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Abstract

We present a method for computing ambient occlusion

(AO) for a stack of images of a scene from a fixed viewpoint.

Ambient occlusion, a concept common in computer graph-

ics, characterizes the local visibility at a point: it approx-

imates how much light can reach that point from different

directions without getting blocked by other geometry. While

AO has received surprisingly little attention in vision, we

show that it can be approximated using simple, per-pixel

statistics over image stacks, based on a simplified image for-

mation model. We use our derived AO measure to compute

reflectance and illumination for objects without relying on

additional smoothness priors, and demonstrate state-of-the

art performance on the MIT Intrinsic Images benchmark.

We also demonstrate our method on several synthetic and

real scenes, including 3D printed objects with known ground

truth geometry.

1. Introduction

Many vision methods estimate physical properties of a

scene from images taken under varying illumination. Some

notable examples include recovering surface normals using

photometric stereo [6, 25, 2], recovering diffuse reflectance

and illumination as intrinsic images [27, 15], and comput-

ing low-dimensional models of appearance of objects and

scenes [26, 9]. However, these methods typically disregard

the effect of the local visibility of illumination in determining

shading. Further, many of these methods require calibrated

setups (e.g., known lighting directions), special priors (e.g.,

smoothness of surface reflectance), or limiting assumptions

(e.g., no cast shadows).

In our work, we revisit such estimation problems by pos-

ing the following question: what can we tell about a scene

point simply by observing its appearance under many differ-

ent, unknown illumination conditions? The appearance of

a point over such an image stack depends on many factors,

such as the point’s albedo and the distribution of illumina-

tions. However, a key observation is that the local visibility

of a point—i.e., its accessibility to light from different direc-

(a) Input Images

(d) Albedo

(c) Ambient

Occlusion

(b) 

Figure 1. Our method takes as input a stack of images captured

from varying, unknown illumination (a) and computes a per-pixel

statistic, κ, over this stack (b). We infer both per-pixel ambient

occlusion, a measure of local visibility (c), and albedo (d) for the

scene by relating κ to a simple image formation model.

tions, often modeled as ambient occlusion (AO) in computer

graphics—is also an important property in determining its ap-

pearance in images. We show that we can estimate ambient

occlusion directly from image observations, by introducing

a simple, aggregate statistic (κ in Fig. 1(b)), and relating

this statistic to ambient occlusion. To do so, we consider

a physical model of a point with a cone of visibility to the

hemisphere, lit by a moving point light and constant ambient

light over the image stack. We then combine this model with

our statistic to infer ambient occlusion for each scene point

(Fig. 1(c)). This kind of lighting visibility is often treated as

a nuisance in computer vision methods, and in many cases

is simply ignored. In contrast, we explicitly model such

visibility for each scene point, and use it to aid in estimating

other physical parameters, such as surface albedo (Fig. 1(d)).

The result is a photometric approach to estimating ambient

occlusion and albedo.

Our method has several key properties: we do not require

knowledge of light positions, explicit scene geometry, or sur-

face normals. The setup for acquisition is simple, requiring

a point light source and a camera. However, we do assume
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that light source positions vary uniformly over the full hemi-

sphere, although in practice we achieve good results even

when this assumption does not hold. Note that we use the

term image “stack” to refer to a set of images of the same

scene lit under varying illumination, but captured from the

same viewpoint. No frame-by-frame coherence or ordering

is implied. Our contributions are:

• A per-pixel, image-space approach to estimating ambi-

ent occlusion that does not require information about

the underlying geometry.

• A new method for intrinsic image decomposition using

our model of ambient occlusion, accounting for local

visibility at each point.

We demonstrate our method in experiments on several scenes.

These include artificially generated images from a physically

based renderer, as well as real objects captured in a labora-

tory environment. Our experiments on real objects include

a validation on 3D printed objects with known geometry,

including the TENTACLE dataset in Fig. 1. We also show

that our method—despite its simplicity and its per-pixel

analysis of a scene, without additional smoothness priors—

outperforms current approaches on the MIT intrinsic images

benchmark [10]. This demonstrates the utility of reasoning

about AO when measuring properties of scenes from images.

2. Ambient Occlusion

Ambient occlusion [16] is a measure of light accessibility

commonly used in computer graphics to properly account

for ambient illumination. Formally, for a single scene point

x, AO is the integral over the hemisphere

AO(x) =
1

π

∫

Ω

V (x, ~ω)〈~n, ~ω〉dω (1)

of the local visibility function V (x, ~ω) (i.e. V (x, ~ω) = 1 if

there are no occluders between point x and the environment

in direction ~ω, V (x, ~ω) = 0 otherwise) weighted by the dot

product 〈~n, ~ω〉 between direction ~ω and the point normal

~n. For an example, see Fig. 6. At points where most of

hemisphere is occluded, e.g., in a deep crevice, V is mostly

0 and so AO is close to 0, while for unoccluded points AO

is 1. If the albedo at x is ρ, the measured radiance due to

ambient illumination with intensity la can be expressed as:

Ia = ρπlaAO (2)

Note that this only considers the first bounce of light (direct

illumination), and does not account for inter-reflections.

Two properties of ambient occlusion that are useful in

computer vision are: (1) it is independent of surface albedo,

and so variation and discontinuities are due only to scene

geometry, and (2) it explains in a simple way why regions

with same albedo can have different intensities even when

lit with uniform illumination [17].

In computer graphics, the main focus is on computing

AO in 3D scenes to render images [20, 13, 19]. In contrast,

we are interested in estimating AO from a set of images

illuminated by a varying, unknown light source.

3. Related Work

Ambient occlusion has received relatively little attention

in computer vision. Some examples of its use include early

work in shape-from-shading [17], where it was used in mod-

els of images under diffuse illumination, as well as more

recent work that considers AO in various applications.

In the context of high-quality face capture, Beeler et

al. [7] and Aldrian & Smith [3] model AO by assuming

a uniform, constant, light source, and require an initial esti-

mate of the geometry. In the area of multi-view stereo, Wu et

al. assume that a scene consists of a single albedo, and so

the scene brightness under uniform area lighting is itself a

good approximation to AO (e.g., darker regions are more

occluded) [29]. For the problem of intrinsic image decom-

position from large photo collections, Laffont et al. require

accurate estimates of the albedo for a sparse set of 3D scene

points [14]. To account for points that are darker due to AO,

they compute AO explicitly by generating and analyzing a

3D scene reconstruction. In contrast to these methods, we do

not explicitly model geometry, instead reasoning about AO

purely from observed pixel values. This yields a very simple

approach that could be used as a pre-process to account for

light visibility in other vision algorithms.

Our work is also related to methods that analyze pixel

intensity variation in images under varying illumination.

Weiss proposed a method for intrinsic images from image

sequences [27], derived from a model of edge intensities. In

that work, a final step involves integrating a gradient field to

compute a reflectance image. In our experience, and in agree-

ment with other reports [10], this integration performs poorly

in the presence of soft and persistent shadows (exactly the

kind caused by AO), and we find that it can also propagate

noise across the image. In contrast, our method explicitly

models one cause of soft shadows (namely AO), and does

not require a final integration step, which we find makes

the algorithm more robust. For outdoor scenes illuminated

by the sun, Sunkavalli et al. recover albedo and normals by

directly tracking the intensity of pixel values over time [24].

While they use heuristics to determine whether a pixel is in

shadow, our method makes no such hard decisions, instead

reasoning about statistics over the entire image sequence. In

more recent work, Barron & Malik optimize for reflectance,

shape, and illumination from single images under strong

priors on illumination and color of natural scenes [5]. In

contrast, our method operates at a per-pixel level and does

not make assumptions about the texture in the scene.
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Photometric stereo techniques [28, 6] are similar to our

method in their setup and the fact that they estimate albedo,

but differ in that they recover different information about

shape (surface normals), compared to our work. Our ap-

proach is especially related to uncalibrated photometric

stereo, in which the light source directions are unknown. A

key challenge in photometric stereo is dealing with shadows,

either by detecting them in some manner [8, 25] (a non-

trivial problem with surfaces of varying albedo or complex

self-occlusions), or treating them as a source of noise [30].

Sunkavalli et al. reason about lighting visibility of surface

points, by clustering them into “visibility subspaces” that see

a common set of lights [25]. However, they use an implicit

model of lighting visibility that grows in complexity as the

number of lighting conditions increases. In contrast, our

method relies on a simple per-pixel measure of ambient oc-

clusion that becomes more robust as more images are added.

In addition, our model incorporates ambient illumination as

well as directional lighting.

Finally, our work is also related to methods that recover

shape from AO [17, 21], and our algorithm could potentially

be used to generate inputs to such methods.

4. A Model for AO in Image Stacks

We now describe how to obtain a simple approximation

to ambient occlusion (AO) by observing pixel intensities

in multiple images under varying directional lighting. We

introduce an physically-based image formation model for

our measure of AO, then use this model to derive AO and

albedo from image sequences.

4.1. Inputs and image formation model

Our method takes as input a set of images, I1, I2, . . . , In,

captured from a fixed camera observing a static, Lambertian

scene. The scene is lit by an unknown, directional light

source that changes from image to image, together with a

constant ambient light source, both of which are of constant

intensity over time. We assume that the distribution of di-

rectional light sources is uniform over the hemisphere. The

images are radiometrically and pixel x, I(x) is proportional

to the radiance at a given scene point under a particular il-

lumination. Because the camera is static, the same pixel x

records radiance for the same scene point in each image. In

the following derivation the images are treated as monochro-

matic without loss of generality.

A key idea in our work is that for a given pixel x, the

measured radiances over all images are drawn from an un-

derlying distribution that we refer to as its pixel intensity

distribution (PID). This distribution of pixel intensities is re-

lated to the distribution of illuminations over the image stack,

as well as to the albedo of that point and to the surrounding

geometry. Fig. 2 shows an example of observed PIDs in an

image stack for two points. For example, a point in a deep
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Figure 2. Histogram of pixel intensities for two points of TENTACLE

over an image stack (only blue color channel). Notice that even

though the two points have very similar albedos their histograms

are quite different due to local visibility. Point A is mostly occluded,

so values are in general lower.

concavity will very often appear dark, because light rarely

reaches it (only when the light is shining straight down into

the hole). Such a point will have a PID with mostly low-

intensity values. (For example, consider point A in Fig. 2.)

The intuition then, is that the samples we record give us

information about a pixel’s PID, which in turns reveals infor-

mation about surface albedo and ambient occlusion. As we

capture images lit under more and more possible directions,

we begin to capture the actual underlying PID of a pixel.

As a useful summary of a PID, we introduce a statistic

for a single pixel x over time, which we denote κ:

κ(x) =
E [I(x)]2

E [I(x)2]
(3)

where E [·] is the expectation operator over the set of images.

That is, κ is the square of the expected (average) intensity

value for that pixel, divided by the expected squared pixel

intensity, and is related to the coefficient of variation, a nor-

malized measure of variance used in statistics. Fig. 1(b)

illustrates κ for an example image stack. We show that this

simple ratio of statistics over recorded intensities yields an

approximation to ambient occlusion; to understand this rela-

tionship between κ and ambient occlusion, we first describe

our image formation model, then relate this to a physical

model of local scene geometry.

For a Lambertian scene, an image formation model com-

monly used in intrinsic images literature is:

I(x) = ρ(x)L(x) (4)

where I(x) ∈ R
+ is the observed radiance at point x in the

image, ρ(x) ∈ [0, 1) is the diffuse albedo, and L(x) ∈ R
+

is a factor that depends on both light and geometry.

Over our sequence of images I , ρ(x) is constant and

greater than zero, while L(x) varies due to lighting. Un-

der these assumptions, we can substitute Eq. (4) into the

definition of our κ statistic in Eq. (3) to obtain

κ =
E [ρL]2

E [ρ2L2]
= ✓✓ρ

2E [L]2

✓✓ρ
2E [L2]

(5)
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(for simplicity, we do not explicitly write the dependence on

x, but as before κ is a statistic defined per-pixel across the

image stack). Thus, κ depends only on the lighting factors

L, and not on albedo.

What range of values can κ take on? Because κ is the

quotient of non-negative numbers, it follows that κ ≥ 0. By

observing that Var(I) = E [L2] − E [L]2 ≥ 0 we can also

show that κ ≤ 1. For points that never receive light E [L] = 0
so κ = 0 (one can arrive at this via a limit analysis). For

points whose illumination term never changes we have that

Var[I] = E [L2]− E [L]2 = 0, which implies E [L2] = E [L]2

and therefore κ = 1. This behavior suggests that κ could be

useful as a measure of ambient occlusion at a point.

4.2. A physical image formation model for κ

So far we have shown that κ is independent of albedo and

is bounded. What does κ tell us about a scene point? As a

statistic, κ relates to the geometry and visibility at a point; to

show this, we introduce a simplified geometry and lighting

model to connect κ to a physical measure of local visibility.

Our model assumes that the visibility at a point can be

approximated by a cone of angle α (Fig. 3). A point x, on a

Lambertian surface, is observed by camera c while illumi-

nated by two light sources: a directional light with intensity

ld, and a background ambient illumination with constant

intensity la. One can think of these two components as

roughly similar to a “sun” and a “sky,” respectively. Surface

geometry around the point blocks all light outside the cone

with angle α from reaching x. We refer to this angle α(x)
as the local visibility angle for point x. Further, across our

input images, we assume that the directional light uniformly

samples the full hemisphere, so each measure of the radiance

of x captured by the camera corresponds to a different (un-

known) position for the light ld. Given these assumptions,

κ(x) only depends on the local visibility angle α(x).

We now derive the relationship between κ and α given our

model. To begin, each image I is the sum of the contributions

from both light sources:

I = Id + Ia (6)

The directional component Id varies from image to image

and depends on the angle θd(t) between the light source

direction ~ωd(t) and the point normal ~n, and whether the

light is blocked by other geometry. It is given by:

Id(t) = ρldVα(~n, ~ωd(t))〈~n, ~ωd(t)〉

= ρldVα(θ(t)) cos θd(t)

where Vα is the visibility term (i.e., Vα(θ) = 1 if θ ≤ α,

Vα(θ) = 0 otherwise). The ambient component is constant

and proportional to the projected solid angle of the local

visibility angle. From Eqs. (1) and (2) we integrate the

Figure 3. A point x on a Lambertian surface is observed by camera

c and illuminated by a distant, moving light source with intensity

ld, and a constant ambient term of intensity la. The local visibility

is approximated by a cone with angle α. If the light source angle

with the surface normal θ is larger than α, light is blocked and does

not reach point x at the bottom of the valley.

ambient illumination over the visible hemisphere at the point:

Ia = ρ

∫ 2π

ϕ=0

∫ α

θ=0

la cos(θ) sin(θ)dθdϕ = ρlaπ sin2 α

(7)

Given this model for Id and Ia, to relate κ to our physical

parameter α, we compute the expectations in Eq. (5) over

light source positions:

E [I] = E [Id] + E [Ia] = E [Id] + Ia

E [I2] = E [(Id + Ia)
2] = E [I2d ] + 2IaE [Id] + I2a

where we use the linearity of expectation, E [·], and the as-

sumption that Ia does not change over the image stack.

For the direct component, we integrate over the visible

cone of angles at the point, assuming the point light is uni-

formly distributed over the hemisphere for the image stack:

E [Id] =
1

2π

∫ 2π

ϕ=0

∫ α

θ=0

Id sin θdθdϕ =
1

2
ρld sin

2(α) (8)

E [I2d ] =
1

2π

∫ 2π

ϕ=0

∫ α

θ=0

I2d sin θdθdϕ = −
1

3
ρ2l2d

(

cos3(α)− 1
)

Given these equations, κ can be derived in terms of α as:

κ(α) =
E2[I]

E [I2]
=

(E [Id] + Ia)
2

E [I2d ] + 2IaE [Id] + I2a
(9)

=
3(2πf + 1)2 sin4(α)

4
(

3πf(πf + 1) sin4(α)− cos3(α) + 1
)

where f is the relative intensity of la with respect to ld,

i.e. la = fld. To get a better intuition for κ we consider

two special cases ld = 0 and la = 0, which correspond to

f →∞ and f = 0 respectively:

κ|ld=0 = 1 κ|la=0 =
3 sin4(α)

4− 4 cos3(α)
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Figure 4. κ(α) for different ratios of ambient to direct light f . Note

that as f → ∞ (ld = 0) we have a constant curve (κ(α) = 1) so

information about α cannot be recovered.

If there is no directional illumination component (i.e.,

ld = 0) then κ(α) is always 1, and α cannot be recovered

from pixel measurements alone.

If there is no ambient component (i.e., la = 0) then

κ increases monotonically in the valid range for α and is

independent of ld (as long as ld > 0). In Fig. 4 we show

κ(α) for a few different values of f .

In summary, we have derived a relation between the statis-

tic κ, and the ambient occlusion at a point, using a physical

model of a crevice (with a cone of visibility characterized by

α) lit by a varying directional light, and a constant ambient

light over a stack of images. No assumptions of smoothness

or geometric reconstruction are required to derive this param-

eter. As we show later, this physical model, though simple

and an approximation of real scenarios, works surprisingly

well in characterizing the visibility at points in a scene.

5. Algorithm

In this section we use our model to compute a per-pixel

local visibility angle α(x) and albedo ρ(x) given a stack of

images of the same scene under varying illumination. While

our derivation has assumed grayscale images, our algorithm

also uses additional constraints from color images.

We first compute κ using Eq. (3) by assuming f0 = 0
(i.e., ambient lighting is negligible) to derive an initial α0

using Eq. (10). We then refine α(x) (one value per pixel) and

f (one value per color channel, but constant across pixels)

by minimizing the objective function:

α1, f1 ← min
α,f

∑

‖κobs − κ(α0, f0)‖
2 (10)

where the subscript obs stands for “observed”. In other

words, we compute α and f so as to best explain the observed

statistic κ. In total we have nc × np equations, where nc is

the number of color channels and np the number of pixels,

and np + nc variables, one α per pixel and nc variables

corresponding to the direct to ambient illumination ratios f .

Eq. 10 defines a non-linear least squares problem, which we

minimize using Matlab’s lsqnonlin function.

Given our final estimates α1 and f1, we compute esti-

mates for the albedo ρ(x) at each point from Eqs. (8) and (7).

We express albedo as a function of the expected pixel value,

the ratio f , the local visibility angle α, and the intensity ld
of the direct component:

ρ =
2E [I]

ld sin
2(α) (1 + 2fπ)

(11)

Note that there is an inherent ambiguity between light source

intensity ld and the scene albedo, so we can only estimate

albedo up to a scale factor. Therefore, we assume that ld = 1
to obtain ρ1, our estimate of the albedo.

6. Results

We begin by demonstrating results of our algorithm on

various datasets (Section 6.1) and exploring the different

measures the algorithm produces. In Section 6.2 we use

an object with known geometry to measure the error in our

estimate of ambient occlusion. In Section 6.3 we evaluate our

estimate of albedo by comparing our algorithm with others

using the MIT Intrinsic Images benchmark [11]. Finally, in

Section 6.4 we examine how the number of images affects

our estimate of α.

6.1. Image Decomposition

Fig. 5 shows results on several datasets, including images

used in prior work. For each dataset we show κ, ambient

occlusion, ρ, and the illumination. More results can be found

on our project webpage [1].

Datasets. The first dataset, TENTACLE, contains 350 images

of a 3D printed object with known geometry. The light

source position in TENTACLE was precisely controlled by a

mechanical gantry allowing us to sample uniformly random

positions over the full hemisphere. The known geometry lets

us compare against ground truth.

The other datasets are public datasets that violate the

assumptions of our model in various ways. FROG and

SCHOLAR, from [25], contain 47–48 images lit under vary-

ing directional lights that do not cover the full hemisphere.

FACE from the Yale Face Database B+ [18], contains 64 im-

ages with light positions over a range of angles. This scene

violates our assumptions in that skin is not Lambertian, and

exhibits significant subsurface scattering. Nevertheless we

see from the images for AO and L in Fig. 5 that our tech-

nique can qualitatively separate geometry and reflectance

quite well. In particular, one can see from the area on the

neck close to the chin that our AO image does not contain

texture due to facial hair. Finally, we show results for TUR-

TLE and SQUIRREL, from the MIT Intrinsic Image Dataset.

Here the main challenge is that there are only 10 images of

each object lit by a point light source.

Discussion. Figure 5 shows that the recovered AO seem to

match our expectation of local visibility for these scenes.
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Figure 5. Results of our algorithm. Each column shows results from a different dataset. The rows show 1) sample images from the original

dataset, 2) our estimated AO, 3) albedo, and 4) the illumination in the sample image.

The recovered albedos are mostly free of shading and the

ambient occlusion map is mostly free of albedo (e.g., the

frog’s nose and the neck in FACE). It is also interesting that

the pupil in the FACE dataset is black in the AO image and a

light gray in the albedo.

For color images we estimate κ independently for each

color channel. For a white directional light source, color

casts in κ reveal the color of the ambient term, since f has

a different value per channel. Observe that in Fig. 4, for a

fixed α, κ increases if f increases. The same mechanism

might explain local color shifts in Fig. 1, where one can see

red tints on the ray gun and green casts along the mouth.

The cause is likely to be subsurface scattering, where light

arriving after multiple subsurface scattering events can be

thought of as acting like a local ambient light term.

6.2. Estimated Ambient Occlusion

We validated our estimate of AO using two objects of

known geometry. In addition to TENTACLE, we 3D printed

another object with a more regular shape, which we refer to

as LIGHTWELL. This object is a solid block of material with

a series of cylindrical holes of varying but known depth [1].

We printed this object in four colors: white (original ma-

terial color), red, green, and blue to evaluate the impact of

different albedos on our estimate. The acquisition setup

for LIGHTWELL is the same as for TENTACLE (see Section

6.1). It is worth mentioning that although 3D printing offers

good control over the geometry, material properties cannot

be fully specified. The selected material (sandstone) was the

most diffuse of the available materials, but was not perfectly

diffuse, and exhibited a fair amount of subsurface scattering

(see the red ray gun of TENTACLE).

Figure 6 compares our AO result for TENTACLE to the

ground truth. We can see qualitatively that both are very

similar. One difference is that our estimate appears smoother;

we believe that this is caused in part by subsurface scattering,

as the effect is most noticeable in the thin areas of the gun.

Another difference is that our estimate is in general darker,

meaning that our algorithm is predicting that locally the

geometry is more occluded. We attribute this in part to

the material roughness from the 3D printing process. At a

mesolevel the structure can be thought of as being composed

of many small crevices, and a single pixel in our κ image is

an average of all these contributions.

For a quantitative measure of error we report in Fig. 9 (a)

the average error for α at the center of the crevice for

LIGHTWELL compared to ground truth, as a function of

the local visibility angle α. We show four curves, one for

each color of LIGHTWELL. In the plot we see two trends.

First, the error is larger for brighter albedos (red and white).

We suspect that this is caused by the increase in light inter-

reflections for higher albedos. Since our model does not
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Ground Truth Our Estimate

Figure 6. A comparison of ground truth (computer generated)

with our estimated AO (from actual images) for TENTACLE. The

background clutter is masked.

account for this effect, a patch at the bottom of a deeper hole

looks brighter than our model would predict. A second trend

is that deeper holes have larger errors. This can be explained

by remembering that κ is the quotient of two expectations

and that for these regions we expect these averages to stabi-

lize more slowly (as we will show in Section 6.4).

6.3. Estimated Albedo

We ran our algorithm on the MIT Intrinsic Images bench-

mark [11] to measure the quality of our albedo estimates.

This benchmark consists of 16 objects each with 11 im-

ages, and uses the local mean squared error (LMSE) defined

in [11] to evaluate performance. Some methods evaluated

by the benchmark (e.g., Retinex) operate on a single image,

usually by imposing priors on the illumination and albedo

images. However, the best-performing reported prior method

combines Retinex [15] with Weiss’s method [27] which, like

our own, requires a stack of images.

We obtain the shading image for each of the input im-

ages by simply dividing the input image by our estimated

albedo (see Eq. (4)). Fig. 7 shows our method’s performance

compared to others included in the benchmark. In Fig. 8

we show a subset of results against the best algorithm in the

benchmark. First, we note that our approach outperforms the

competing methods. Interestingly, our initial estimate (i.e.,

f = 0) performs better than the refined one. We believe that

this is a result of the setup, which indeed does not contain

ambient illumination, and the fact that most objects have a

very high albedo, resulting in a larger contribution due to

inter reflections, which is not modeled by our algorithm. Our

results also compare favorably to recent single-image algo-

rithms [4, 22, 23] which reports results on different subsets

of the benchmark datasets (a full comparison can be found

on our project webpage [1]).

6.4. Rate of convergence

We now consider the impact of the number of images

and the visibility angle in estimating ambient occlusion. Fig-

ure 9 (b) shows the root mean squared error (RMSE) of our

ambient occlusion estimate as a function of the number of
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Figure 7. Comparison of LMSE error on the MIT intrinsic image

dataset [11] (shorter bars are better). Compared algorithms are:

Grayscale Retinex (GR-RET), Color Retinex (COL-RET), Weiss

(W), Weiss+Retinex (W+RET), ours with only direct term (κ-D)

and our second estimate containing direct and ambient terms (κ-

DA).
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Input
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Figure 8. Comparison of our method with W+Ret from the MIT

benchmark. Results are for our first estimate of the albedo (i.e.,

ambient illumination is assumed to be zero) as this gave us the best

results on the benchmark.
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Figure 9. (a) Error in the estimated local visibility angle α vs. the

true local visibility angle for the LIGHTWELL object printed in

different colors (shown in the left). (b) Average Root Mean Square

Error (RMSE) for our estimate of ambient occlusion vs. number of

images used in the estimate. Different curves represent different

crevice depths and their corresponding angles (α).

input images for different hole depths. For each hole depth,

we estimate AO at the center of the hole using rendered im-

ages of the blue LIGHTWELL (generated using a physically

based renderer [12]). We compare our estimate to the ground

truth AO in that hole using MSE, and repeat this process

100 times to compute an average RMSE. We observe that

rate of convergence is strongly dependent on the depth of

the crevice, but our method performs well even with a small

number of images on scenes where α ≥ 40◦.
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7. Conclusions

Ambient occlusion, a measure of local visibility at a point,

plays an important role in the shading of surfaces. We intro-

duce an image-space approach to estimating ambient occlu-

sion from a set of images under varying, unknown illumina-

tion. Our method analyzes the scene in terms of a physical

model of a visibility cone, lit by a varying point light over

the image stack. We propose a simple, per-pixel statistic, κ,

based on observed intensities over the set of images; from

κ, we recover per-pixel ambient occlusion and albedo val-

ues by relating our physical model to this measured statistic.

Despite its simplicity, we show that this statistical approach

works well in practice for a range of real-world image stacks.

In the future, it would be worth considering other statistics

that might correlate to other physical properties.

Our approach makes a few assumptions that we would

like to generalize. We assume that input images are illu-

minated by a point light source that moves over the entire

hemisphere visible to any given point. For outdoor scenes,

where the directional light is from the sun, this assumption

is violated; we need improved models to account for more

general distributions of lighting directions.

Our assumption of diffuse materials with no inter-

reflections is surprisingly effective. However, in the presence

of specularities, subsurface scattering, or significant inter-

reflections, our albedo estimates are less accurate. While

our per-pixel statistic does not propagate errors, it would be

interesting to couple our approach with sparsity or smooth-

ness priors, or to incorporate models of inter-reflection. Our

crevice model assumes a conical visibility model; in the

future, we could extend this to include anisotropy so as to

better match more general visibility scenarios.
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