, Nat. Nanotechnol., 2011, 6, 496-500.
- 85 10 M. F. El-Kady and R. B. Kaner, Nat. Commun., 2013, 4, 1475.
 - 11 W. Si, C. Yan, Y. Chen, S. Oswald, L. Han and O. G. Schmidt, Energy Environ. Sci., 2013, 6, 3218-3223.
- 12 Z. S. Wu, G. M. Zhou, L. C. Yin, W. C. Ren, F. Li and H. M. 90 Cheng, Nano Energy, 2012, 1, 107-131.
- 13 J. J. Yoo, K. Balakrishnan, J. S. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai and P. M. Ajayan, *Nano Lett.*, 2011, **11**, 1423-1427.
- 14 J. H. Sung, S. J. Kim, S. H. Jeong, E. H. Kim and K. H. Lee, 95 J. Power Sources, 2006, **162**, 1467-1470.
 - 15 D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet and D. Guay, J. Power Sources, 2013, 230, 230-235.

- 16 J. Feng, X. Sun, C. Z. Wu, L. L. Peng, C. W. Lin, S. L. Hu, J. L. Yang and Y. Xie, *J. Am. Chem. Soc.*, 2011, 133, 17832-17838.
 17 D. Pech, M. Brunet, P. L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conedera and H. Durou, *J. Power Sources*, 5 2010, 195, 1266-1269.
- 18 Z. Weng, Y. Su, D. W. Wang, F. Li, J. H. Du and H. M. Cheng, *Adv Energy Mater*, 2011, **1**, 917-922.
- 19 M. Beidaghi and C. L. Wang, *Adv. Funct. Mater.*, 2012, **22**, 4501-4510.
- 10 20 L. L. Peng, X. Peng, B. R. Liu, C. Z. Wu, Y. Xie and G. H. Yu, *Nano Lett.*, 2013, 13, 2151-2157.
 - 21 W. W. Liu, X. B. Yan, J. T. Chen, Y. Q. Feng and Q. J. Xue, *Nanoscale*, 2013, **5**, 6053-6062.
- 22 J. Lin, C. G. Zhang, Z. Yan, Y. Zhu, Z. W. Peng, R. H. Hauge, D. Natelson and J. M. Tour, Nano Lett. 2013, 13, 72, 78
- D. Natelson and J. M. Tour, *Nano Lett.*, 2013, 13, 72-78.Z. Q. Niu, L. Zhang, L. L. Liu, B. W. Zhu, H. B. Dong and X.
- D. Chen, Adv. Mater., 2013, 25, 4035-4042.
- 24 J. R. Miller and P. Simon, Science, 2008, **321**, 651-652.
- 25 Z. S. Wu, Y. Sun, Y. Z. Tan, S. B. Yang, X. L. Feng and K.
- 20 Müllen, J. Am. Chem. Soc., 2012, 134, 19532-19535.
- 26 Z. S. Wu, S. B. Yang, Y. Sun, K. Parvez, X. L. Feng and K. Müllen, *J. Am. Chem. Soc.*, 2012, **134**, 9082-9085.
- 27 Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng and K. Müllen, *Adv. Mater.*, 2012, **24**, 5130-5135.
- 25 28 Z. S. Wu, K. Parvez, X. L. Feng and K. Müllen, *Nat. Commun.*, 2013, 4, 2487.
 - 29 M. F. El-Kady, V. Strong, S. Dubin and R. B. Kaner, *Science*, 2012, **335**, 1326-1330.

View Article Online DOI: 10.1039/C4TA00958D

Graphical contents entry

Ultrahigh rate, all-solid-state, planar graphene-based micro-supercapacitors with different interdigital fingers have been manufactured by photolithography technique, revealing the critical importance of increasing the number and narrowing the widths of the fingers in the fabrication of high-performance micro-supercapacitors. Such graphene-based micro-supercapacitors represent a novel class of on-chip miniaturized micro-electrochemical energy storage devices as the micro-/nano-scale power sources for integrating numerous electronics.