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ABSTRACT

We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a
sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data.
This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates
having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely
photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN
Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN
Ia candidates from SDSS-II can be identified photometrically with ∼91% efficiency and with a contamination of
∼6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification,
we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of
the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host
galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only ∼20%–40% larger than that of the
spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric
classification and redshift-distance measurements, however, exhibits biases that require further investigation for
precision cosmology.
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1. INTRODUCTION

Measurements of luminosity distances to nearby Type Ia
supervovae (SNe Ia; Phillips 1993; Hamuy et al. 1996) and
their distant counterparts have played a central role in modern
cosmology and the remarkable discovery of an accelerating
universe (Riess et al. 1998; Perlmutter et al. 1999). Many
dedicated supernova (SN) surveys and follow-up programs
have since then acquired light curves and spectra for several
thousands of SNe in various redshift ranges: (1) at z � 0.1 by
the Lick Observatory Supernova Search (Filippenko et al. 2001;
Ganeshalingam et al. 2010), the CfA monitoring campaign
(Riess et al. 1999; Jha et al. 2006a; Matheson et al. 2008; Hicken
et al. 2009), SNFactory (Bailey et al. 2009), Carnegie Supernova
Project Low-z Program (Contreras et al. 2010; Folatelli et al.
2010), the Palomar Transient Factory (Rau et al. 2009; Law
et al. 2009), and the Panoramic Survey Telescope and Rapid
Response System (Pan-STARRS16); (2) the SDSS-II SN Survey

16 http://pan-starrs.ifa.hawaii.edu/public

in the intermediate-redshift interval 0.1 � z � 0.3 (Frieman
et al. 2008; Sako et al. 2008); (3) the highest-redshift range
observable from the ground at 0.3 � z � 1 by the Supernova
Legacy Survey (SNLS; Astier et al. 2006; Guy et al. 2010;
Conley et al. 2011), the ESSENCE SN Survey (Miknaitis et al.
2007; Wood-Vasey et al. 2007), the Carnegie Supernova Project
High-z Program (Freedman et al. 2009); and finally (4) z � 1
SN Ia from space using the Hubble Space Telescope (Riess et al.
2004a, 2007; Dawson et al. 2009).

Many future surveys, such as the Dark Energy Survey
(Flaugher et al. 2010) and the Large Synoptic Survey Telescope
(LSST Science Collaborations 2009), with deeper and more
wide-field imaging capabilities will probe much larger volumes
of the universe allowing discoveries of thousands to tens of
thousands of high-redshift SN candidates each year. Spectro-
scopic follow-up observations of these large, faint SN samples
will require prohibitively large time allocations with existing in-
struments. Studies of SN properties and cosmology will, there-
fore, necessitate a photometric determination of the SN type,
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cosmological redshift, and the luminosity distance from light
curves with possibly a limited subsample with spectroscopic
confirmation and redshift measurements.

Various methods for photometrically classifying SNe have
been discussed in the literature. Optical and UV colors near
maximum light, for example, have been used to distinguish SNe
Ia from core-collapse SNe (Pskovskii 1977; Poznanski et al.
2002; Panagia 2003; Riess et al. 2004b; Johnson & Crotts 2006).
Poznanski et al. (2007a) have developed a Bayesian method
that classifies SNe using only a single epoch of photometry (see
also Kuznetsova & Connolly 2007; Rodney & Tonry 2009).
Template-fitting methods have been employed for spectroscopic
targeting of active SN candidates (Sullivan et al. 2006; Sako
et al. 2008). Sullivan et al. (2006) have performed an analysis
to identify a sample of photometric SN Ia candidates from the
first year of the SNLS. Dahlen et al. (2004), Poznanski et al.
(2007b), Dahlen et al. (2008), Dilday et al. (2008), Dilday et al.
(2010), Rodney & Tonry (2010b), and Graur et al. (2011) have
also used photometric classification to measure SN rates as a
function of redshift.

Although an efficient photometric SN classifier is crucial
for a successful spectroscopic follow-up program and also for
understanding the bias in the spectroscopic sample, the ability to
estimate both the efficiency and purity of the selected sample is
also important for understanding, for example, possible biases
in distance measurements and studies of SN rates. Clearly, the
efficiency can be improved by compromising purity, and vice
versa, and the requirements may vary depending on the type of
study involved.

In addition to photometrically identifying SN Ia candidates,
redshifts and luminosity distances can be inferred from the
same multiband light curve data. These studies of SN cosmology
without spectroscopy have been pioneered by Barris & Tonry
(2004) and carried out more recently by a number of authors.
Palanque-Delabrouille et al. (2010), Kessler et al. (2010a), and
Rodney & Tonry (2010a), for example, study the quality of
photometric redshifts on large samples of existing data. Rodney
& Tonry (2010a) also construct a photometry-only Hubble
diagram of the first-year Sloan Digital Sky Survey II (SDSS-
II) and SNLS spectroscopically confirmed SNe Ia using their
Supernova Ontology with Fuzzy Templates method. Others
show comparisons of measured and input redshifts primarily
from simulations (Kim & Miquel 2007; Kunz et al. 2007; Wang
et al. 2007; Wang 2007; Gong et al. 2009; Scolnic et al. 2009).

The accuracy and precision of the measured parameters de-
pend on many observational factors including the statistical
quality of the observed light curves, surface brightness of the un-
derlying host galaxy, photometric calibration, wavelength cover-
age, the number of filter bandpasses, and the observing cadence.
Other non-observational factors that might affect the measure-
ments are the quality of the light curve models, assumptions on
the dust properties and intrinsic SN colors, and priors used in
the fits. The photometric redshift uncertainty on any individual
SN is obviously larger than a typical spectroscopic redshift er-
ror, but a substantially larger number of unbiased redshifts and
distance measurements made possible photometrically might be
able to provide competitive constraints on cosmological param-
eters with future large-scale surveys.

Some of the existing software and algorithms, including the
one presented in this paper, were recently used to participate in
the Supernova Photometric Classification Challenge (Kessler
et al. 2010b), a public competition for classifying SN light
curves. The authors of the challenge released a large number

of simulated SN light curves of undisclosed types and a small
“spectroscopic” sample with known redshifts and types for train-
ing. Participants of the challenge submitted their classifications
as well as photometric redshifts if available. The algorithm pre-
sented here achieved the highest overall figure of merit, although
there is significant room for improvement.

This paper focuses on understanding these issues using an
improved implementation of existing methods and through
analysis of a much larger sample of SN candidates for testing.
We use the three-year SDSS-II SN Survey data as our test
bed to identify photometric SN Ia candidates with realistic
estimates of sample purity. The description of the photometric
classification algorithm and the spectroscopic and photometric
SN samples from SDSS-II are presented in Section 2. The
procedures for estimating the SN Ia typing efficiency and purity
using the spectroscopic sample are described Sections 3 and 4.
The properties of the photometric SN Ia candidates identified
are described in Section 5. The quality of the light curve
photometric redshifts is discussed in Section 6. Comparisons
with simulations are shown in Section 7. Finally, our results are
summarized in Section 8.

2. THE SDSS-II SN CANDIDATES

The SDSS-II SN Survey was conducted during the
September–November months of 2005–2007. A 300 deg2 re-
gion along the celestial equator was observed using the SDSS
2.5 m telescope (Gunn et al. 1998; Fukugita et al. 1996; York
et al. 2000; Gunn et al. 2006) with an average cadence of four
days (Frieman et al. 2008; Abazajian et al. 2009). The survey
depth and area are optimal for discovering and measuring light
curves of SN Ia at intermediate redshifts (0.1 � z � 0.4), com-
plementing other surveys. During the search campaigns, new
variable and transient sources detected in the difference images
were designated as “SN candidates.” After each night of imag-
ing observations on the SDSS telescope, the SN candidates were
photometrically classified based on the available multiband light
curves, and a subset of the events was observed spectroscopi-
cally close to their moment of discovery (Sako et al. 2008).
Photometry and results from follow-up spectroscopy from the
first season are presented in Holtzman et al. (2008) and Zheng
et al. (2008), respectively, and measurements of the cosmo-
logical parameters from the first-year sample and studies of the
sources of systematic uncertainties are presented in Kessler et al.
(2009a), Sollerman et al. (2009), and Lampeitl et al. (2010).

Over 10,000 SN candidates were discovered during the three-
year SDSS-II SN Survey, and the majority of these candidates
are spectroscopically unconfirmed due to limited spectroscopic
resources. The goal of this paper is to photometrically identify
the SN Ia candidates and to estimate the efficiency and purity of
that photometric classification. We investigate whether reliable
cosmological measurements can be performed from SN candi-
dates without spectroscopic confirmation. We first describe the
SN classification algorithm below and then discuss our method
for estimating the efficiency and purity using a limited number
of spectroscopically confirmed SNe.

2.1. Photometric SN Classification Algorithm

The candidates are classified using a light curve analysis soft-
ware called “Photometric SN IDentification” (PSNID), which is
an extended version of the software used for prioritizing spec-
troscopic follow-up observations for the SDSS-II SN Survey as
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described in Sako et al. (2008).17 Extensive tests were performed
using the publicly available SNANA light curve simulations18

as well as the data presented here. PSNID was also used to
analyze simulations from the Supernova Photometric Classifi-
cation Challenge and achieved the highest overall figure of merit
Kessler et al. (2010b, hereafter K10b). Briefly, the software uses
the observed photometry, calculates the reduced χ2 (χ2

r = χ2

per degree of freedom) against a grid of SN Ia light curve mod-
els and core-collapse SN (CC SN) templates, and identifies the
best-matching SN type and set of parameters with, and without,
host galaxy redshift as priors in the grid search. A number of
important improvements have been made, which are described
below.

First, in addition to finding the light curve model with the
minimum χ2

r through a grid search, the software computes
the Bayesian probabilities that a candidate could be a Type
Ia, Types Ib/c, or a Type II SN. The algorithm is similar to
that of Poznanski et al. (2007a) except that we subclassify
CC SNe into Types Ib/c and II using an extended set of
templates (see below), and also allow the SN Ia light curve shape
parameter and distance modulus to vary in the fits. Specifically,
we calculate the Bayesian evidence E by marginalizing the
product of the likelihood function and prior probabilities over
the model parameter space. For the SN Ia models, there are five
model parameters—redshift z, V-band host galaxy extinction
AV , time of maximum light Tmax, ∆m15(B) (Phillips 1993;
Phillips et al. 1999), and distance modulus μ. Milky Way
extinction is modeled assuming the Cardelli et al. (1989) law
with RV = 3.1, while extinction in the SN host galaxy assumes a
total-to-selective extinction ratio of RV ≡ AV /E(B −V ) = 2.2
(Kessler et al. 2009a). Priors in AV , Tmax, and μ can also be
applied optionally, but we set them to be flat in this present
work. For the redshift, we evaluate each light curve twice using
(1) a flat prior and (2) a Gaussian prior if an external redshift
estimate zext and uncertainty σz are available from either the
host galaxy (photometric or spectroscopic redshift) or the SN
spectrum. The SN Ia Bayesian evidence is therefore

EIa =
∫

all parameters

P (z)e−χ2/2dzdAV dTmaxd∆m15,Bdμ, (1)

where

P (z) =
1

√
2πσz

e−(z−zext)
2/2σ 2

z . (2)

When an external redshift is not available, we assume the prior
to be flat by setting P (z) = 1. For the SN Ib/c and SN II models,
the integral over ∆m15(B) is replaced with a summation over the
individual templates used in the comparison:

EIbc,II =
∑

templates

∫

P (z)e−χ2/2dzdAV dTmaxdμ. (3)

The Bayesian probability of one of the three possible SN types
is then given by

Ptype =
Etype

EIa + EIbc + EII

. (4)

The probabilities Ptype and minimum χ2
r values calculated using

the Gaussian spectroscopic redshift prior are denoted with a

17 The software is included in the SNANA Package (Kessler et al. 2009b). A
standalone version is also available directly from the author.
18 http://sdssdp62.fnal.gov/sdsssn/SIMGEN_PUBLIC/

Table 1

Core-collapse SN Templates

Type Subtype IAU Name SDSS ID

Ibc Ib SN2005hl 2000

· · · Ib SN2005hm 2744

· · · Ic SN2006fo 13195

· · · Ib SN2006jo 14492

II II-L/P SN2004hx 18

· · · II-P SN2005lc 1472

· · · II-P SN2005gi 3818

· · · II-P SN2006jl 14599

subscript z (i.e., Pz,type and χ2
z,r ). External photometric redshifts

of the host galaxies are not used in the fits in this work. The
probabilities are normalized such that

PIa + PIbc + PII = 1, (5)

which is equivalent to assuming that the SN candidate is a real
SN and not another class of variable sources. This assumption
is reasonable, since sources in Stripe 82 with a prior history of
variability and other multiyear variables are rejected from our
analysis (Sako et al. 2008). This set of Bayesian probabilities
is useful because it quantifies the relative likelihood of SN
types—the best-fit minimum χ2

r alone is not a good indicator
of the most likey SN type. As advocated by Kuznetsova &
Connolly (2007), we therefore select SN Ia based on both the
Bayesian probability PIa and the goodness-of-fit χ2

r .
Next, although the SN Ia light curve models used herein are

the same as those described in Sako et al. (2008), we have
assigned empirical model errors that yield reasonable χ2

r values
for light curves with high S/N ratio. The assumed magnitude
errors δm on the gri model light curves depend on the rest-frame
epoch t in days from B-band maximum as follows:

δmIa =
{

0.08 + 0.04 × (|t |/20) |t | < 20 days,
0.12 + 0.08 × ((|t | − 20)/60) |t | � 20 days.

(6)
The CC SN light curve templates have error in gri given by

δmCC = 0.08 + 0.08 × (|t |/60) (7)

for all epochs. The model errors in u and z are chosen to be twice
the above values due to larger intrinsic model variations and
calibration uncertainties in these bands. These δm parameters
were determined to provide reasonable χ2

r values (χ2
r ∼1)

primarily for nearby SN candidates with small photometric
errors. They do not affect the fit results of faint candidates.

Third, we adopt CC SN light curve templates from a sample of
nearby SNe discovered and observed by SDSS-II. Specifically,
we use four SN Ib/c templates and four SN II templates as listed
in Table 1. The SDSS-II CC SN light curve templates were
generated using the Nugent et al. (2002) spectral templates,
interpolating between epochs, and warping them to match
each of the observed ugriz light curves at their respective
spectroscopic redshifts. For all SNe Ib/c, we use Nugent’s
normal Ib/c spectral templates and we use the Type II-P
templates for all SNe II. The SN II light curve photometry
are available from D’Andrea et al. (2010).

The set of eight core-collapse templates listed in Table 1
were selected from a larger group of 24 templates (5 Nugent, 11
SDSS-II, and 8 from the SUSPECT19 database) by empirically

19 http://bruford.nhn.ou.edu/∼suspect/index1.html
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Figure 1. Absolute magnitude light curves of SN Ib/c discovered and observed by SDSS-II, which are part of the template library—SN 2005hl (top left), SN 2005hm
(top right), SN 2006fo (bottom left), and SN 2006jo (bottom right).

(A color version of this figure is available in the online journal.)

maximizing the purity of the confirmed SN Ia sample. Core-
collapse templates that either frequently misidentify SNe Ia as
CC SNe or correctly identify only a small number of confirmed
CC SNe were excluded. Rare, peculiar SNe Ia are also excluded
from our template library. We also do not include templates
for other types of variable sources, most notably the active
galactic nuclei (AGNs), since there are other ways of rejecting
the majority of these events. The rest-frame absolute magnitude
ugriz light curves of the eight CC SNe used as templates in this
analysis are shown in Figures 1 and 2.

Finally, while the Bayesian classification probabilities are
computed through marginalization over the grid of the model
parameters, the posterior probability distributions for each
of the five parameters are estimated by running a Markov
Chain Monte Carlo (MCMC). This results in a significant
reduction of computing time and more reliable estimates of the
parameter uncertainties, since the probability distributions are
often asymmetric, show significant correlations, and can often
have more than one local maximum. It is also straightforward
to incorporate additional model parameters and priors.

Figure 3 shows an example output from PSNID for a
spectroscopically confirmed SN Ia, 2006jz at z = 0.20. Derived
parameter constraints from the MCMC are shown for both the
flat and spectroscopic redshift priors. There are two general
points that are worth noting. First, z and AV are anti-correlated
in the sense that a low-z, high-AV SN Ia is similar to a high-

z, low-AV event. This is expected, since redshift and dust both
have the effect of reddening the light curves. But since dust
also attenuates the light, a larger AV value must be compensated
for by putting the event at a smaller distance modulus. This
happens in the way such that z and μ, marginalized over the
other three parameters, are positively correlated. The slope of
this correlation is redshift-dependent. Second, the widths of the
marginalized μ and AV probability distribution function (PDF)
for the flat redshift prior are only a factor ∼2 larger than those
for a spectroscopic redshift prior. This general behavior is true
for most of our well-observed SNe Ia, although the constraints
using a flat-z prior degrades dramatically at higher redshifts, as
shown in Figure 4 for a z = 0.30 confirmed SN Ia 2005it.

2.2. Confirmed and Unconfirmed Samples

We first divide the full sample of SN candidates into two
groups—the spectroscopically confirmed and unconfirmed sam-
ples. The unconfirmed sample consists of sources of unknown
type with no spectroscopy of the active SN candidate, but a
subset of the events do have spectroscopy of their host galaxies.
The spectroscopically confirmed sample consists of SNe Ia, SNe
Ib/c, and SNe II as well as variable AGNs. This sample is used
to study the classification criteria and also allows us to estimate
the selection efficiency and purity, which is a crucial part of our
analysis. The ugriz multiband light curves of all SN candidates
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Figure 2. Absolute magnitude light curves of SN II discovered and observed by SDSS-II, which are part of the template library—SN 2004hx (top left), SN 2005lc
(top right), SN 2005gi (bottom left), and SN 2006jl (bottom right).

(A color version of this figure is available in the online journal.)

are constructed using the Scene-Modeling Photometry method
(Holtzman et al. 2008) and analyzed using the PSNID software
described above.

The full SN sample is analyzed with PSNID, and we select
the candidates that have light curve coverage and signal-to-
noise ratio (S/N) that are appropriate for photometric SN Ia
classification. Specifically, we consider only the candidates that
meet the following three criteria: (1) have at least one epoch of
photometry near peak at −5 < t < +5 days in the SN rest frame
and at least one additional epoch after peak at t > +15 days,
which are determined from the best-fit SN Ia model, irrespective
of whether or not the fit is acceptable; (2) have maximum S/N
greater than five in at least two of the gri bands; and (3) were
detected during only one search season. These cuts are referred
to as the light curve quality cuts.

The spectroscopically confirmed sample consists of 508 SNe
Ia, 80 CC SNe (18 SNe Ib/c, 62 SNe II), and 202 AGNs.20 We
refer to these as the “conf-Ia,” “conf-CC,” and the “conf-AGN”
samples. After imposing the light curve quality cuts, this sample
is reduced to 367 SNe Ia, 45 CC SNe, and 83 AGNs, for a total
of 495 events when a flat spectroscopic redshift prior is used.
Using the spectroscopic redshift prior results in 551 events. The
numbers differ since the two forms of the redshift priors can

20 Of the 202 AGNs, 58 are in the DR7 spectroscopic quasar catalog from
Schneider et al. (2010).

result in best-fit SN Ia models with dramatically different dates
of maximum light, especially for the AGN.

There is a significant bias in the spectroscopically confirmed
SN sample toward brighter events. For the SDSS-II SN Survey,
our primary goal was to discover and study the properties of SNe
Ia, so only a small fraction of CC SN candidates were observed
for spectroscopy. A detailed study of the impact on photometric
SN Ia typing due to contaminating sources is, therefore, limited
by this small number of spectroscopically confirmed CC SNe.

To help quantify this bias, we identified the SN candidates
that are associated with galaxies with spectra from the SDSS
spectroscopic survey (Eisenstein et al. 2001; Strauss et al.
2002; Richards et al. 2002). These galaxies have well-defined
selection criteria and, as we describe below, will help quantify
the spectroscopic targeting bias and to obtain a better estimate
of the level of contamination from non-SN Ia events. There
are a total of 2369 SN candidates that are within 10′′ from an
SDSS spectroscopic galaxy. This sample is referred to as the
“zSDSS” sample. After light curve quality cuts, there are 448
and 499 sources for the flat and spectroscopic redshift priors,
respectively, which include both confirmed and unconfirmed
SN candidates. The majority of the sources are rejected because
of their multiyear variability, suggesting that these sources are
likely variable AGNs whose nuclear activity is not immediately
apparent from their optical spectra. The samples are summarized
in Table 2. The redshift distributions of the four different
spectroscopic samples are shown in Figure 5.
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Figure 3. Example of the posterior PDFs for a spectroscopically confirmed SN Ia 2006jz at z = 0.20. The observed ugri light curves and the best-fit SN Ia model are
shown on the bottom right panel. The top left and middle left panels show 1σ and 2σ contours in the z–μ and z–AV planes, respectively, assuming a flat redshift prior.
The “×’s” indicates the median parameter values when a spectroscopic-redshift prior is used. The two panels on the right and the bottom left panel show the posterior
PDF in μ, AV , and z marginalized over the other four parameters using the flat (black) and spectroscopic (gray) redshift priors.

(A color version of this figure is available in the online journal.)

The unconfirmed sample consists of a total of 3221 candidates
that pass the same light curve quality cuts. Of these 3221
candidates, 2776 have no spectroscopic observations, while the
remaining 445 candidates are either part of the zSDSS sample
described above (230 candidates) or have host galaxy redshifts
from our own follow-up observations (215 candidates).

A histogram of the maximum r-band S/N of this sample is
shown in Figure 6. The mean S/N of ∼30 for the spectroscopic
sample is substantially higher than that of the photometric
sample, which has a mean S/N of ∼10. The implications of
this difference are discussed in Section 8.

3. SN CLASSIFICATION FIGURE OF MERIT

Since our goal here is to identify SNe Ia, we define the
photometric typing efficiency ǫIa as the fraction of SNe Ia, after
software S/N light curve quality cuts, that are photometrically
identified as SNe Ia. Let N true

Ia be the number of true SNe Ia

photometrically identified as SNe Ia and N CUT
Ia be the total

number of SNe Ia in the sample after the light curve quality
cuts, we define the photometric SN Ia selection efficiency to be

ǫIa =
N true

Ia

N CUT
Ia

. (8)
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Figure 4. Same as in Figure 3 for a spectroscopically confirmed SN Ia 2005it at z = 0.30.

(A color version of this figure is available in the online journal.)

Note that this is not the true SN Ia identification efficiency since
the denominator N CUT

Ia includes only the events that pass the
S/N and light curve quality cuts. In terms of the total number
of SNe Ia (N TOT

Ia ) that were detected in the area observed by the
survey,

N
CUT
Ia = ǫCUTN

TOT
Ia , (9)

where ǫCUT is, in general, a function of z, AV , ∆m15(B), peak
magnitude, time of maximum light, software detection thresh-
old, requirements on light curve S/N and temporal coverage,
and the observing conditions. The determination of the value
of ǫCUT is beyond the scope of the paper, but the effect of our
selection cuts can be modeled using the SNANA Package.

Adopting the convention similar to that used in evaluat-
ing the SN Photometric Classification Challenge (hereafter
SNPhotCC; K10b); we define the photometric purity ηIa as
the fraction of the candidates identified as SNe Ia that are actual
SNe Ia with a penalty factor W false

Ia described below. Let N false
Ia

be the number of non-SNe Ia incorrectly identified as SNe Ia,
the photometric purity of the sample is

ηIa =
N true

Ia

N true
Ia +

∑

i W
false
Ia,i N false

Ia,i

, (10)

where the sum in the denominator allows for several classes i
of contaminating sources (e.g., CC SNe, AGNs, and variable

7
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Table 2

The SDSS-II Spectroscopic Sample

Type Total Flat Redshift Prior Spectroscopic Redshift Prior

Gooda PIa � 0.9 PIa � 0.1 Gooda PIa � 0.9 PIa � 0.1

Confirmed SN Ia 508 367 357 2 371 366 1

Confirmed CC SN 80 45 14 30 45 11 32

Confirmed AGN 202 83 32 44 135 86 46

SN with zSDSS 2369 448 248 159 499 317 150

Total 3159 732 539 201 788 599 163

Note.
a This sample includes SNe that satisfy the following photometric quality criteria: (1) there is at least one epoch of photometry

at −5 < t < +5 days from peak and another epoch at +5 < t < +15 days from peak for the best-fit SN Ia model, (2) there is

at least two filter measurements with S/N > 5, and (3) the candidate was detected in only a single search season.
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Figure 5. Redshift distributions of the conf-Ia (top left), conf-CC (top right),
conf-AGN (bottom left), and zSDSS (bottom right) samples used in our studies
(see Section 2.2 for descriptions). The solid and dashed histograms represent
the samples that pass our light curve quality cuts with the flat and spectroscopic
redshift priors, respectively. The redshift bins are ∆z = 0.05 wide.

stars) possibly with different penalty factors. We define a figure
of merit (CFoM-Ia) as

CFoM-Ia = ǫIa × ηIa. (11)

This definition of CFoM-Ia is designed for real data and differs
from the pseudo-purity from the SNPhotCC by the unknown
factor 1/ǫCUT, i.e., CFoM-Ia = CSNPhotCC

FoM-Ia /ǫCUT. K10b also define

the true purity to be the case for W false
Ia = 1. This figure of merit

is only one measure of success, and it is not necessarily the
optimal measure for all types of studies. Higher SN Ia purity
might be more important than efficiency for certain studies and
vice versa. Finally, we define the contamination κIa as

κIa = 1 − ηIa. (12)

These quantities determined with the spectroscopic redshift
prior are designated with a subscript z.

To give a simple numerical example, consider a survey that
is capable of detecting 100 SNe Ia that pass S/N and light
curve quality cuts. A photometric classifier that identifies 90
candidates as SNe Ia, of which 10 are actually non-Ia events
has an efficiency of ǫIa = 80/100 = 0.80, purity of ηIa =
80/90 = 0.89, and contamination of κIa = 1–0.89 = 0.11. In
practice, however, these quantities can be determined only for
the spectroscopically confirmed SN sample for which the correct
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Figure 6. Distributions of maximum r-band S/N of the spectroscopically con-
firmed SN candidates (dashed) and photometric candidates (solid) considered
in this work. The spectroscopic sample has an average peak S/N of ∼30 while
the photometric sample has average S/N of ∼10.

type is known. The efficiency, purity, or some combination
of these two parameters can be optimized by choosing the
appropriate values for PIa and χ2

r . If the spectroscopic sample is
an unbiased representation of all of the SN candidates, then one
can expect the efficiency and the purity of both the spectroscopic
and photometric samples to be the same within statistical
uncertainties. However, this is almost never the case in a blind
SN survey given limited spectroscopic resources. SN candidates
that are brighter and/or suffer less host galaxy contamination
will have higher spectroscopic success and completeness. This
is illustrated in Figure 6, which shows that the light curve peak
S/N of the spectroscopic sample is on average a factor of ∼3
higher than that of the photometric sample. Below we describe
a method to correct for this bias and to estimate the efficiency
and purity of the photometric sample using a limited and biased
spectroscopic training set.

4. ESTIMATING THE EFFICIENCY AND PURITY

4.1. SN Ia Identification with Spectroscopic Redshifts

We first estimate the efficiency and purity of photometric SN
Ia identification when spectroscopic redshifts are used as priors
in the light curve fits. We determine N true

z,Ia and N false
z,Ia from the

spectroscopic SN Ia and CC SN and how they depend on the
minimum Pz,Ia and the maximum allowed χ2

z,r . This is relevant
for future SN surveys that will, for example, obtain spectra of all
SN candidate host galaxies after the search, but not spectra of all
the active SN candidates. The values for Pz,Ia and χ2

z,r are shown

8
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z,r values for the spectroscopically

confirmed SNe Ia (top panel) and CC SNe. Spectroscopic redshifts are used
as priors in all of the fits.

in Figure 7 separately for the spectroscopically confirmed SN
Ia and CC SN samples.

As shown in the top panel of Figure 7, all but a handful of
SNe Ia are well fit to an SN Ia model. Of the N CUT

z,Ia = 371
spectroscopic SNe Ia that pass the light curve quality cuts, 366
sources have Pz,Ia � 0.9. Only a single SN Ia (SN 2007qd;
McClelland et al. 2010) has Pz,Ia � 0.1. This event is a nearby
peculiar 2002cx-like event, which is underluminous compared
to normal SNe Ia and has an extremely low expansion velocity
(Li et al. 2003; Jha et al. 2006b). There are other nearby
peculiar SNe Ia in our sample (SN 2005hk, Phillips et al.
2007; SN 2005gj, Aldering et al. 2006; Prieto et al. 2007), but
these candidates were detected over two search seasons due to
their brightness and slow decline, and were, therefore, rejected.
The bottom panel of the same figure, however, shows that a
substantial fraction of the spectroscopic CC SNe also satisfy
Pz,Ia � 0.9 implying that the contamination can be significant
depending on the maximum allowed χ2

z,r value used for the SN
Ia identification. Specifically, 11 out of the 45 CC SNe (24%)
that satisfy our light curve quality cuts have Pz,Ia � 0.9. If no
other cuts are invoked, then N true

z,Ia = 366 and N false
z,Ia = 11. We

also note that the majority of the sources have either Pz,Ia∼ 0 or
Pz,Ia∼ 1, so both N true

z,Ia and N false
z,Ia are not sensitive to the precise

choice of the minimum Pz,Ia.
Before determining how N true

z,Ia and N false
z,Ia depend on the

choice of the maximum χ2
z,r , we note that 5 of the 11 CC SNe

with Pz,Ia � 0.9 can be rejected by requiring the light curve
photo-z (zlc), using a flat redshift prior, to be within 3σ of the
spectroscopic redshift zspec; i.e., |zlc – zspec|/σz < 3. We reject

candidates that fail this cut and show the distributions of the χ2
z,r

values for the SNe Ia and CC SNe in Figure 8 for Pz,Ia � 0.9 and
Pz,Ia � 0.1. Of the 366 SNe Ia and 11 CC SNe with good light
curves and Pz,Ia � 0.9, 22, and 5 candidates, respectively, are
rejected by this requirement on redshift agreement. Therefore,
there are only six CC SNe that satisfy all SN Ia selection
cuts.

In the last step, we estimate the unknown factor W false
z,Ia ,

which can be interpreted as a penalty factor for spectroscopic
incompleteness and targeting biases. The SDSS-II SN Survey
follow-up strategy was to observe the “good” SN Ia candidates
at higher priority than the CC SN candidates, especially for the
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Figure 8. Histograms of best-fit χ2
z,r values for an SN Ia model for PIa � 0.9

(black) and PIa � 0.1 (gray) for the spectroscopically confirmed SNe Ia (top
panel) and CC SNe (bottom panel).

fainter (r � 20.5 mag) sources due to limited spectroscopic
resources. A simple interpretation of this factor is that if
our follow-up strategy had instead been to observe a random
sample of SN candidates, then we would have spectroscopically
identified W false

z,Ia times more CC SNe.
One way to estimate this bias factor is to select a subsample of

SN candidates with spectroscopic redshifts, which is represen-
tative of the underlying distribution of the SN types. The ratio
of these candidates with Pz,Ia � 0.1 to those with Pz,Ia � 0.9
can then be interpreted to be approximately the ratio of CC SNe
to SNe Ia in our survey.

This can be done by considering the SN candidates in galaxies
with redshifts from the SDSS spectroscopic survey, which has
a set of well-defined selection criteria. We identify candidates
in the main galaxy (Strauss et al. 2002), quasar (Richards et al.
2002), and the Luminous Red Galaxy (LRG; Eisenstein et al.
2001) samples. The LRG sample is several magnitudes deeper
than the main galaxy sample and consists primarily of passive
galaxies with old stellar populations, which do not host any CC
SNe. We include this sample to account for the fact that SNe Ia
are also on average a few magnitudes more luminous than CC
SNe, so a magnitude-limited survey will discover many more
SNe Ia than CC SNe. The distributions of χ2

z,r for Pz,Ia � 0.9
and Pz,Ia � 0.1 for candidates in the SDSS galaxy spectroscopy
sample with |zlc – zspec|/σz < 3 are shown in Figure 9. The
ratio of the number of candidates with Pz,Ia � 0.9 to those with
Pz,Ia � 0.1 is 197/56 = 3.5 compared to 350/11 = 32 for the
combined spectroscopic sample shown in the bottom panel of
Figure 8. The bias (penalty) factor for the spectroscopic sample
can, therefore, be estimated to be W false

z,Ia = 32/3.5 = 9.0. An
unbiased spectroscopic follow-up strategy would have resulted
in W false

z,Ia = 9.0 times more contaminating CC SNe for SN Ia
identification.

We use this penalty factor to calculate ǫz,Ia and ηz,Ia as
functions of the maximum χ2

z,r . The expression for the purity is

ηz,Ia =
N true

z,Ia

N true
z,Ia + W false

z,Ia N false
z,Ia

. (13)
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Figure 10 shows how ǫz,Ia, ηz,Ia, and Cz,FoM-Ia depend on the
maximum-allowed χ2

z,r for Pz,Ia � 0.9. The figure of merit has
a broad maximum value of Cz,FoM-Ia ∼ 0.84 at approximately
χ2

z,r = 1.8, where the efficiency and purity are ∼89% and ∼94%,
respectively. A caveat to the estimate of ηz,Ia is that it is based
on only six confirmed CC SNe that pass our SN Ia selection
cuts.

4.2. SN Ia Identification without Spectroscopic Redshifts

We next determine N true
Ia and N false

Ia when no external red-
shift information is available to provide additional constraints
in the light curve fits. Here we have an additional source of
contaminating sources—variable AGNs—which can be identi-
fied if either the galaxy spectrum is available or the candidate
is variable over a long period of time (� 1 year). We use the
confirmed SN and the AGN samples discussed in Section 2.2 to
determine how the efficiency, purity, and figure of merit depend
on the minimum PIa and the maximum allowed χ2

r using the
flat redshift prior. The three panels in Figure 11 show the PIa

and χ2
r values for the spectroscopic SN Ia, CC SN, and AGN

samples. As with the previous case, most of the spectroscopic
SNe Ia are clustered near PIa∼ 1 and χ2

r ∼ 1, indicating that
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Figure 11. Distributions of PIa and χ2
r values for the spectroscopically

confirmed SNe Ia (top panel), CC SNe (middle panel), and AGNs (bottom
panel). The fits were performed with a flat redshift prior.

they are well fit to SN Ia models. There are also a handful of CC
SNe and AGNs with PIa∼ 1, however, so the amount of con-
tamination can again be substantial depending on the maximum
allowed χ2

r .

We also show in Figure 12 histograms of the χ2
r values for the

same sources for PIa � 0.9. Of the N CUT
Ia = 367 spectroscopic

SNe Ia that pass our light curve quality cuts, 357 sources have
PIa � 0.9. There are also 14 CC SNe and 32 AGNs with
PIa � 0.9.

For estimating ηIa, we apply the penalty factor only on the
CC SN sample where the bias is more significant. Almost
all of the spectroscopic AGN confirmation came from SDSS
quasar spectroscopy (Richards et al. 2002) and not from our
own targeting, so we assume that this sample is unbiased. The
expression for the efficiency is given in Equation (8). We write
the purity explicitly as

ηIa =
N true

Ia

N true
Ia + W false

Ia,CCN
false
Ia,CC + N false

Ia,AGN

, (14)

where we have assumed W false
Ia,AGN = 1. The penalty factor

W false
Ia,CC can be estimated from the histograms shown in the

bottom panel of Figures 12 and 13. Specifically, we have
W false

Ia,CC = (403/76)/(259/199) = 4.1 using the same method
as for the case with the spectroscopic redshift prior. We show
in Figure 14 the efficiency and purity as a function of the
maximum-allowed χ2

r value. Also shown is the figure of merit,

which exhibits a broad maximum at CFoM-Ia = 0.86. At χ2
r ∼ 1.6,

the efficiency and purity are ∼92% and ∼94%, respectively.

5. SDSS-II PHOTOMETRIC SN Ia CANDIDATES

We now evaluate the light curves of the 445 candidates
with spectroscopic redshift measurements of their host galax-
ies. Their SN types are unknown because there were no spectro-
scopic observations of these objects. Selection with Pz,Ia � 0.90,

10
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χ2
z,r � 1.8, and |zlc – zspec|/σz < 3 results in 210 candi-

dates shown in Figure 15. Based on the analysis presented in
Section 4.1, we expect this sample to have an efficiency of
∼89%, purity of ∼94%, and a figure of merit of ∼0.84. We
refer to this sample of 210 candidates as the “zhost-Ia sample.”
Their candidate ID, coordinates, spectroscopic redshifts, and
light curve fit results are listed in Table 3.

From the 2776 candidates with no spectroscopy, identifying
sources with PIa � 0.90 and χ2

r � 1.6 results in 860 purely
photometric SN Ia candidates, which we refer to as the “photo-
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Figure 14. Efficiency, purity, and figure of merit for the spectroscopically
confirmed SN as functions of the maximum-allowed χ2
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Figure 15. Pz,Ia vs. χ2
z,r for the 445 photometric candidates with galaxy

spectroscopic redshifts. Candidates that do not meet the light curve photo-z
cut (|zlc – zspec|/σz < 3) are shown as crosses. The 210 zhost-Ia candidates
identified are bounded by the red box shown in the lower right.

Ia sample.” The selection is shown in Figure 16. We expect this
sample to have an efficiency of ∼92%, a purity of ∼94%, and
a figure of merit of 0.86. Its redshift distribution is shown in
Figure 17. The mean redshift of the photo-Ia sample is z̄ = 0.31
compared to z̄ = 0.22 for the spectroscopically confirmed
sample. The full list of candidates is provided in Table 4. In
addition to their coordinates, we provide the photometric light
curve redshifts zlc marginalized over all the other parameters.
The reliability of these values is discussed in the following
section.

The light curves of these candidates, as well as all of the
other SN candidates, will be made available soon as part of the
SDSS-II SN Survey Data Release.

6. PHOTOMETRIC REDSHIFTS AND DISTANCES

The light curve redshifts zlc are determined by marginalizing
over the other four model parameters: AV , Tmax, ∆m15(B), and
μ. For each SN candidate, the posterior PDF is constructed from
the MCMC output. The redshifts listed in Table 4 correspond to
the median zlc and the ±34.1% (1σ ) upper and lower limits.
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Table 3

SDSS-II zhost–Ia Candidates

SDSS IDa R.A.b Decl.b zspec AV ∆m15 Pz,Ia χ2
z,r

(B)

703 −23.782080 +0.650725 0.3000 ± 0.0100 0.04+0.16
−0.18 0.70+0.13

−0.08 1.000 0.99

779 26.673738 −1.020580 0.2377 ± 0.0005 0.21+0.13
−0.13 0.85+0.10

−0.09 1.000 0.80

841 48.495991 −1.010015 0.2991 ± 0.0005 −0.17+0.16
−0.18 1.02+0.20

−0.16 1.000 0.99

1415 6.106480 +0.599307 0.2119 ± 0.0002 0.66+0.13
−0.13 0.76+0.09

−0.08 1.000 0.93

1461 24.372675 +0.209735 0.3407 ± 0.0005 0.33+0.11
−0.11 1.08+0.12

−0.12 1.000 1.07

1595 −38.432114 −0.554060 0.2136 ± 0.0005 0.07+0.09
−0.09 1.03+0.08

−0.08 1.000 1.56

1748 −6.887835 −0.482495 0.3397 ± 0.0001 0.52+0.20
−0.19 0.83+0.16

−0.13 0.996 1.00

1775 −41.006622 −1.009430 0.3050 ± 0.0100 −0.27+0.17
−0.17 1.26+0.15

−0.15
1.000 1.07

1835 −47.335869 +1.071860 0.2716 ± 0.0100 −0.19+0.19
−0.19 1.28+0.22

−0.20 1.000 1.31

· · ·

Notes.
a Internal SN candidate designation.
b Coordinates are J2000. Right ascension is given in decimal degrees defined in the range [−180◦, +180◦].

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance

regarding its form and content.)

Table 4

SDSS-II Photo–Ia Candidates

SDSS IDa R.A.b Decl.b zlc AV ∆m15 PIa χ2
r

(B)

822 40.560776 −0.862157 0.167+0.065
−0.050

0.51+0.40
−0.47 1.24+0.14

−0.14 1.000 1.38

859 −9.448275 +0.386555 0.305+0.025
−0.036 0.04+0.28

−0.31 0.77+0.13
−0.09 1.000 1.25

904 21.095400 −0.124883 0.288+0.029
−0.026 −0.26+0.28

−0.34 1.10+0.22
−0.17 0.999 1.00

1158 17.275431 −0.352185 0.694+0.006
−0.063 −0.58+0.50

−0.31 1.55+0.19
−0.29 1.000 1.01

1243 −18.340113 −0.764753 0.188+0.100
−0.102 0.89+0.73

−0.67 0.69+0.09
−0.06 1.000 1.47

1285 −38.216843 +0.543195 0.345+0.049
−0.078 0.21+0.47

−0.38 1.06+0.25
−0.20 1.000 1.01

1302 53.654808 +0.891903 0.282+0.039
−0.042 −0.10+0.26

−0.34 0.82+0.08
−0.08 1.000 1.23

1342 −13.472480 +0.117010 0.299+0.046
−0.050

0.03+0.28
−0.31 1.18+0.15

−0.14 1.000 0.90

1354 −5.197145 +0.089970 0.283+0.046
−0.056

0.30+0.45
−0.55

1.50+0.20
−0.27 0.999 0.91

· · ·

Notes.
a Internal SN candidate designation.
b Coordinates are J2000. Right ascension is given in decimal degrees defined in the range [−180◦, +180◦].

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance

regarding its form and content.)
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We compare the spectroscopic redshifts zspec with zlc for
the conf-Ia and zhost-Ia samples and with the host galaxy
photometric redshifts zphoto from Oyaizu et al. (2008) available
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Figure 18. Comparisons of zspec and zlc with a flat redshift prior for the
spectroscopic SN Ia sample. The 387 SNe Ia that pass the light curve quality
cuts are shown in black while the 210 zhost-Ia are indicated by gray crosses in
the top panel. The bottom panel shows the mean ∆z = (zlc − zspec)/(1 + zspec)
values in black circles and the rms as horizontal bars in bins of 0.05 for the
combined SN Ia + zhost-Ia samples. The magnitude of the bias |∆z| is less than
0.02 for z < 0.4.

in the SDSS Data Release 8 database. As shown in Figure 18,
zlc and zspec are in agreement with |∆z| < 0.02 (∆z ≡
(zlc − zspec)/(1 + zspec)) for zspec < 0.4, but with a small
redshift-dependent bias. The rms scatter is ∆z,RMS = 0.05 below
zspec = 0.30 and increases to 0.1 at z = 0.4.

The sign and magnitude to this bias are similar to those found
by Kessler et al. (2010a), who analyzed a subset of the higher
S/N SDSS-II SN Ia light curves presented here using both
MLCS and SALT-II. Interestingly, a similar bias is seen in their
simulations. Rodney & Tonry (2010a) do not quote a value for
the bias, but they state that a line with a slope of unity fits the
zspec versus zlc values for the first-year SDSS-II SN Ia sample

with a χ2
r = 0.98.

We also show in Figure 19 a comparison of zspec with the host
galaxy photometric redshift zphoto from Oyaizu et al. (2008).
Here, there is a nearly constant bias of ∆z ∼ 0.03 with an rms
scatter of ∆z,RMS ∼ 0.05–0.10.

We show in Figure 20 the Hubble diagram of the 350 conf-
Ia, 210 zhost-Ia, and 860 photo-Ia samples. Distance modulus
residuals of the conf-Ia and zhost-Ia samples relative to a simple
quadratic fit are shown in Figure 21. For the conf-Ia sample,
the scatter around the mean Hubble relation is σμ = 0.13 mag
at z = 0.1 and increases monotonically to σμ = 0.30 mag
at z = 0.4. The same Hubble relation was subtracted from the
zhost-Ia sample, which is shown in the bottom panel of Figure 21.
There is a noticeably larger scatter with σμ = 0.2–0.4 mag in
the same redshift range. This is most likely due to contamination
from non-Ia events, which we have estimated to be at the level of
∼6% (approximately 1 out of 16 events in this sample is likely
to be a CC SN). The slight deviation of the mean from zero is
not statistically significant.

The Hubble diagram of the photo-Ia sample shows extreme
outliers below z ∼ 0.1. All of these points are significantly
above the ΛCDM Hubble relation and are most likely CC SNe
that are misclassified as SNe Ia. In fact, the majority of these
events are classified by PSNID as extremely underluminous,
high-extinction (AV � 1) SNe Ia. Since the underlying extinc-
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Figure 19. Comparisons of zspec and zphoto, the photometric redshift of the SN
Ia host galaxies from Oyaizu et al. (2008). There are fewer points here than in
Figure 18 because there are many SNe Ia with hosts that are below the detection
limit of SDSS, and some galaxies are classfied as stars and therefore do not have
zphoto values. The bottom panel shows the mean ∆z values in black circles and
the rms as horizontal bars in bins of 0.05.
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Figure 20. Hubble diagram of the three SN Ia samples (conf-Ia in black, zhost-Ia
in red, and photo-Ia in light gray and blue in the online color version). The dark
gray line represents ΛCDM. Spectroscopic redshift priors are used for the conf-
Ia and zhost-Ia samples. Flat redshifts priors are used for the photo-Ia sample.
The redshift and distance of the photo-Ia are significantly correlated and their
uncertainties are not shown for clarity. The outliers at low-z are probably due to
CC SNe that are misclassified as high-AV (AV > 1) SNe Ia, which are shown
in blue. Note that the majority of these points are significantly away from the
ΛCDM Hubble relation.

(A color version of this figure is available in the online journal.)

tion distribution of SN Ia follows the relation ∝ e−AV /τV with
τV ∼ 0.33 (Kessler et al. 2009a) and given the smaller number of
confirmed SNe Ia in the same redshift interval, it is unlikely that
all of these outlier events are underluminous, high-extinction
SNe Ia. Selecting only the candidates with AV < 1 eliminates
most of these outliers at the cost of a somewhat reduced effi-
ciency, but measurements of their host galaxy redshifts will also
significantly help distinguish their types.

At higher redshifts, the mean Hubble relation of the photo-Ia
sample is consistent with the conf-Ia and zhost-Ia samples, but
with a significantly larger scatter. Above z ∼ 0.2, the rms scatter
is σμ ∼ 0.5–0.7 mag, which is a factor of ∼2 larger than the
scatter in the conf-Ia and zhost-Ia samples in the same redshift
range.
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Figure 21. Top: the Hubble residuals of the conf-Ia sample relative to a simple
quadratic Hubble relation. The solid line represents the mean residual and the
dashed lines represent upper and lower rms values relative to the mean. The
scatter ranges from σμ ∼ 0.13 mag to σμ ∼ 0.30 mag in the redshift interval
0.1 < z < 0.4. Bottom: same except for the zhost-Ia sample. The same quadratic
has been subtracted from the measured distance modulus. The scatter here is
larger and ranges from σμ ∼ 0.2 mag to σμ ∼ 0.4 mag in the same redshift
range. There is also a small redshift-dependent offset.

7. COMPARISONS WITH SIMULATIONS

The Hubble diagram for the combined conf-Ia + zhost-Ia
sample is shown in the top panel of Figure 22. The scatter
is σμ = 0.2 mag at z = 0.1 and increases to σμ = 0.4 mag at
z = 0.4, which is slightly larger than the scatter of the conf-Ia
sample.

This degradation is probably due to contamination by CC SN
events, but to test this hypothesis, we analyzed the sample of
simulated SDSS-II SN from K10b. This simulation corresponds
to 10 three-season search campaigns, and uses the actual
seeing, photometric zero points, and weather from our observing
seasons. The bottom panel in Figure 22 shows the Hubble
diagram using all events that pass the same light curve quality
cuts as well as identical selection criteria in Pz,Ia–χ2

z,rspace.
Specifically, we select SN Ia candidates using Pz,Ia � 0.9 and
χ2

z,r < 1.0, which is approximately where the efficiency and
purity are equal at ∼0.90 for this simulation. The efficiency,
purity, and figure-of-merit curves are shown in Figure 23. The
average S/N of the zhost-Ia sample is higher than that of the
simulations, so we require in the simulations S/N > 7 in at least
two of the gri bands. The purity of 90% for this selection is
slightly lower than the estimated purity of the zhost-Ia sample.

The SN Ia Hubble diagram was fitted to a quadratic function
and the Hubble residuals of all candidates classified as SNe Ia
are shown in the bottom panel of Figure 22. Here, the CC SN
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Figure 22. Top: same as in Figure 21 for the combined conf-Ia + zhost-Ia sample,
which are labeled in black and light gray, respectively. The same quadratic
function μconf−Ia(z) has been subtracted from the measured distance modulus.
The rms scatter is slightly larger than that of the conf-Ia sample only. Bottom:
simulated SDSS-II SN from K10b. The black, light gray, and dark gray points
represent SNe Ia, SN II, and SNe Ib/c, respectively, which pass all of the
photometric SN Ia cuts (PIa � 0.9 and χ2

z,r< 1.0). The residuals shown are
relative to a quadratic fit to the simulated SN Ia sample only, whereas the rms
scatter shown is for the full sample. Note the slight redshift-dependent bias
relative to the SN Ia mean.
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events are shown in dark (SN Ib/c) and light gray (SN II) points.
These false positives are adding scatter and a small redshift-
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dependent systematic shift relative to the SN Ia distances, which
are represented by black points. The Hubble scatter around
the mean for this simulation is σμ = 0.2–0.4 mag, which is
similar to the that of the zhost-Ia sample over the entire redshift
range. The larger scatter seen in the conf-Ia + zhost-Ia sample is,
therefore, most likely due to misclassified CC SNe as reproduced
in these simulations.

This set of simulated SDSS-II SN also includes a spectro-
scopic SN Ia sample selected based on our spectroscopic follow-
up strategies and represents our conf-Ia. The Hubble residual
scatter of this spectroscopic sample ranges from σμ ∼ 0.13 mag
to σμ ∼ 0.30 mag in the redshift interval 0.1 < z < 0.4, which
is nearly identical to the observed scatter of the conf-Ia sample.

8. SUMMARY AND CONCLUSIONS

We have identified 1070 photometric SN Ia candidates from
the SDSS-II SN Survey data. This sample is more than three
times larger than the spectroscopically confirmed SN Ia sample
with good light curves and is estimated to include ∼91% of all
SN Ia candidates detected by the survey with a purity of ∼94%
(∼6% contamination). This estimate of the purity, however, is
based on a limited number of spectroscopically confirmed CC
SNe, most of which are nearby, bright events and are therefore
not representative of the majority of the contaminating events.
As shown in Figure 6, the majority of our photometric candidates
have peak r-band S/N < 10, where we have only a handful of
spectroscopic SN candidates. To obtain a better characterization
of the contaminating sources, confirmation is needed for a
much larger sample of faint CC SNe that are comparable in
apparent brightness to the photo-Ia sample. As also advocated
by Richards et al. (2011), future surveys that rely on photometric
identification should obtain spectra of SN candidates over the
full range of the S/N of the photometric candidates of interest.

The Hubble diagram with photometric classification and host
galaxy spectroscopic redshift priors show a slight increase in
scatter over the confirmed SN Ia sample, which is consistent with
them being due to misclassified CC SNe. There is no significant
redshift-dependent offset in the derived distances compared to
the conf-Ia sample. Simulations confirm these findings.

Photometric redshifts estimated from the multiband light
curves are unbiased below z ∼ 0.2 with an rms dispersion
of σz ∼ 0.05. There is a redshift-dependent bias above z ∼ 0.2
where the mean redshift difference 〈zlc − zphoto〉 is between
−0.04 and −0.02. The rms dispersion is σz ∼ 0.05–0.10. The
Hubble diagram of the photo-Ia sample also exhibits outliers and
redshift-dependent biases. Although the distance and redshift
accuracies at present are not yet sufficient for cosmology, the
large sample can still be used for studies of the SN Ia rate as a
function of redshift, correlations between SN light curves and
host galaxy properties, and other studies that do not involve joint
constraints on both redshift and distance.

We conclude that cosmology with future large-scale SN
surveys should at a minimum measure host galaxy spectroscopic
redshifts for the Hubble diagram. A subset of the SN candidates
must be observed spectroscopically to study the photometric
classification efficiency and purity. Spectroscopy should target
candidates with S/N down to the magnitude limit where
photometric classification is expected to work. Cosmology with
photometry alone, however, requires further investigation with
realistic simulations in order to understand and characterize their
systematic biases and uncertainties, and how they depend on the
SN Ia candidate selection criteria.
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