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Abstract

Motivated by a Bayesian vision of the 3D multi-view

reconstruction from images problem, we propose a dense

3D reconstruction technique that jointly refines the shape

and the camera parameters of a scene by minimizing the

photometric reprojection error between a generated model

and the observed images, hence considering all pixels in

the original images. The minimization is performed using

a gradient descent scheme coherent with the shape repre-

sentation (here a triangular mesh), where we derive evolu-

tion equations in order to optimize both the shape and the

camera parameters. This can be used at a last refinement

step in 3D reconstruction pipelines and helps improving the

3D reconstruction’s quality by estimating the 3D shape and

camera calibration more accurately. Examples are shown

for multi-view stereo where the texture is also jointly opti-

mized and improved, but could be used for any generative

approaches dealing with multi-view reconstruction settings

(i.e. depth map fusion, multi-view photometric stereo).

1. Introduction

Reconstructing the 3D shape from multiple images has

been one of the main challenges in computer vision and

has been widely studied. A Bayesian way of addressing

the multi-view reconstruction problem is to see it as the in-

verse problem of the image formation process. This process

of image generation implies being able to derive a model

of such a scene, denoted by Ω. This typically contains the

scene geometry (i.e. the surface S), a camera model (i.e. the

pinhole camera model Π), the surface properties (i.e. the re-

flectance), the lighting conditions, etc. If, given those pa-

rameters of Ω, we are able to generate an image R, we can

compare it to the observed images I = {I1, I2, . . . , Im}.

The best scene Ω̂ can be found by maximizing the joint

probability of a scene given the images:

Ω̂ = argmax
Ω

{p(Ω|I)} = argmax
Ω

{p(I|Ω) p(Ω)} . (1)

The terms p(Ω)is the prior term on the scene (which may

typically correspond to surface smoothing criteria, con-

strains on the surface texture or the camera parameters, or

simply an initial guess for the model). p(I|Ω) corresponds

to the likelihood of a generated image for a given shape, ap-

pearance and cameras. It measures the similarity between

the generated images and the observed images.

A simplification of the generative model is to consider

as observation previously detected 2D features in images,

along with their corresponding matches in other images.

Finding the camera parameters from such information is

known as structure-from-motion [4, 15]. Such a model

could be estimated by finding the calibration Π and a set

of 3D points x whose projections in the images are as close

as possible from the original observations. If we consider

a Gaussian noise model in the observation, maximizing this

likelihood naturally leads to minimizing the geometric er-

ror between the projection of the 3D points and their corre-

sponding 2D measurements (e.g. , 2D feature positions) to

refine both the camera parameters and a sparse reconstruc-

tion in a single framework. This is known as Geometric

Bundle Adjustment (BA) [21, 13], and has been success-

fully applied to various sparse 3D reconstruction scenari,

mostly minimizing a Geometric Reprojection Error:

E(x,Π) =
∑

i

fi(x,Π)2 ,

where fi is the geometric error between observation i and

the projection of the 3D point into the image.

In contrast, an alternative way is to directly consider the

maximum likelihood of the generative model described in

Equation (1), by finding a model that best explains the ob-

served images. In this case, the observed data no longer

consists of extracted features like in the case of GBA, but

directly comes from the image measurements. In computer

vision, this typically corresponds to intensity values of a

color image, but the concept naturally generalizes to any 2-

dimensional signals coming from vision sensors. p(I|Ω)
is typically derived from an image noise model, and is

often represented as a Normal (or Gaussian) distribution

function, e.g. p(I|Ω) ∝
∏

i

∏

p e−(Ii(p)−RS,Πi
(p))2 , where

1

h
a
l-
0
0
9
8
5
8
1
1
, 
v
e
rs

io
n
 1

 -
 3

0
 A

p
r 

2
0
1
4

http://hal.archives-ouvertes.fr/hal-00985811
http://hal.archives-ouvertes.fr


RS,Πi
(p) is the intensity pixel value induced by the gen-

erative model for image i. The reconstruction problem can

naturally be formulated as minimizing the following ”pho-

tometric” energy functional [2, 3, 7, 19]:

E(Ω) =
∑

i

∫

Ii

1

2

(

Ii(p)−RΩ,i(p)
)2

dp , (2)

where dp is the area measure on the image i. In the rest of

the paper, we omit the dependency on i since this is just a

sum over all available images. Note that, in contrast with

GBA, the error measure between the predicted pixel values

and the observed ones is carried out over all pixels of all

input images. Instead of the geometric information only

(i.e. extracted image feature positions), this paper aims at

accounting for the photometric information, referred to as

photometric bundle adjustment (PBA).

1.1. Related Work

In recent decades, dense geometry recovery has lead to

a large number of efficient techniques in order to obtain

dense and accurate 3D models, e.g. see [18, 20] for a com-

parison of recent approaches in the context of multi-view

stereo. While some algorithms are based on dense fea-

tures or patches [5] others are based on energy minimiza-

tion techniques. Among those techniques, variational meth-

ods have become popular. They differ from the kind of en-

ergy they minimize, the way they minimize it or the sur-

face representation they choose. For example [17] uses the

Level Set framework using a global image score, [10] uses

a convex formulation minimizing a photometric error de-

fined over a discretized grid. In [2] and [23], a mesh re-

finement technique is proposed, minimizing a photometric

cost measure. While all those methods return good results

in recovering the 3D shape, only a few of them address the

problem of camera calibration from dense data. In the fol-

lowing, we describe related work regarding efforts in joint

calibration/geometry estimation focusing on the resolution

of reprojection error functionals, i.e. Equation (2).

Calibration and Dense Geometry Estimation

It is well established that 3D reconstruction and camera esti-

mation are tightly linked together, bundle adjustment prob-

lems being a good example of how calibration can be im-

proved by jointly estimating the 3D structure and the cam-

era parameters. Surprisingly, until recently, dense surface

reconstruction was only considered as a next and/or inde-

pendent step from the calibration problem. It would be more

elegant if one could directly minimize the photometric re-

projection error to estimate both shape and camera parame-

ters (and eventually the scene radiance) at the same time.

Georgel et al. [8] propose a unified framework to com-

bine both the geometric and photometric information. As

both terms are not homogeneous, it is not clear how to com-

bine and weight them efficiently. In this work, we propose

to use the photometric information only, assuming an initial

calibration is already provided. It is also worth mentioning

the work of [5], which estimates 3D oriented patches, and

then minimizes the reprojection error to refine both patches

and camera parameters. They show substantial improve-

ments in accuracy for 3D reconstruction, hence showing

a photometric-based refinement of the calibration is nec-

essary for high quality multi-view stereo. Both [8] and

[5] assume the surface can be represented by planar local

patches. Here, we represent the surface as an arbitrary tri-

angular mesh. Real-time structure-from-motion is also pos-

sible by using dense tracking and mapping [14]. In [14], the

authors use a dense photometric cost to refine the camera

poses. Our model extends naturally to intrinsic calibration.

Recently, several authors have been interested in ad-

dressing the problem of improving both the calibration and

the dense reconstruction in the context of minimizing an

energy functional of the type (2). The work in this paper is

closely related to the ones described in [22, 25]. In these pa-

pers, the authors propose to refine the calibration in the con-

text of multi-view modeling using a variational approach. In

[22], only the calibration is optimized, and the equations are

derived in the context of uniformly colored shapes. There-

fore, it is not possible to refine the camera parameters if a

segmentation of the object or the visual hull is not available

and does not fall into ”binary” images. Similarly, [25] also

only works for uniformly colored objects. Instead, we pro-

pose a generalization of [22] and [25] to deal with textured

and more complex objects.

Aubry et al. [1, 9] proposes a different approach. With-

out solving the problem in a direct way, they relax the prob-

lem between correspondence estimation and camera cali-

bration. They decouple the minimization by first estimat-

ing the optical flow between a generated image and the ob-

served one, and then refine the camera poses. The process

is iterated using a fixed geometry. While this alternate pro-

cess allows faster convergence and reduce local minima, un-

like [1, 9], we directly solve for both the calibration and the

3D reconstruction in a single framework by directly mini-

mizing the reprojection error. While the underlying energy

functional is similar, the proposed optimization is funda-

mentally different as the parameters (Mesh, Cameras and

Texture) are optimized jointly in a single framework, and

do not use separate independent steps.

Visibility

One of 3D reconstruction’s (and more generally computer

vision) most challenging problems is the visibility informa-

tion. While most techniques deal with visibility more or

less explicitly (usually as fixed function updates between it-

erations), very few of them consider the visibility variation
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in their formulation. Some consider additional terms such

as ballooning terms or silhouette constraints. However, the

correct minimization of Equation (2) already contain terms

that avoid the empty set to be the optimal solution.

Yezzi and Soatto [24] use the concept of oriented visibil-

ity, which implicitly constrains the minimization to make it

consistent with the image silhouettes. However their work

is limited to convex shapes, and while there is no need for

additional constraints during the evolution of the surface, it

does not handle self occlusions. Gargallo et al. [7, 6] gen-

eralized this idea to non-convex surfaces in the framework

of Level-Sets. Delaunoy and Prados [2] extend this con-

cept to discrete polyhedral surfaces, allowing to constrain

mesh-based evolution. However, none of the above tech-

niques deal with camera calibration and focus on 3D recon-

struction only. In this work, we build on [2] to account for

visibility when cameras parameters are optimized as well.

The visibility issue while refining the calibration is par-

tially solved in [22]. However, similarly as in [24], the ad-

ditional constraint only accounts for silhouette points, and

is only valid for convex shapes. We extend this work to

arbitrary shapes and derive a similar strategy as in [2].

1.2. Contribution

In this paper we focus on the last stage of the 3D mod-

eling pipeline, i.e. the dense reconstruction using a similar

model as [2, 9]. We propose to jointly refine the dense ge-

ometry and the camera parameters using the photometric er-

ror. This error is simply the reprojection error between im-

ages of a generative model and the observed images which

is directly minimized in the image domain (Equation 2). In

order to achieve that goal, we derive equations of the gra-

dient of the energy functional we minimize, accounting for

visibility changes [2, 7, 24]. The shape is represented as a

triangular mesh, allowing an easier handling of the texture

which is also jointly optimized.

In this work, we propose a direct pixel-based bundle ad-

justment minimization of the photometric reprojection error

in order to jointly optimize the full and dense 3D shape as

well as the camera parameters and the scene radiance (the

texture) by exploiting an image-based reprojection error.

2. Full BA: Problem Formulation

We propose to refine the scene Ω(S,Π) from some ini-

tial scene Ω0, parametrized by its surface S and calibration

Π. While this section describes a variational formulation

that is valid for general generative scene models (includ-

ing depth map integration, shape-from-shading, photomet-

ric stereo, etc), Section 3 focuses on the case of a Lamber-

tian scene reconstructed with a generative model including

texture, shape and camera parameters.

2.1. Functionals Defined on Visible Surfaces

Equation (2) is minimized on the whole image. However,

in order to generate RΩ,i, one needs to consider the back-

ground B, in order to explain parts of the images where the

surface of interest to be modeled does not project into the

images. Equation (2) becomes (see [2]):

E(S,Π) =

∫

Π(S)

(

I −RS,Π

)2
+

∫

Ii−Π(S)

(

I −B
)2

=

∫

Π(S)

[

(

I −RS,Π

)2
−
(

I −B
)2
]

+

∫

I

(

I −B
)2

.

(3)

Figure 1. 3D surface S seen from a camera showing visible and

occluded volumes. Only the visibility interface ∂νS can be ex-

plained the images.

Minimizing the data fidelity term of Equation (3) is

rather difficult and similarly to previous works we use a gra-

dient descent strategy [7, 19, 24]. This is due to the fact that

the generative model (mostly the projection and occlusions

created by the surface) implicitly accounts for visibility. It

is then important to know how the updates on the scene pa-

rameters affect the changes in visibility. This function is

illustrated in Figure 1. Let νS,Π(x) be the visibility func-

tion νS,Π : R3 7→ [0, 1] such that:

νS,Πi
(x) =

{

1 if x is visible from the camera i,

0 otherwise.
(4)

In order to minimize Equation (3), let us first rewrite the

equation over the (visible) surface. Note that the second

term is constant and can be left out in the minimization.

Denoting the part in brackets by fΩ, this gives, by a simple

change of variables [19, 24]:

E(S,Π) =

∫

S∪B

fΩ(x,n(x)) α · n νS(x) ds , (5)

where we have dp = fxfy
d · n

d3
z

νS(x) ds for a pinhole

camera model, e.g. see [19]. fx and fy are the focal param-

eters in x and y respectively, n is the surface normal at point

x and d is the vector pointing from the camera center to x.

B is the background surface (either a previously estimated

surface or a plane behind the object of interest). This gener-

alizes to other parametric camera models. In the following

we denote α = fxfy
d

d3
z

.
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2.2. Variational Refinement of the Surface

The choice of the surface representation is rather impor-

tant and conditions the rest of the minimization. We choose

a triangular mesh as it was recently proven to give accu-

rate and impressive results [23]. It also has the advantage to

move vertices at their correct location as the final gradient

flow is allowed to have tangential components in the evo-

lution of the vertices, and to provide a manifold watertight

mesh, suitable for further processing or applications.

Similarly as in [2, 23], we follow a discretize then min-

imize strategy by discretizing the energy functional over a

polyhedral representation X of the surface S . Let X =
{x1 . . .xn} be a piecewise planar triangular mesh, xk be-

ing the kth vertex of X, and let Sj be the jth triangle of X.

The energy functional (2) we finally minimize is:

E(X,Π) =
∑

j

Aj

∫

T

fΩ(x(u)) α(u) · nj νS(x(u)) du ,

(6)

where nj is the normal of the triangle Sj parametrized by

u of surface area Aj and where the sum is over all the

triangles of the mesh X. Over each triangle, points are

parametrized using barycentric coordinates u = (u, v) ∈
T = {(u, v)|u ∈ [0, 1] and v ∈ [0, 1 − u]}. The term

du = 2 Aj ds corresponds to the surface area element on

the triangle. In the following, in order to simplify notations,

we omit the dependency in u.

In order to compute the gradient of Equation (6), we con-

sider the evolution of the energy under a small evolution of

the surface X[t] = X0 + tV, where V is a vector field de-

fined on all the vertices x of the mesh X. The directional

derivative of E(X), i.e. d
dt
E(S[t])

∣

∣

∣

t=0
is used to compute

the final gradient of the energy E(X). The mesh evolution

equation is given by the following L2 gradient descent flow:







X[0] = X0 ,

X[t+ 1] = X[t]− dt M−1 ∂E

∂X
(X[t]) ,

(7)

where X0 is an initial mesh and M is the mass matrix con-

taining the area around a particular vertex. This means that

the velocity of one particular vertex depends on the inte-

grated cost on neighboring facets, hence allowing consis-

tent vertex displacements. This gradient descent scheme

contains typically two elements: one corresponding to oc-

cluding contours, and one for the vertices that do not make

strong changes in the visibility. This second part of the gra-

dient typically describes the gradient of vertices on the oc-

cluding contours (called the horizon term). The way visi-

bility changes at occluding contours is illustrated in Figure

2 and we follow the gradient computations detailed in [2].

Figure 2. Left: Original discrete mesh and its visibility interface;

Middle: Change of the visibility interface when moving a vertex

of the mesh X [2, 7]; Right: Influence of camera center update on

the horizon. Moving points on occluding contours or moving the

camera center drastically changes the visibility function.

2.3. Camera Refinement

We now consider the same energy functional as a func-

tion of the camera parameters Π. We consider a standard

pinhole camera model, and parametrize π using a set of

parameters (gi), accounting for the intrinsics (focal, skew

parameter and principal point) and extrinsics of the camera.

The extrinsics are the rotation R(ω) and translation in

SE(3) that are parametrized using an angle-axis representa-

tion for the rotation ω, and the optical center of the camera

C. It is worth to mention that among the calibration param-

eters, only the camera center induces changes in the visi-

bility function νS,Π. Figure 2 gives a geometric intuition

of what is happening to the visibility interface during the

optimization. For a rotation update, the gradient of the vis-

ibility function is zero. The camera updates are computed

using the following partial differential equations:

∂E(X,Π)

∂Π
=

∑

j

Aj

∫

T

∂

∂Π

(

fΩ(x) α · nj νS(x)
)

du .

(8)

The resolution of Eq. (8) implies classical derivations

and standard chain rules and follows similar strategies as

described in [9, 22]. For the visibility gradient on the cam-

era center, we first rewrite Eq. (8) as an energy over the vol-

ume. We derive how the energy changes when moving the

camera similar as for the horizon term in the mesh optimiza-

tion [2]. The difference is on the volume parametrization

which in this case follows the shape in Fig. 2. In practice,

this term has less influence as it is computed over the whole

image and most points are not on occluding contours.

While we focus on classical pinhole camera intrinsics

and extrinsics, we could add more complete calibration

models by adapting α and its associated derivatives.

3. Multi-view Stereo Application

In multi-view stereo, the generative model of a scene Ω

depends not only on the surface shape and camera param-

eters, but also on the scene radiance, i.e. the texture of the
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surface. Let T : R2 7→ R
3 be the texture map to optimize.

Let the mesh X be the mesh representation of the surface

S(X,T). The associated generative model can be defined

as RΩ,i(p) = T (Π−1
i,S(p)), where T is the Lambertian tex-

ture of the surface. Π−1
S

(p) is the back-projection of pixel p

onto the surface if it exists, or onto the background B other-

wise. The energy we minimize in this context is very similar

to reprojection errors used in other related works [2, 7, 9]:

E(X,T,Π) =
∑

i

∫

Ii

1

2

(

Ii(p)− T (Π−1
i,X(p))

)2

dp ,

(9)

3.1. Geometry, Calibration and Texture Recovery

Similarly as in the previous section, we minimize the fol-

lowing energy defined over the surface:

E(X,T,Π) =
∑

j

Aj

∫

T

(Ii(Πi(x(u)))− T (u))
2

α · nj νS(x(u)) du, (10)

which is minimized as previously described. The only dif-

ference is that the sampling of the residuals (the numerical

integration over the triangles) is performed on the texture

space rather than the triangles directly. This allows us to

control the sampling and make sure it is coherent with the

image resolution (details in the experimental section).

A natural shape prior is to penalize non-smooth surfaces.

Instead of minimizing the surface area which introduces

bias towards minimal surfaces, one may add a smoothness

term to penalize variations on the surface normals. This can

be achieved by minimizing the following energy functional:

Ereg(X) = λS

∑

j

Aj

∫

T

|nj − hj |
2 du, (11)

where hj is an unit vector. Typically hj is the average nor-

mal on a local neighborhood around the facet j. λS is a

smoothing parameter. Similarly as in [23], we weight the

data term by the squared ratio between the average image

depth and the focal length in order to get the energy homo-

geneous in squared world units, hence having a smoothness

parameter stable across different datasets.

Texture Estimation

As mentioned above, T : S → R
3 is the estimated radiance

on the surface. An obvious choice for the texture T (x) is

the closed form solution of Equation (10):

T (x) =

∑

i Ii(Πi(x)) wi(x)
∑

i wi(x)
. (12)

T (x) corresponds to the weighted mean color at point x

of the images where x is visible. We have wi(x) = α ·

nj νS(x(u)). Since we want to minimize X,T,Π at the

same time, we use the following texture evolution:

Tt+1(u) = Tt(u) + dt
∑

i

(Ii(Πi(x(u)))− Tt) wi(x) .

(13)

While one could plug Equation (13) directly in Equation (9)

and get rid of the texture, handling the texture separately

offers significant advantages. For example, it becomes nec-

essary if one wants to optimize more complete reflectance

models (albedo, specular coefficient, etc), or want to add

more realistic image formation models.

4. Experiments and Results

The proposed photometric bundle adjustment approach

is evaluated on several publicly available datasets. We show

improvements not only on the dense 3D geometry, but also

in the estimated texture of the surface.

The algorithm has been implemented in C++ and is run-

ning on a standard 3GHz Linux machine. We use the GPU

(using OpenGL Shading Language) for computing visibil-

ity by rendering depth maps and for computing parts of the

gradient. In the following, the rendering of the shape is dis-

played with flat shading on the facets.

Initialization The initial calibration Π0 is assumed to be

given, either by a pre-calibrated multi-view setup, or after

classical structure-from-motion. For the geometry estima-

tion, we first apply the same algorithm described in this pa-

per without the camera parameters updates. Then the PBA

is performed by optimizing all parameters, X, Π and T.

Texture mapping and super-resolution In order to effi-

ciently handle the texture, a texture atlas is generated. This

allows easier access to neighboring texture values of a given

point in order to easily compute gradients over the texture.

First, a labeling of each facet based on camera visibility

information is computed, by finding the best frontal cam-

era. In order to favor larger texture segments, a graph cut is

performed on the mesh using alpha expansion. This gives a

facet to camera mapping. The visible facets are projected on

the corresponding images, and those coordinates are used

for the texture mapping. This allows us to obtain a texture

sampling coherent with the image resolution. Texture inten-

sity values are computed by using Equation (13).

During the optimization, a coarse to fine strategy is also

used in order to avoid local minima. This includes deal-

ing with the resolution of the images, the resolution of the

mesh and the resolution of the estimated texture. We make

sure that the resolution of the texture is higher than the sam-

pling over each triangle so that we have at least a few resid-

ual samples per triangle (the texture sampling is consistent
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with the input image resolution by construction of the tex-

ture map). By choosing a higher texture resolution, we can

improve the texture estimation. This actually corresponds in

performing super-resolution with a simple bilinear convolu-

tion kernel which is naturally handled in our case. We could

straight-forwardly extend this concept to arbitrary convolu-

tion kernels [9] without changing our approach.

Remeshing In order to avoid self-intersections during the

mesh optimization, we use the topology-adaptive meshes

described in [16]. Keeping track of the texture optimiza-

tion while remeshing is rather difficult. To simplify the al-

gorithm, the texture is reinitialized after remeshing using

Equation (13). In practice we remesh every 20 iterations.

4.1. Pose and Shape Estimation

Figure 3. Evolution of the minimization at different iterations on a

synthetic data (24 images of 640×480). From top to bottom: 5 of

the input images; 3D triangular mesh X; Photometric reprojection

error; Textured mesh using the estimated texture T.

We first evaluate our approach on synthetic data. It con-

sists of 24 images of an imbricated cube and ball with Lam-

bertian texture. We add Gaussian noise on the camera poses.

We first run the baseline method without the camera updates

(standard multi-view stereo) from the noisy data (starting

from a simple sphere), and then we run the PBA. See Figure

3 for results. In this experiment, the algorithm converges in

300 iterations in about 30 minutes. Note that minimizing a

discrete energy over a triangular mesh with a coherent gra-

dient descent flow allows vertices to move in their correct

location, and allows to preserve sharp edges which most

previous methods are not able to achieve.

We evaluated on the classical Middlebury Temple and

Dino datasets (See Figure 4). The accuracy is improved in

both datasets, showing the advantage of jointly estimating

the geometry and the calibration. Our approach is compara-

Figure 4. Results on the Middlebury stereo benchmark [18]. for

DinoRing and TempleRing data (47 images) before (Left) and af-

ter (Right) the refinement with the proposed PBA method.

ble to the state-of-the-art, and visually looks more appeal-

ing than some of the best methods as some details are nicely

visible. For example holes in the columns are correctly re-

constructed where many methods tend to oversmooth the

surface. Similarly as described in [1, 5], we observe an im-

provement in both accuracy and completeness due to the

camera refinement (See results Table 1). Fig 5 shows an ad-

ditional results of a statue in the Rietberg Museum, Zurich,

where we initialize the camera calibration with structure-

from-motion [27, 26] and compute an initial mesh via [12].

Then we use the PBA approach described in this paper.

Figure 5. ”Seated Bodhisattva” (50 images). Textured (mid.) and

shaded (right) reconstructed surface with the proposed refinement.
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Temple Sparse Ring (16 images) Temple Ring (47 images) Dino Ring (48 images)

accu.(mm) compl.(%) photo.err. accu.(mm) compl.(%) photo.err. accu.(mm) compl.(%) photo.err.

Baseline 0.78 96.2 5.3238 0.59 99.0 5.8669 0.51 97.2 1.7154

Proposed PBA 0.7 96.6 3.6024 0.51 99.1 3.7566 0.51 98.7 1.0863

Table 1. Numerical evaluation of the proposed method for Middlebury Dino and Temple data sets [18] (Baseline: Multi-view stereo

without calibration; Proposed: Same as before with calibration - Photometric Bundle Adjustment)). The table shows accuracy at 90% and

completeness at 1.25mm, and err, the mean photometric reprojection error (in term of intensity values).

Figure 6. Results on PBA with both intrinsics and extrinsics re-

finement (estimated mesh, reprojection error and estimated tex-

ture, respectively). Left: Initial shape estimated without calibra-

tion refinement; Right: result of our PBA method.

4.2. Intrinsics Estimation

Similarly as before, we used the same simulated data and

added a Gaussian noise to all camera parameters, this time

including the intrinsics as well (focal length and principal

point). Results are shown in Figure 6.

Figure 7 shows results on a publicly available dataset

[11], were we tested our PBA using all parameters. While

the intrinsic calibration does not change for most of the im-

ages, two views (namely #9 and #20) have a particularly

wrong focal length. For the bird data, before the camera

refinement with the baseline method (see Figure 8), the re-

projection error is 3.2707 (average error per point on the

surface in term of intensity values). After the photometric

bundle adjustment, the reprojection error drops to 2.1359.

Figure 7. Bird shape (21 images) from [11]. Top: reconstructed

surface and texture map. Bottom: details (3D geometry, color

coded surface normals, textured mesh, reprojection error).

Perspectives

Even though the minimized error is rather simple (per

pixel squared error), we are able to achieve high quality

reconstructions comparable to previous techniques using

more robust cost measures. While some parts of the sur-

face contain flaws, we believe those problems come from

the presence of local minima mostly due to non-Lambertian

surfaces or matching ambiguities. A robust image similar-

ity measure ([23]), or taking more parameters in the cam-

era calibration (geometric distortions, radiometric models)

would probably improve the reconstruction. However it is

clear that the reprojection error is reduced showing signifi-

cant improvements on the reconstructed surface and texture.

5. Conclusion

A dense image-based photometric bundle adjustment is

presented, minimizing the reprojection error between a gen-

erated image and an observed image. The error is a simple

image error motivated by a Bayesian vision of the multi-

view reconstruction problem. It jointly refines the geome-

try (mesh) and calibration, leading to notable improvements

both in the reconstructed geometry and the estimated tex-

ture on several datasets. The discrete gradient descent flow

allows vertices to be moved at their correct location and to

preserve surface edges (as in [2, 23]). This paper is a first

and necessary step towards full dense multi-view bundle ad-

justment problems dealing with more complete generative

models such as convolution or radiometry (reflectance, il-

lumination), and can straight-forwardly be applied to any

generative approaches dealing with multi-view reconstruc-

tion settings minimizing reprojection errors (i.e. multi-view

range maps integration, multi-view photometric stereo).
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