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ABSTRACT

We investigate the performance of some common machine learning techniques in identifying blue horizontal branch (BHB) stars from
photometric data. To train the machine learning algorithms, we use previously published spectroscopic identifications of BHB stars
from Sloan digital sky survey (SDSS) data. We investigate the performance of three different techniques, namely k nearest neighbour
classification, kernel density estimation for discriminant analysis and a support vector machine (SVM). We discuss the performance
of the methods in terms of both completeness (what fraction of input BHB stars are successfully returned as BHB stars) and con-
tamination (what fraction of contaminating sources end up in the output BHB sample). We discuss the prospect of trading off these
values, achieving lower contamination at the expense of lower completeness, by adjusting probability thresholds for the classification.
We also discuss the role of prior probabilities in the classification performance, and we assess via simulations the reliability of the
dataset used for training. Overall it seems that no-prior gives the best completeness, but adopting a prior lowers the contamination.
We find that the support vector machine generally delivers the lowest contamination for a given level of completeness, and so is
our method of choice. Finally, we classify a large sample of SDSS Data Release 7 (DR7) photometry using the SVM trained on the
spectroscopic sample. We identify 27 074 probable BHB stars out of a sample of 294 652 stars. We derive photometric parallaxes
and demonstrate that our results are reasonable by comparing to known distances for a selection of globular clusters. We attach our
classifications, including probabilities, as an electronic table, so that they can be used either directly as a BHB star catalogue, or as
priors to a spectroscopic or other classification method. We also provide our final models so that they can be directly applied to new
data.

Key words. methods: statistical – stars: horizontal-branch – Galaxy: structure

1. Introduction

The blue horizontal branch (BHB) stars are old, metal-poor halo
stars. They are of interest as tracers of Galactic structure because
they are more luminous than most giant branch or population II
main sequence stars, have a narrow range of intrinsic luminosi-
ties (hence “horizontal branch”) and display spectral features
rendering them identifiable, in particular a strong Balmer jump
and narrow strong Balmer lines. There is therefore an interest in
building large, reliable samples of them, particularly in the con-
text of wide-field halo surveys such as the Sloan digital sky sur-
vey (SDSS) and the forthcoming Pan-Starrs survey. BHB stars
are always of interest whenever halo structure is studied due to
their strength as distance indicators. Recent studies which have
concentrated on BHB stars to trace structure include Harrigan
et al. (2010), who searched for moving groups in the halo, Xue
et al. (2009) who used them to search for close pairs, imply-
ing the existence of halo substructure, Kinman et al. (2009) who
searched for a population of BHB stars associated with the thick
disk, and Ruhland et al. (2010), who investigated structure in the
Sagittarius dwarf and streams. The main problem with BHBs as
tracers is their relative sparseness compared to other tracers such

⋆ Full Tables 7, A.3 and A.4 are only available in electronic form at
the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/522/A88

as turnoff stars. This means that large, pure samples are highly
desirable for structure tracing studies.

In this paper, we take as our lead several recent studies of
BHB spectra from SDSS/SEGUE and attempt to use the reli-
able and large samples of BHBs detected as a training set to
build models aimed at identifying BHBs from the photometry
alone. With this tool, we hope to be able to extend the available
sample of known (or better, strongly suspected) BHB stars from
SDSS and other surveys, with a view either to use our sample
directly to trace structure, or at least to guide follow-up studies
with spectra.

The main three studies we follow are those of Yanny
et al. (2000), who identified a colour cut in the u − g,
g − r colour−colour diagram that yields most of the available
BHB population, Sirko et al. (2004) who used spectra to identify
a reliable sample of 700−1000 BHBs (the size of the sample de-
pends on the g magnitude and the reliability desired), and most
importantly Xue et al. (2008), who analysed a sample of SDSS
DR6 data using similar techniques to Sirko et al. and extended
the reliable list of BHBs to over 2500 objects. The method of
Xue et al. is discussed in more detail in Sect. 3.3.

We have selected three machine learning methods to investi-
gate. These are a k-Nearest Neighbour (kNN) technique, a kernel
density estimator (KDE) and a support vector machine (SVM).
We also apply the decision boundary in (u − g, g − r) colour
space suggested by Yanny et al. (2000) for comparison. After
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the colour cut, the kNN method is probably the simplest al-
gorithm we consider. One example of its use can be found in
Marengo & Sanchez (2009). Examples of KDE use in classifica-
tion problems in astrophysics include Gao et al. (2008), Richards
et al. (2009b), Richards et al. (2009a) and Ruhland et al. (2010).
The SVM works by identifying a decision boundary in a mul-
tidimensional space (Vapnik 1995) (in this case the space of
SDSS colours) based on a training set containing examples of
two or more classes of object – for our purposes BHB stars
and non-BHB contaminants. The SVM performance should be
equivalent to that obtainable with a neural network, but it has the
advantage of being highly adaptable and relatively easy to use.
Its main drawback is its inability to provide genuine probability
estimates for classes, because it does not model the distribution
of the data. This is discussed further in Sect. 4.4. SVMs have
been used on classification problems by various authors, for ex-
ample Tsalmantza et al. (2007, 2009) who developed a galaxy
library for the Gaia mission and explored classification problems
therein, Gao et al. (2008) who used them to search for quasars
in SDSS data, and Huertas-Company et al. (2009) who used
them for morphological galaxy classification. Bailer-Jones et al.
(2008) discussed SVM classification of astrophysical sources in
the context of unbalanced samples.

We proceed by taking the sample of Xue et al. and obtain-
ing the up-to-date photometry for it from SDSS DR7. We then
investigate the ability of each of the three techniques to recover
the BHB stars from the Xue sample, and the various options that
are available to optimize them. Finally, we take a new sample
of DR7 photometry, for sources without spectra, and apply our
models to this sample to recover samples of probable BHB stars.
We use a selection of globular clusters of known distance to test
the BHB classifications and photometric parallaxes.

2. Data

The latest publicly available SDSS data release, DR7, covers
approximately 8400 square degrees, with images in the five
SDSS bands: u, g, r, i, z. Spectra are available for a subset of the
detected objects based on various selection criteria.

The study of Xue et al. used a sample of SDSS DR6 data
selected to lie inside the colour box suggested by Yanny et al.
(2000) (0.8 < u−g < 1.6,−0.5 < g−r < 0.0). We have recovered
the sources used by Xue et al. in the DR7 release by matching the
SDSS MJD, plateId and fiberId fields. We obtained the PSF mag-
nitudes, estimated extinction, and the parameters (Teff, log g,
and [Fe/H]) as determined by the SDSS pipeline. The dered-
dened magnitudes were obtained from the model magnitudes
during the pipeline processing by applying extinction correc-
tions derived from the map of Schlegel et al. (1998). We recover
the extinction from the model magnitudes and apply it to the
PSF magnitudes. The DR7 photometry is generally consistent
with the DR6 photometry given by Xue et al. to within hun-
dredths of a magnitude, but there are a number of sources with
more divergent values. We rejected the most discrepant of these
by introducing a colour cut 0.1 mag outside of the colour cut of
Yanny et al.. This cut excluded mostly contaminant stars. The
Xue et al. sample contained 10 224 objects, of which 2558 were
identified by them as BHB stars. After rejecting sources with
discrepant photometry, 9929 objects remained, of which 2536
were identified by Xue et al. as BHB stars.

We also cross matched against a list of 1172 objects from
the paper of Sirko et al.. All these objects were identified by
Sirko et al. as BHB stars. Since Sirko et al. did not provide
SDSS identities in their table, we cross matched first with our
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Fig. 1. The sample of Xue et al. (2008) in the u − g, g − r plane, with
DR7 data. BHB stars (according to Xue et al.) are shown as red crosses,
non-BHB stars as black points. The box shows the colour cut used by
Xue et al. (2008) and Yanny et al. (2000). The outer boundary extends
0.1 mag beyond this. Sources outside the plot region were discarded.

SDSS data on the basis of RA and Dec and g magnitude. After
cross matching, 1101 of the sources were identified in the SDSS
DR7 data. Of these, 4 had no identified counterpart amongst the
Xue et al. objects. Figure 1 shows the colour−colour diagram of
our sample.

3. General approach

All our classification methods are supervised, meaning that they
require samples of data for objects of known type in order to
train a model, which can then be applied to new data. Various pa-
rameters must be set to optimize the classification, and in the end
the reliability of the methods relative to each other and in abso-
lute terms has to be determined in some way. For these reasons,
we need a sample of test objects of known type on which we can
run our trained models. Our sample contains 2536 BHB stars
as identified by Xue et al.. Our standard procedure was to ran-
domly split the BHB sources into roughly equal training and test-
ing sets, and then randomly select equal numbers of non-BHB
sources (designated “other”) to include in the training and test-
ing samples. We can investigate the statistical properties of the
results by bootstrapping.

3.1. Data dimensionality and feature selection

The PSF photometry was corrected for the expected extinction
determined by the SDSS pipeline. There are four colours avail-
able. The u−g and g−r colours are the most important for BHBs.
The others show little or no real information when examined by
eye. They make some difference (for the better) for the kNN and
SVM methods, but tend to degrade the KDE. It is possible that
the improvement seen for kNN and SVM by including the other
colours is mostly due to excluding faint sources due to their large
scatter in all bands.

3.2. Comparing methods: completeness and contamination

The completeness is defined as the number of correctly classified
sources of a particular class, divided by the number of available
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Fig. 2. Simulation of the effect of noise on Xue et al.’s classification. The four spectral line parameters used in the classification are fm, D0.2, cγ,
and bγ (see Xue et al. 2008, for details). Four magnitudes are illustrated. for each of these, we plot D0.2 versus fm and cγ versus bγ. The selection
boxes are shown in each panel. The progressive loss of BHB stars (red crosses) from the selection box is clear. Non-BHB stars (black dots) are not
scattered into the boxes at the same rate.

sources of that class, i.e. it is the fraction of test sources of a
particular class that are correctly classified,

completeness j =
ni= j, j

Ni

, (1)

where ni, j is the number of objects of true class i classified as out-
put class j and Ni is the total number of input sources of class i.
Input sources can be lost from the output class due to misclassi-
fication into another class, or by remaining unclassified due to an
insufficiently high classification confidence. The contamination
of the output sample is defined as the number of falsely classified
sources of that class divided by the number of sources classified
into that class, whether correctly or incorrectly,

contamination j =

∑
i� j ni, j∑

i ni, j

· (2)

In our particular case, one class, the set of non-BHB stars,
is really a mixed class of contaminants comprising blue strag-
glers and main sequence stars, that we are interested in remov-
ing in order to obtain a clean sample of BHB stars. Therefore,
we are interested in the completeness and contamination of the
BHB sample and not primarily in the completeness or contami-
nation of the “other” class.

3.3. Reliability of the training and testing sets

Since our method is based on the results of Xue et al., it is
worthwhile investigating how reliable these are, particularly at
the faint end. To this end, we selected 1381 spectra from Xue
et al.’s original data, having 14.5 < g < 15.5. Roughly half of
these (655) were BHB stars. We then added artificial noise to
degrade them to the same signal-to-noise ratio as fainter spectra.
We constructed in this way eight artificial samples in half mag-
nitude steps from g = 16.0 to g = 19.5. We then reanalysed these
degraded spectra with the technique of Xue et al. and reclassi-
fied them. We then compare the performance at faint magnitudes
with the original performance.

The classification of Xue et al. is based on recovering four
different characteristic parameters from the absorption lines.
These are D0.2, the width at 20% below the continuum of the

Balmer line, fm, the flux relative to the continuum at the line
core, and cγ and bγ, which are parameters from a Sérsic fit to
the line shape (Sérsic 1968). BHB stars are identified as lying
within selection boxes in the feature space formed by the line
parameters. This selection is illustrated for our degraded data in
Fig. 2, which shows for four example magnitudes the D0.2 ver-
sus fm and cγ versus bγ values, and the selection boxes. It is
clear from the figure that, as the noise increases, true BHB stars
scatter outside one or the other selection box and are lost, de-
creasing the completeness. Some sources from outside the se-
lection boxes scatter into the box, but since the box covers a
small fraction of the data space, and since a contaminant has to
scatter into both boxes to be misclassified as a BHB, the increase
in the absolute number of contaminating sources is modest. The
contamination, as defined above, will still increase because the
number of true positives, in the denominator of Eq. (2), is de-
creasing. Figure 3 shows the resulting ratio of objects classified
(rightly or wrongly) as BHB stars to total stars as a function of g.
This is discussed in terms of the effect on the prior probability
in the following section. For now, we note that this effect kicks
in strongly for sources fainter than g = 19.0, and that it will de-
grade the quality of training sets used to define models and also
of any testing set used to assess them.

3.4. Priors

The classifiers we use are trained on mixed samples of BHB
and non-BHB stars with a range of properties. We implicitly as-
sume that the classifier takes account of the likely distribution of
the population of objects to be clasified, and if it does not, we
need to correct the classifier output probabilities using appropri-
ate priors.

The simplest prior to be accounted for is the true class frac-
tion. To train our models, we use equal numbers of BHB and
non-BHB stars, whereas the true class fractions are not equal
(the fraction of BHB stars in the sample of Xue et al. is approxi-
mately 0.26 for all sources). For the kNN and KDE methods we
could directly include the class fractions in the training sets. For
the SVM we could also include proportional fractions of classes,
but the actual effect of this on the classifier is complex and not
well understood. We choose to always use equal class fractions
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Fig. 3. The effect of increasing noise on the spectroscopic classification
of Xue et al., as illustrated in Fig. 2. The line shows the ratio of the
number of output BHB stars, that is, the sources classified as BHB stars,
regardless of whether they really are or not, to total stars.
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Fig. 4. The dashed green line shows the ratio of the density function of
BHB stars to the density function of all stars. The dot-dashed red line
shows the ratio of BHB stars to non-BHB stars from the classification
described in Sect. 3.3. This is the same curve plotted in Fig. 3 but it has
been renormalized so that the peak is at the same level as the peak of the
ratio of density functions – i.e. so that it doesn’t include the simple prior.
The dotted blue curve is the result of correcting the basic BHB fraction
(dashed green line) for the expected change in the ratio due to noisy
spectra. The regions at either end are replaced with a constant value,
and the prior actually adopted is plotted as the thick solid black line.

and use a prior to adjust the classifier output. We refer to this
type of class fraction prior as a “simple prior” hereafter.

We can also adjust for prior probabilities as a function of
other parameters that are not accounted for by the classifier
itself. We consider g magnitude and b, the Galactic latitude.
In Fig. 4 we show the ratio of the density functions of BHB stars
and all stars as functions of g in the sample of Xue et al.
(dashed green line). Because these density functions were in-
dividually normalized, the resulting ratio is the relative fraction
of BHB stars, rather than the absolute fraction – i.e. it is as if the
class fractions were equal.

Also shown in this plot is the ratio of BHB stars to all sources
at each magnitude as estimated from the experiment described
above in Sect. 3.3 (red dash-dotted line). This curve, which is
a renormalized version of the curve shown in Fig. 3, shows
what we would expect to see if the fraction of BHB stars in
the true population was constant with g, but the observed ra-
tio was altered by sources being lost due to increasing noise at

20 40 60 80

0
.0

0
.2

0
.4

0
.6

b [deg]

R
a
ti
o

Fig. 5. The solid green line shows the ratio of BHB star density to the
sum of BHB density and other stars density as a function of galac-
tic latitude b. The dashed black line is a linear fit used to build the
2-dimensional prior as described in the text.

high magnitudes. We can correct the measured ratio of BHBs
to all sources for this effect. This correction mitigates the falloff
of the ratio at the faint end. The corrected curve is shown as the
dotted blue line. We use this as the basis of the magnitude depen-
dent prior, but the correction causes a spike at the faint end that
is probably due to small numbers of sources and is obviously
not desirable in the prior. For this reason we have truncated the
function before it turns up and adopted a plateau for the high
magnitude end. Similarly, we adopt a plateau at the bright end,
where the fraction may be strongly affected by the SDSS spec-
trum selection function (there is a cutoff at g < 14 for the Legacy
spectra, Adelman-McCarthy et al. 2006). The adopted prior as a
function of g is plotted as the solid black line in Fig. 4.

Figure 5 shows the ratio of density functions for BHB and
non-BHB sources as a function of absolute Galactic latitude.
This ratio shows a relatively smooth trend, with quite a lot of
structure superimposed. We model it with a straight line fit and
adopt this fit as the relative prior in latitude.

If these priors are independent of one another, we can ap-
ply them in sequence to the output posterior probability of the
classifier using

P(C|D1,D2, ....,DN) = ΠN
n=1

P(C|Dn)

P(C)N−1
, (3)

where P(C|Dn) is the probability of class membership given
some piece of information, Dn. This formula is discussed in
depth in Bailer-Jones & Smith (2010). The issue of class frac-
tion priors and its influence on classifier training is discussed in
Bailer-Jones et al. (2008). The correlation of g and b is low, with
a Pearson coefficient of −0.0017. The assumption of indepen-
dence therefore holds well.

The ratio of BHB stars to all stars for all data is 0.26,
however this includes regions where the selection function for
SDSS spectra has a large effect (there is a cutoff at g = 14 for
SDSS Legacy spectra and g, r or i = 15 for SEGUE, and at
g > 19 the reliability of the Xue et al. classification method be-
comes difficult to assess). The ratio of BHB stars to all stars in
the interval 14 < g < 19 is 0.32. We use this latter fraction as the
class fraction.

For the analysis of the different classifiers, we consider two
different priors, a simple ratio (equal to 0.32) that represents the
fraction of BHB stars to all stars over the sample in the interval
14 < g < 19, and the combination of this with the priors as
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Table 1. Coefficients for decision boundary in u − g, g − r.

Segment m c

−0.3 < g − r <= −0.25 2.4 1.62
−0.25 < g − r <= −0.15 1.6 1.42
−0.15 < g − r <= 0. -0.533 1.1

functions of g or b as discussed above. We refer to the first prior
as a “simple prior” and to the second as a “2d prior”, because it
is a function of the two variables g and b.

3.5. Priors and performance measures

The issue of the class fractions enters the analysis in two distinct
ways, and it is worth discussing this issue explicitly because it
can easily lead to confusion.

Firstly, the class fractions are the single most important con-
tribution to the prior probability used to obtain posterior proba-
bilities for each object. This issue is reasonably clear.

Secondly, as well as adjusting the classifier probabilities with
the prior, when testing the classifiers, we also have to take ac-
count of the uneven expected class fractions in the measured
contamination (and in any other quantity where they would be
important – the completeness is not affected, as can be seen from
Eq. (1)). We can do this by either using a test set that reflects the
true expected fractions (which would be possible in our case be-
cause the classes are not extremely unbalanced), or by correct-
ing the contamination for the difference between the input test
set fractions and the expected true fractions. Since the popula-
tion composition as a function of g and b is already present in
the test set, no correction should be made to the test output to
correct for the relative fractions of BHB stars as a function of
these quantities.

Note that this reweighting of the contaminants in the output
sample has to be carried out anyway if the expected class frac-
tions are different to the fractions in the test set, whether or not
we also apply the prior to the classifier probabilities. All the con-
taminations presented in this paper, except that in Table 2, are
based on test sets with equal class fractions, and are corrected
to the expected class fractions after the classification using the
estimated fraction of 32% BHB stars.

The issue of priors in the context of a classification prob-
lem with a highly unbalanced data set was addressed in some
depth by Bailer-Jones et al. (2008). In particular, Sect. 2.5.1 of
this paper discusses the issue of correction of the contamination
in more depth than is possible here. There the specific problem
was identifying quasars amongst stellar samples, which is an ex-
tremely unbalanced problem. The issue with BHB stars is less
severe.

4. Comparative performance of machine learning

techniques

4.1. Colour box and direct decision boundary

Yanny et al. (2000) derived a decision boundary in u − g,
g − r colour space to distinguish low gravity BHB giants from
contaminating MS and BS stars in the colour box. Their decision
boundary consists of three straight line segments and is shown
in their Fig. 10. Our estimates of the gradients and intercepts of
the line segments are shown in Table 1. Sources are BHB stars
if they have u − g < m(g − r) + c, with values of m and c taken
from the table.

Table 2. Results of classification with decision boundary.

Absolute
bhb other

BHB 1963 486
OTHER 2560 3321
Unclassified 436

Percentage
BHB 80.16 19.84
OTHER 43.53 56.47

Completeness Contamination
BHB 0.802 0.566

We classified our test set with this boundary, and obtained
the results summarized in Table 2. All sources with g < 19 were
classified, since no training set is needed. The test set class frac-
tions are not artificially balanced, so no prior has been applied.
Sources lying outside the ranges of Table 1 remain unclassified.
The results are presented first in the form of a confusion matrix.
Each row of the matrix corresponds to a particular true class, ei-
ther BHB or other. The rows are labeled in capitals to indicate
that this is the true class of the object. The columns list the out-
put classifications. The leading diagonal of the matrix therefore
shows the true classifications. The off diagonal elements indicate
misclassifications, and it is possible to see which classes are par-
ticularly confused with one another. The confusion matrix is pre-
sented twice, once with the absolute numbers of objects in each
classification bin, and once with the classifications expressed as
percentages of the total number of input objects of that class.
The rows of this matrix therefore sum to one. We also present
the completeness and contamination obtained with this method.

4.2. k-Nearest Neighbours

Nearest neighbour techniques are probably the simplest and
most intuitively obvious method for supervised classification.
For a given new object, we select the k nearest training points
in the data space and assign a class based on the classes of the
neighbours. For k > 1 we could choose to select a simple ma-
jority of objects, or we could impose a higher threshold in an at-
tempt to improve the purity of one or both of the output classes
(i.e. BHB stars or other). Introducing a threshold implies that we
must be prepared to tolerate non-classifications.

A probability can be estimated from the fraction of neigh-
bours belonging to each class, so for example if nine out of
ten of the nearest neighbours are BHB stars, we would estimate
P(BHB) = 0.9.

We ran the kNN technique for various choices of k and mea-
sured the output sample completeness and contamination. The
classifier was run with ten resamplings of the training and test
sets for each k, from k = 1 up to k = 100, and the classification
was performed with simple majority voting. The completeness
was found to be approximately constant with increasing k, but
the contamination showed a shallow minimum at around k = 15,
which we selected as the optimum value.

We also experimented by cutting the colours used from four
down to two (u − g and g − r). The result was a slight degrading
of the results for all values of k. We therefore use the kNN tech-
nique with the four dereddened colours.

We next investigated the effect of varying the confidence
threshold for classification and measuring the completeness and
contamination of the output BHB star sample. Increasing the
threshold would be expected to lead to a loss of completeness,
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Fig. 6. The effect on the completeness (green squares) and contami-
nation (red triangles) of varying the minimum probability (including
the effect of the 2d prior) required for a positive classification in the
kNN method. The completeness (necessarily) falls as the threshold is
increased.

but also a lowering of the contamination. The results of this for
kNN are shown in Fig. 6. The completeness does indeed fall, but
the contamination remains constant at around 0.4.

We performed ten classifications, with resampled training
and testing sets, with the kNN method to get a final estimate of
performance. The value of k and the probability threshold were
left fixed (k = 15, threshold = 0.5). The results are shown in
Table 3. This table is divided into three sections. In the top sec-
tion, we present the results of applying the classifier to the test
data without applying any prior. This is equivalent to assuming
equal true class fractions. The second section presents the results
with the application of the so-called simple prior, with which we
correct for the effect of the class fractions only. The final section
presents the results with the application of the 2d prior, a func-
tion of g and l. In each section we present the results as con-
fusion matrices of absolute classifications and as percentages of
the input true classes. Finally we present the completeness and
contamination.

Figure 7 shows the completeness and contamination for test
samples classified with the kNN method, with the results binned
by magnitude. The threshold for classification is always 0.5, and
k = 15. This is the average of 100 separate trials. The lower plot
shows the standard deviation in each bin.

As expected, the classifier performance falls off for fainter
magnitudes. Part of this effect may be due to the natural con-
fusion in the test set between BHB stars and non-BHB stars,
introduced by the noise in the method of Xue et al. (2008).

4.3. Kernel density estimation for classification

We next consider a kernel density estimation (KDE) approach
to the classification. The density estimate is a weighted mean
of neighbours, the weighting function being a kernel of choice.
See Hastie et al. (2001) for a general discussion of the method,
and see Richards et al. (2009a,b) for examples of KDE used to
identify quasars in SDSS data.

We use an Epanechnikov kernel, which is truncated and so is
less influenced by distant points. In practice, the choice of kernel
is usually less important than the bandwidth value. The band-
width was set independently for each dimension. The package

Table 3. Results for kNN classification.

With equal priors
Absolute

bhb other
BHB 1008 235
OTHER 347 871

Percentage
BHB 81.09 18.91
OTHER 28.49 71.51

Completeness Contamination
BHB 0.811 0.422

With simple prior
Absolute

bhb other
BHB 743 500
OTHER 245 973

Percentage
BHB 59.77 40.23
OTHER 20.11 79.89

Completeness Contamination
BHB 0.598 0.412

With 2d prior
Absolute

bhb other
BHB 920 323
OTHER 264 954

Percentage
BHB 74.01 25.99
OTHER 21.67 78.33

Completeness Contamination
BHB 0.740 0.378

Notes. Top section: confusion matrix showing the results of kNN clas-
sification (k = 15) with threshold P(BHB) > 0.5. This is the combined
result of ten independent classifications with resampling of the training
and testing sets. The rows show the true class (according to Xue et al.),
the columns show the classifier output class. When shown as percent-
ages, the quantities in the rows should add to 100%, but the quantities
in the columns in general do not. The completeness and contamination
are also shown – and the contamination is corrected for the class imbal-
ance using the simple prior. Middle section: the same confusion matrix,
with output probabilities corrected for the simple prior. Bottom section:
the results with output probabilities corrected for the prior probability
as function of g magnitude and galactic latitude.

np in R1 was used to implement the KDE method (Hayfield &
Racine 2008), and also to determine the optimal value for the
bandwidth, using the method of Li & Racine (2003). This is
based on leave one-out-cross validation and involves minimiz-
ing the variance amongst trial density functions constructed with
different bandwidth values.

Trial and error experimentation with the available colours
shows that reasonable results can be obtained with u−g and g−r,
but the addition of further colours degrades the performance. We
construct density functions for both the BHB stars and the non-
BHB stars and compare the values at the locations of test data
or new data points to classify the source. The individual density
functions for BHB and non-BHB sources in the training set are
shown as contours in u−g, g−r space in Fig. 8. The probability of

1 http://www.r-project.org
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Fig. 7. Top: completeness (green squares) and contamination (red trian-
gles) for sources of different magnitudes classified with the kNN tech-
nique. One hundred separate trials were averaged to produce this plot.
The filled symbols and solid lines show the results using the 2d prior.
The open symbols and dashed lines show the results using the simple
prior only. Bottom: standard deviations of completeness and contami-
nation at each point.

an object being of class c1 from a number nc of possible classes
is taken to be

P( j) =
K j=c1(x)
∑nc

j
K j(x)

(4)

where K j are the density functions for each class and x are
the data.

Training and test sets were independently selected ten times
and used to train and test a model. We applied the KDE classifier
to the test set under the assumptions of equal class sizes (flat
prior), the simple prior (P(BHB) = 0.32 for all sources), and the
2d prior. The results for all these tests are shown in Table 4. The
layout of this table is the same as Table 3.

As with the kNN method, we experimented with thresh-
olds at different levels of classification confidence. We adjust
the threshold probability for BHB classification and record the
resulting output sample completeness and the contamination.
These are shown in Fig. 9. As expected, the effect of introducing
a threshold higher than 0.5 for classification is to reduce both the
completeness and contamination.

Figure 10 shows the completeness and contamination for
the test sample classified with the KDE method, with the re-
sults binned by magnitude. The threshold for classification is al-
ways 0.5.

Table 4. Results for KDE classification.

Equal priors
Absolute

bhb other
BHB 1021 222
OTHER 505 713

Percent
bhb other

BHB 82.1 % 17.9 %
OTHER 41.5 % 58.5 %

Completeness Contamination
BHB 0.821 0.512

With simple prior
bhb other

BHB 765 478
OTHER 281 937

Percent
BHB 61.5 % 38.5 %
OTHER 23.1 % 76.9 %

Completeness Contamination
BHB 0.615 0.438

With 2d prior
bhb other

BHB 912 331
OTHER 293 925

Percent
BHB 73.4 % 26.6 %
OTHER 24.1 % 75.9 %

Completeness Contamination
BHB 0.734 0.405

Notes. Top section: confusion matrix showing results of KDE classifi-
cation of 10 independently selected test sets based on 10 independently
trained models. The classification threshold is P(BHB) ≥ 0.5 in each
case. The results are shown at the top as mean numbers of sources in
each category and then as percentages. The completeness and contam-
ination for the BHB output sample is also shown. These are corrected
for the expected unbalanced class fractions. Middle section: the same
quantities calculated with the simple prior applied to the classifier out-
put probabilities. Bottom section: the confusion matrix, BHB complete-
ness and BHB contamination obtained when the prior as a function of g
and latitude is applied to the classifier output probabilities.

4.4. Support vector classification

Support vector classification is a supervised method in which a
high dimensional decision boundary is fit between two classes.
The boundary is chosen to maximize the margins with the near-
est representative points of each class (the so-called support
vectors). See Vapnik (1995) for a fuller description. A linear
SVM defines a boundary that is linear in the original data space
(in our case the four SDSS colours). By using a kernel function,
a higher dimensional feature space can be defined, and the deci-
sion boundary instead defined in this. We use the second order
radial basis function as a kernel here. This function has a single
parameter, gamma, which must be set before training the model.
To deal with the problem of regularization for noisy data, a cost
parameter can be introduced, that acts to soften the margin. The
cost parameter is so called because it controls the extent to which
the algorithm will attempt to fit a more complex boundary in or-
der to correctly classify all of the training points, i.e. it is the
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Fig. 8. The density of points for the non-BHB star training set (left) and the BHB star training set (right) in the u − g, g − r plane. These density
functions are used for the KDE classification. Contours range from 2 to 22 stars per unit area in steps of 2.
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Fig. 9. Effect of varying the probability threshold with the KDE method
for classification as a BHB star on the completeness (green squares) and
contamination (red triangles) of the output. The results shown in Table 4
correspond to a probability threshold of 0.5. Output probabilities have
been modified by the 2d prior.

“cost” to the algorithm of misfitting training points during the
model training (Cortes & Vapnik 1995). We use the libSvm im-
plementation, which is available online (http://www.csie.
ntu.edu.tw/~cjlin/libsvm/, Chang & Lin 2001) and is im-
plemented in the R package e1071.

4.4.1. Probabilities from SVM

The SVM method is not designed to provide probabilities, since
it deliberately discards many of the training points, using only
the support vectors to build the model of the decision boundary.
However, a probability estimate can be made based on the dis-
tance of a test point from the decision boundary (Platt 1999).
The actual probability returned is based on a model fitted to the
training data. This probability estimate is essential if we want to
trade off completeness versus contamination, or use priors.

The training data were standardized colour by colour so that
each of the colours had zero mean and unit standard deviation.
The same offset and scaling, calculated from the training data,
were applied to the testing data. The SVM was run over a grid
of parameters; cost and gamma, with a fourfold cross validation
using the training data to determine the best choice for these val-
ues. The optimum values chosen were gamma = 0.25, cost = 64.
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Fig. 10. Top: completeness (green squares) and contamination (red
triangles) for sources of different magnitudes classified with the
KDE technique with one hundred trials. The filled symbols and solid
lines show the results using the 2d prior. The open symbols and dashed
lines show the results using the simple prior only. Bottom: standard de-
viation of completeness and contamination over one hundred trials.

The model was then trained on the training set and applied to the
test set. The basic classification performance is shown in Table 5.

We consider the effect of a threshold on the measured com-
pleteness and contamination. The results of introducing var-
ious thresholds greater than P(BHB) = 0.5 are shown in
Fig. 11. It can be seen from Fig. 11 that the completeness and
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Table 5. Results for SVM classification.

Flat prior
Absolute

bhb other
BHB 988 255
OTHER 305 913

Percent
bhb other

BHB 79.5% 20.5%
OTHER 25.0% 75.0%

Completeness Contamination
BHB 0.795 0.396

Simple prior
Absolute

bhb other
BHB 836 407
OTHER 188 1030

Percent
BHB 67.3% 32.7%
OTHER 15.4% 84.6%

Completeness Contamination
BHB 0.673 0.323

With 2d prior
Absolute

bhb other
BHB 912 331
OTHER 187 1031

Percent
BHB 73.4% 26.6%
OTHER 15.4% 84.6%

Completeness Contamination
BHB 0.73 0.303

Notes. Top section: confusion matrix showing results of an SVM clas-
sification without priors and with a threshold of P(BHB) > 0.5, also
the completeness and contamination in the output BHB sample, cor-
rected for the expected class imbalance. Middle section: the same quan-
tities obtained applying the simple prior probability for all sources.
Bottom section: the confusion matrix and completeness and contami-
nation found when applying the prior as a function of g and latitude.

contamination both fall as the threshold is increased, except
for very high thresholds when the contamination in fact rises.
This is possible if the set of sources with the highest values
of P(BHB) contain a large number of contaminants. This is un-
desirable, but is partly caused by the low number of sources
with high P(BHB) – in fact there are only thirteen sources with
P(BHB) > 0.9.

Figure 12 shows the completeness and contamination for the
test sample classified with SVM, with the results binned by mag-
nitude. This plot shows the results both with the simple prior
and the 2d prior. As with the KDE method, the SVM performs
well for 14 < g < 18 but progressively more poorly for fainter
sources.

4.5. Optimal choice of classifier

From the bare results in Tables 3−5, using the 2d prior, all the
techniques have very similar completeness. The contamination
is best in the case of SVM with about 0.3, and worst for the KDE
with 0.4. The decision boundary method of Yanny et al. (2000)
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Fig. 11. Plot of completeness (green squares) and contamination (red
triangles) as a function of a threshold probability for BHB classification
in the case of the SVM classifier. The results shown in Table 5 corre-
spond to a probability threshold of 0.5. Output probabilities have been
modified by the 2d prior.
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Fig. 12. Top: completeness (green squares) and contamination (red tri-
angles) for sources of different magnitudes classified using SVM with
one hundred trials. The filled symbols and solid lines show the results
using the 2d prior. The open symbols and dashed lines show the re-
sults using the simple prior only. Bottom: standard deviations of one
hundred trials.

should properly be compared with the simple prior case for the
three machine learning methods – the test set naturally has the
right class fractions, but because the method is not probabilistic,
the correction for the 2d prior cannot be made. The completeness
of the decision boundary method is clearly better than the three
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Fig. 13. Top: completeness (green) and contamination (red) for test sam-
ples with 15 < g < 17 classified with the SVM, KDE or kNN. Different
shades and symbols are used to distinguish the methods. All results are
modified with the 2d prior and the contamination is corrected for class
fractions. Results are the average of ten independent runs. Bottom: same
data as in the top plot, with completeness plotted directly against con-
tamination for direct comparison. The SVM results are always below
and to the right of the other methods, demonstrating lower contamina-
tion for a given completeness.

machine learning methods. The contamination of over 50% is
however worse than any of them.

From the magnitude performance plots in Figs. 7, 10 and 12,
it can be seen that all the methods achieve a high completeness
and low contamination for the approximate range 15 < g < 17.
The contamination achieved by the SVM technique for the re-
gion of best performance between 15 < g < 17 is slightly better
than for the kNN.

To make a more direct comparison, we plot in Fig. 13 the
completeness and contamination, averaged over ten indepen-
dent trials, for all the methods as a function of the classification
threshold. For this plot, we restrict the test sample to sources in
the range 15 < g < 17, where all the methods perform reason-
ably well.

From this comparison, we can note the following; the SVM
and kNN methods deliver similar completeness over most of
the range of thresholds. The kNN technique maintains com-
pleteness better than SVM for very high thresholds. However,
the kNN method does not show any significant improvement
in contamination, and it never delivers a better contamination
than the other methods for similar completeness. The other
techniques do show a falling contamination with increasing
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Fig. 14. The fraction of new data points passing through the one class
filter as a function of the parameter ν. The higher the value of the pa-
rameter, the more objects are rejected, and fewer then remain for the
main classification. The fraction reaches a plateau at around ν = 0.01.

threshold. In the lower plot, it is clear that the SVM delivers
on average a lower contamination for a given completeness.

In summary, all the methods perform reasonably well, but
the SVM seems to have the edge across the largest range of con-
ditions, and we choose to use this technique on the new data.

5. Classification of new data

We obtained new DR7 photometry from SDSS and use the var-
ious models to predict the classes (BHB versus non-BHB). The
DR7 data were obtained using the colour cut of Yanny et al.
(see Sect. 2). The search yielded 859 341 objects at g < 23.
This magnitude cutoff is very deep, being 0.8 mag deeper than
the 95% completeness limit for DR7 (Abazajain et al. 2009).
However, the selection requires good photometry in all five
SDSS bands, and the classification method will enforce the con-
dition that classified objects occupy the data space defined by
the training set (see next section), so that the number of spurious
objects in the sample will eventually be very low.

5.1. One class filter

Before attempting to classify the new data, it is necessary to ex-
clude points which lie outside the locus of the available train-
ing points. This issue did not arise when using the testing data
as described previously, since all input sources are by defini-
tion part of the defined data set and could potentially be used
to train a classifier. New points lying in a “hinterland” outside
the training data locus and well away from the decision bound-
ary may be misclassified with high confidence levels, since the
probability model is based on distance from the decision bound-
ary. It is necessary to exclude such points prior to attempting the
classification.

To do this, we used an SVM in one-class mode. The one-
class SVM defines a decision boundary which separates the
training data from the origin with a maximized margin. A param-
eter, ν, controls the rigidity of the boundary, and hence what frac-
tion of the training set would typically be excluded. We collected
all the available training objects (2536 BHBs and 7511 non-
BHBs) together into one set and standardized according to this
data. We conducted an experiment with different values of the
parameter ν to see how many of the new data points would pass
through. The results are shown in Fig. 14. From this figure, we
see that the fraction of sources passing through the filter reaches
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Fig. 15. (Top) gmagnitude distribution of sources from DR7 selected to
lie in the same data space as the SVM training data. (Bottom) g magni-
tude distribution of sources classified as BHB stars.

a plateau for values of ν a little less than 0.01. We chose ν = 0.01
based on this fact, and on a visual inspection of the region of the
data space in u− g, g− r space occupied by the surviving points.

Filtering the photometry according to consistency with the
training set, we were left with 294 652 objects. The distribution
of these in g magnitude is shown in Fig. 15 (left hand side).

5.2. Classification

For the classification, we trained a new SVM model using all
the available BHB stars, plus an equal number of randomly se-
lected non-BHB stars. The 2d prior probability was used to ob-
tain posterior probabilities, and a threshold of 0.5 was applied
to these. With this threshold, 27 074 of the new sample objects
were classified as BHB stars. Figure 16 shows the probabilities
output from the SVM classifier plotted against the probabilities
modified by the 2d prior. The threshold for BHB classification
is shown by the horizontal line. The threshold obtained by as-
suming a prior probability P(BHB) = 0.32 for all sources is
shown with the vertical line. It can be seen that there are peaks
in source density at low and high probability, so that the choice
of prior does not dominate the classification. The distribution of
classified BHB stars in g magnitude is shown in the right hand
side of Fig. 15.

5.2.1. Stability of the probabilities

The training set for the classifier is composed of all the avail-
able BHB stars, together with an equal number of non-BHB stars

P(BHB): SVM output
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Fig. 16. Classification probabilities P(BHB) for the new sources in
the DR7 data set. The abscissa shows the probability returned by the
SVM classifier, the ordinate shows the probability after modification
with the two dimensional prior (a function of latitude and gmagnitude).
The horizontal line marks the P = 0.5 threshold above which sources
were classified as BHB stars for the purposes of this work. The vertical
line shows the equivalent threshold for the SVM raw probabilities as-
suming a simple prior of P(BHB) = 0.32 for all sources. Contours are
at 0.004, 0.006, 0.01, 0.03, 0.09 and 0.12 times the maximum density.
The highest density regions lie in the bottom left, top right and in the
clump at approximately (0.8, 0.8).
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Fig. 17. Histogram of the standard deviations of the probabilities output
by the SVM classifier over ten classifications trained on ten separate
resamplings of the available training data.

selected at random. This means in practice about one third of the
non-BHB stars are included in the training set. The output prob-
abilities, and eventual classifications in many cases, will even-
tually depend on the exact choice of training data. To quantify
the stability of the output probabilities, we performed ten resam-
plings of the training data and subsequent classifications, and
found the standard deviations of the output probabilities.

In Fig. 17 we show a histogram of the standard deviations
of the probabilities, and a plot of the standard deviation of the
probability for each output sources versus the mean value of
the probability obtained. There is a broad peak at about 0.015.
The histogram has been truncated at P = 0.1.

In Table 6, we show the percentages of objects classified as
BHBs or non-BHBs with standard deviation in the probability
exceeding 0.01, 0.05 and 0.1. The peak occurs between 0.01
and 0.02 (see also Fig. 17). In each bin, fewer BHB sources than

Page 11 of 18

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014381&pdf_id=15
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014381&pdf_id=16
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014381&pdf_id=17


A&A 522, A88 (2010)

Table 6. Probability standard deviations for BHB and non-BHB classes.

SD > BHB non-BHB

0.01 72% 77%
0.02 34% 55%
0.05 16% 29%
0.10 10% 14%

non-BHB sources have higher standard deviations than the given
threshold.

It is difficult to combine repeated probabilities into a single
value with an uncertainty, and also to include the effect of the
magnitude and latitude dependent prior, and we do not attempt
to do this. Instead, we give in the output table (Table 7) the
raw SVM output probability from one classification, the stan-
dard deviation on this from ten resamplings, the prior, and the
posterior probability obtained by applying the prior to the raw
SVM probability. We use the condition that the posterior prob-
ability P(BHB) > 0.5 for BHB classification, but alternatively
one could impose some condition based on the standard error
for each object.

5.3. Photometric distances

Sirko et al. (2004) give absolute g magnitudes based on models
by Dorman et al. (1993), for a range of BHB star properties (Teff,
log g and metallicity – their Table 2), together with u − g, g − r
and g − i colours. To determine photometric distances for our
BHB stars, we perform a regression based on this data. We do
this with a support vector machine in regression mode2.

We estimate the distance errors due to the uncertainty in
the photometry by recomputing the distances with ±1σ in the
colours and in g. the distributions are shown in Fig. 18.

Figure 19 shows the distribution of BHB stars on the sky in
the region of the north Galactic cap. The locations of a selec-
tion of globular clusters taken from the list of Harris (1996) are
shown as black circles. These were used to make a test of the
BHB distances, as described below. Also indicated, with a box,
is the location of the Ursa Minor dwarf galaxy. The BHB popu-
lation of this galaxy is clearly visible as a clump of distant stars.

5.4. A distance test

To help assess the accuracy of our BHB identifications and dis-
tance determination, we compare our data to a selection of glob-
ular clusters taken from the catalogue of Harris (1996) and se-
lected to lie in the north Galactic cap region. Their positions are
shown in Fig. 19. We considered all BHB stars within half a
tidal radius of each cluster centre to be probable cluster mem-
bers, and determined the mean distance to those stars, and the
error on the mean. We then compare those distances with the
ones given in the table of Harris. Out of fifty-two globular clus-
ters within the north Galactic cap region, sixteen had at least one
BHB star from our sample within half a tidal radius of the centre.
In Fig. 20 is shown the mean distance for each cluster derived
from the BHB population compared to the accepted distance
given in the catalogue. The agreements with the distances taken
from Harris are generally reasonably good for clusters around

2 The SVM for regression fits a regression line in a high dimensional
feature space, rather than a classification boundary. This involves an
extra parameter which must be tuned. For a full description see Drucker
et al. (1996) or the libSVM documentation.

20 kpc distant. Amongst the nearby clusters are several with
overestimated distances, two of which contain only one source
each. Overestimated distances would be expected if the cluster
membership is contaminated with non-BHB stars, since the con-
taminants are generally fainter than the BHB stars and so the
distances will be overestimated in those cases. A more distant
cluster at just over 80 kpc also has an overestimated distance.

In Fig. 21 we use the information from the globular clusters
distance test to further investigate the performance of the clas-
sification. We select all sources within half a tidal radius of a
cluster centre and calculate the distance to these assuming they
are BHB stars (which they will not all be). We then find the
fractional absolute residual, R, between this distance, which we
call d∗ and the accepted cluster distance d0,

R =
|d∗ − d0|

d0

· (5)

We use the absolute residual because the vast majority of sources
that have distances inconsistent with the cluster distance are
placed on the too distant side (most contaminants will be intrinsi-
cally fainter than BHB stars). We plot this against the (prior cor-
rected) SVM probability P(BHB). Sources with P(BHB) > 0.5
are classified as BHB stars for the purposes of this plot.

In Fig. 21, sources which are true BHB stars within the
cluster should appear close to the cluster distance. We would
like to see as many as possible appearing with high proba-
bility P(BHB). Sources which are in the cluster but are not
BHB stars should be assigned distances greater than the true
cluster distance, as they are intrinsically fainter. Ideally, these
sources should of course have P(BHB) < 0.5. BHB stars that
are not genuine cluster members could be in the foreground or
the background, so could appear more or less distant than the
true cluster distance. Non-BHB stars in the foreground or back-
ground could appear at greater or lesser distance than the cluster,
but their apparent distance would be greater than their true dis-
tance due to their lower luminosity.

We can see in the figure that there is a clump of appar-
ent BHB stars at the cluster distance and with high probabil-
ity P(BHB). The majority of the sources with incompatible dis-
tances for cluster membership also have P(BHB < 0.5). There
are a few sources with P(BHB) > 0.5 and incompatible dis-
tances. These are probably false positive misclassifications, al-
though we cannot rule out the possibility that they are simply
foreground or background BHB stars.

6. A catalogue of BHB stars from DR7 photometry

In Table 7 we give the basic data for the sample of DR7 sources
classified by us. The first four columns of this table show vari-
ous IDs from SDSS. Column one is the PhotObjId (long) from
the SDSS PhotObj table. Columns two to 4 are the plate ID,
MJD, and fiber ID for spectroscopic observations (where avail-
able) from the SDSS SpecObj table. Columns five to eight are
the RA, Dec, l, and b in degrees. Columns nine through thir-
teen show the SDSS photometry (u, g, r, i, z psfMags). Columns
fourteen through eighteen show the errors in the photometry
in magnitudes. Columns nineteen through twenty-three show
the extinction in each band. Column twenty-four lists the cat-
egory from Xue et al.. This can be either “BHB”, meaning
BHB star from the D0.2 fm method, confirmed by cγ, bγ,
“Other”, meaning BHB star from D0.2, fm method, rejected
by cγ, bγ method, “BS”, meaning Blue straggler from D0.2,
fm method, “MS” meaning main sequence star from D0.2,
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Fig. 18. The fractional change in the derived distance caused by applying a random offset to either the g magnitude or the colours. The offsets are
drawn from a Gaussian distribution with the appropriate σ for each object. On the left, the effect of the colour uncertainty on the fitting result, on
the right, the effect of the photometric error in g. Both distributions have a width of the same order of magnitude.
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Fig. 19. BHB stars in the north Galactic cap region, shown in Aitoff projection. The stars have been colour coded for distance as follows; blue =
closer than 15 kpc, green = 15−40 kpc, red = further than 40 kpc. The positions of a few globular clusters selected from the catalogue of Harris
(1996) and used for a distance test are shown as black circles. The position of the Ursae Minoris dwarf galaxy is marked with a box.

fm method, or “None” meaning not present in the Xue et al.
catalogue. Column twenty-five shows the raw output probabil-
ity from the SVM. Column twenty-six shows the standard de-
viation of this probability over ten trials with resampled train-
ing set. Column twenty-seven shows the (2d) prior used. Column
twenty-eight shows the posterior probability calculated from the
SVM probability by applying the prior. Columns twenty-nine
and thirty show the assigned distance in kpc and the fractional
error.

In the Appendix, we give all the information needed to di-
rectly apply the SVM one-class filter and the two-class classifier

to new data for which the SDSS colours, u − g, g − r, r − i and
i − z are available.

6.1. A warning on extinction

The classification is based on dereddened magnitudes, and the
dereddening is performed by the SDSS pipeline based on the
map of Schlegel et al. (1998). This is expected to work well
at high Galactic latitudes, but for sources in the disk the ex-
tinctions may not be reliable. Furthermore, these maps give the
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Fig. 20. Distances to globular clusters taken from the catalogue of Harris compared to the mean distance to BHB stars within one tidal radius of the
cluster centre (both quantities taken from Harris. The straight line shows exact agreement (x = y). Error bars are plotted where possible (>1 source
identified). The main plot shows the full sample, the inset shows the portion closer than 30 kpc at a larger scale. Globular clusters with no detected
BHB population are not shown.
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Fig. 21. An analysis of classifier performance based on likely member-
ship of known globular clusters. Sources are selected based on proxim-
ity to a known globular cluster from the catalogue of Harris (1996).
Distances are computed for all these sources, assuming they are all
BHB stars, and compared to the catalogue distance for the cluster. True
BHB stars that are really cluster members should return a distance con-
sistent with the cluster distance. Most contaminants from within the
cluster will appear too distant compared to the BHB population, be-
cause they are fainter. This plot shows the fractional absolute residual
in the distance estimate in kpc versus the (prior-corrected) SVM proba-
bility P(BHB). The dashed line shows the threshold P(BHB) = 0.5.

line-of-sight extinction to the edge of the Galaxy, so they will un-
derestimate extinction in all cases, possibly by a non-negligible
amount even at high latitudes for nearby BHBs.

The catalogue we present contains 181 022 sources with
|b| < 10 out of the total of 294 652 sources. Out of the probable
BHB stars, 7231 sources have P(BHB) > 0.5 and |b| < 10, and

19 843 sources have P(BHB) > 0.5 and |b| > 10. Users should
be aware of this issue when considering sources at low Galactic
latitude.

To quantify this effect, we calculated the completeness and
contamination in the test sample as a function of absolute
Galactic latitude. The results are shown in Fig. 22. From this,
we can see that the performance of the classifier holds up well
for |b| > 30◦. Below that, there is some degradation, and the per-
formance becomes quite bad in the lowest bin, with |b| < 18◦.
It is difficult to assess the detailed behaviour of the classifier here
because of the small number of test sources available (there are
63 sources in the first bin, of which 18 were BHB stars according
to Xue et al.).

7. Conclusions

Starting with a sample of spectroscopically identified BHB stars
published by Xue et al. (2008), we have trained a number of
standard machine learning algorithms to distinguish BHB stars
from other contaminating main sequence stars or other interlop-
ers, using SDSS colours alone. We have investigated three meth-
ods, with and without the use of probabilistic classification and
prior probabilities, and we find that the support vector machine
offers the best completeness while simultaneously minimizing
the contamination in the output sample. The kernel density esti-
mator was able to provide comparable contamination, but with
a lower completeness. The kNN method was able to match the
completeness of the SVM, but not the contamination. Adjusting
the classification thresholds altered this picture in various ways,
but the SVM generally outperformed the other techniques.

Using the most promising technique (SVM), we have clas-
sified a large sample of DR7 data selected to lie within the
colour box of Yanny et al. (2000). This sample comprises
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Fig. 22. An analysis of classifier performance on the Xue et al. testing
set as a function of absolute Galactic latitude, |b|. The completeness
(green squares) and contamination (red triangles) are plotted. The sam-
ple was restricted to sources with g < 17.5. The 2d prior was used, and
the contamination is corrected for the likely class fractions.

859 341 sources. We used a one-class filter (also based on
an SVM), to select 294 652 of these as lying in the same colour
space as the available training set. We have identified 27 074 of
these as probable BHB stars. This includes any already identi-
fied by Xue et al. Because our classifier relies on a randomly
selected subsample of the available training objects, we ran mul-
tiple classifications to quantify the stability of the output prob-
abilities. The standard deviations of the output probabilities are
also provided in the table.

We used photometric parallaxes derived from colour data
presented in Sirko et al. (2004) to derive distances for these
objects, using another variant of the support vector machine to
make the fit to the colours. We performed a few simple checks
on these distances, and on the spatial distribution of the classified
BHB stars, to demonstrate that our method is reasonable.

We include along with this work a catalogue of the
294 652 DR7 sources together with probabilistic identifications
as BHB stars, in the hope that these can be useful for other
workers either directly as a ready made BHB sample, or as prior
probabilities for spectroscopic BHB identification methods. We
also provide, in the Appendix, the data and parameters necessary
to apply our classification to new colour data. The accuracy of
the catalogue, or the classifier, can be estimated by reference to
the various test results presented in the main body of the paper.
In particular, Fig. 12 gives the estimated performance as a func-
tion of magnitude, although the reference classifications from
the Xue et al. catalogue are unreliable for g > 19 as seen from
Figs. 2 and 3. Figure 11 gives the expected effect of changing
the required threshold probability for BHB classification, whilst
Fig. 22 can be used to estimate the performance as a function of
Galactic latitude.

A general conclusion of this work is that, where reliable
training sets can be identified, machine learning approaches such
as those discussed here can probably extract more information
than is available with simple colour cuts or ad hoc models. This
type of approach is likely to be very fruitful in the future for
surveys yielding large photometric datasets.
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Appendix A: Applying the SVM model directly

The application of the SVM model is mathematically straight-
forward and not excessively laborious. We therefore give here
the full specification of the SVM classification so that it can be
directly applied to new data.

The input data are the four dereddened SDSS colours u − g,
g − r, r − i, i − z. The recipe for applying the model consists
of five main steps, which are listed below. Below, we give de-
tailed instructions for each step, together with tables containing
the necessary model data. The steps are:

1. Apply the one-class model standardization to the data.
2. Evaluate the one-class model and reject outliers.
3. Apply the two-class model standardization to the original

data.
4. Apply the two-class model to obtain the decision value, f .
5. Apply the probability model to convert f into P(BHB).

This recipe leaves one with an SVM probability implicitly as-
suming that BHB stars and non-BHB stars are equal in number
in the input sample. An appropriate prior should be applied to
obtain the posterior probability.

A.1. Apply the one-class model standardization

The equation for the standardization is

xs =
x − µ

σ
, (A.1)

where x are the colours, µ are the means and σ the standard
deviations of each colour. For the one-class model, the standard-
ization is performed using the one-class values of µ and σ given
in Table A.1.
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Table A.2. Parameters for one-class, two-class and probability models.

One-class model
γ 0.25
ρ 2.571136
Two-class model
γ 0.0625
ρ 5.116558
Probability model
A –1.162976
B 0.006035218

A.2. Application of one-class SVM model

The evaluation equation for the SVM model, for either one-class
or two-class classification, is

f =

i=Ns∑

i=1

yiαiK(x, si) − ρ (A.2)

where x is the colour vector to be classified, si are the support
vectors, αi their fitted weights, yi are class labels for each support
vector, and ρ is a constant offset applied to each result. The value
of Ns is 152 for the one-class model (Table A.3) and Ns = 2645
for the two class model (Table A.4). The class labels yi are set
to +1 or −1 for the two class classifier, and are always set to +1
for the one-class case.

K is a kernel function, in our case an RBF kernel, given by

K(x, si) = exp(−γ||x − si||
2), (A.3)

where γ is a parameter found by tuning (Table A.2).
The values of the support vectors for the one-class model,

corresponding to the vectors labeled si in Eqs. (A.2) and (A.3),
are given in Table A.3, which is available in its full form as an
e-table at the CDS. The first column in this table gives the prod-
uct yiαi for each vector. The value of the parameters γ and ρ are
given in Table A.2.

To apply the one-class model, simply calculate the sum in
Eq. (A.2) over all the support vectors in Table A.3 and subtract
the value of ρ. Sources with f > 0 are compatible with the train-
ing data and are therefore suitable for classification with the two-
class classifier. Sources with f < 0 are outliers that should be
rejected (they cannot be classified with the two-class model).

A.3. Standardization for two-class classification

Having rejected sources not compatible with the model, it is now
necessary to standardize the data for the surviving sources us-
ing the standardization appropriate for the two-class classifier.
The equation for this is identical to that used for the one-class
standardization, Eq. (A.1) above. The parameters are given in
Table A.1. Note that this standardization should be performed
on the original dereddened colours, not on the standardized data
used for the one-class model.

A.4. Application of the two-class model

The equations for the two-class model are the same as for the
one-class, namely A.2 and A.3 above. The data for the model
should be taken from Table A.4 (support vectors) and from
Table A.2 (model parameters). The decision value yi in Eq. (A.2)
is now either −1 (non-BHB) or +1 (BHB), but this is of no di-
rect concern to the user since in Table A.4 the value of the prod-
uct yiαi is given.

Table A.3. Data for the one-class SVM model.

yiαi u − g g − r r − i i − z

0.177629 –0.125387 –3.43222 2.042456 0.187264
0.853943 –2.771393 –3.613814 0.063207 –0.607082
0.11659 0.665252 0.272304 –1.799065 2.331353
0.388386 0.412248 –0.926218 –0.278366 –3.513227
0.255163 –0.863317 –0.345117 –1.129957 0.309968

1 2.562787 –3.10535 –0.250291 –0.258345
0.382262 –0.958194 0.70813 –1.986228 2.899666
0.281138 –0.515436 –2.064209 –0.535715 –2.544512

1 –1.327159 –1.822084 –2.210824 1.937409

Notes. Only the first ten lines of this table are shown here for illustra-
tion, the remainder is available at the CDS. There are a total of 152 sup-
port vectors in the online table. Column one is the product yiαi, columns
two to five are the dereddened, standardized colours.

Table A.4. Data for the two-class SVM model.

yiαi u − g g − r r − i i − z

1024 0.669775 0.534765 0.034976 0.123055
1024 –1.534446 –1.443351 –0.4881 –0.636521
1024 0.275784 –0.507595 –0.355955 –0.123561
1024 0.584588 0.16757 –0.251339 –0.172884
1024 –0.182098 0.04912 –0.256845 0.192107
1024 –0.352472 –0.957706 –0.543161 –0.212342
1024 –0.586737 0.85458 0.657162 –0.291259
1024 –0.97008 1.340226 0.18364 0.724797
1024 –0.064965 –0.720806 –0.229315 –0.498417

Notes. Only the first ten lines are shown here for illustration. The re-
mainder is available at the CDS. There are a total of 2645 support vec-
tors in the full online table. The columns have the same meaning as for
Table A.3 above. Note that Col. 1, which gives the product yiαi, always
has the same value for the first ten instances. This is not the case for all
the support vectors in the full version.

Evaluate Eq. (A.2) using the two-class data to obtain the de-
cision value f for each source. Decision values f > 0 indicate
BHB stars (since the class label for BHB stars is +1) and deci-
sion values f < 0 indicate non-BHB stars.

A.5. Determine the probability of the classification

If only a classification is required, this step is unnecessary.
If a probability is also required, apply the probability model to
determine this.

Given the value of the decision value f from step A.4 above,
determine the probability by evaluating

P(BHB) =
1

1 + exp (A f + B)
, (A.4)

where A and B are parameters determined by cross validation
during training. The values of these for our model are given
in Table A.2.

We note again that this is a “nominal” probability, assum-
ing equal class fractions in reality, no change in class fraction
as a function of position, magnitude, etc. A prior should be in-
troduced to obtain better posterior probabilities, as discussed in
Sect. 3.4. The simple prior used in this paper of P(BHB) = 0.32,
which roughly accounts for the uneven class fractions, is proba-
bly the simplest sensible choice for this.
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