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Photon blockade in quadratically coupled optomechanical systems
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We study the steady-state photon statistics of a quadratically coupled optomechanical cavity, which is weakly
driven by a monochromatic laser field. We examine the photon blockade by evaluating the second-order correlation
function of the cavity photons. By restricting the system within the zero-, one-, and two-photon subspace, we
obtain an approximate analytical expression for the correlation function. We also numerically investigate the
correlation function by solving the quantum master equation including both optical and mechanical dissipations.
The results show that, in the deep-resolved-sideband and single-photon strong-coupling regimes, the single-
photon resonant driving will induce a photon blockade, which is limited by the thermal noise of the mechanical
environment.
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I. INTRODUCTION

The realization of strong photon correlations at the few-
photon level has become an interesting and important research
topic in quantum optics [1–11]. The significance of this
subject is mainly motivated by the considerable applications
of correlated photons to the foundations of quantum theory as
well as in quantum information science. So far, much effort
has been devoted to the creation of correlated photons in
various physical systems such as cavity-QED [3–7] and Kerr-
type nonlinear cavities [9–11]. In particular, recent attention
has been paid to the generation of photon correlations in
optomechanical systems [12–21]. It has been shown that linear
optomechanical couplings can cause a photon blockade in
the combined single-photon strong-coupling and resolved-
sideband regimes, and that this photon blockade is modulated
by the phonon sidebands. However, the photon blockade in
quadratically coupled optomechanical systems has not been
studied.

In a conventional photon blockade, it is believed that the
optical nonlinearity in the eigenenergy spectrum is the key
element for obtaining the photon correlation. For example, in
the Jaynes-Cummings (JC) system and the Kerr-type nonlinear
cavity, the optical nonlinearity takes the form ±α

√
1 + βs

and χs2, respectively, where α and β are the parameters of
the JC system, χ is the Kerr parameter, and s is the photon
number. In quadratically coupled optomechanical systems,
there is an optical nonlinearity of type ωM

√
1 + 4g0s/ωM [g0

and ωM , cf. Eq. (1)] in the eigenenergy spectrum [22–24].
When the single-photon optomechanical coupling is strong
enough, the optical nonlinearity could be used to create photon
correlations. Inspired by this feature, in this paper we study the
photon blockade in a quadratically coupled optomechanical
cavity. Concretely, we analytically and numerically study the
steady-state photon statistics of the quadratic optomechanical
cavity. By examining the second-order correlation function,
we clarify the photon blockade in this system by answering
the following three questions:

(1) What is the inherent parameter condition for observing
a photon blockade in the system?

(2) How does one control the driving field to achieve a
strong photon blockade?

(3) How does the mechanical thermal noise affect the
photon blockade?

II. THE MODEL

Specifically, we consider a quadratically coupled optome-
chanical system with a “membrane-in-the-middle” configu-
ration [see Fig. 1(a)] [25–28]. In this setup, a thin dielectric
membrane is placed at a node (or antinode) of the intracavity
standing wave inside a Fabry-Pérot cavity. The mechanical dis-
placement of the membrane quadratically couples to the cavity
photon number. In addition, we assume that a monochromatic
laser field with frequency ωL is applied to weakly drive the
cavity. In a frame rotating with the driving frequency ωL, the
Hamiltonian (with h̄ = 1) of the system is [25]

HS = �ca
†a + ωMb†b + g0a

†a(b† + b)2 + �(a† + a), (1)

where a (a†) and b (b†) are, respectively, the annihilation
(creation) operators of the single-mode cavity field and the
mechanical motion of the membrane, with the respective res-
onant frequencies ωc (�c = ωc − ωL) and ωM . The third term
in Eq. (1) describes the quadratic optomechanical coupling
with strength g0 between the cavity field and the mechanical
motion of the membrane. This coupling strength g0 should
satisfy the condition (ωM + 4sg0) > 0 for the stability of the
membrane, where s is the number of photons inside the cavity.
The last term in Eq. (1) describes the driving process, and �

is the driving magnitude.
Let us denote |s〉a and |m〉b (s,m = 0,1,2, . . .) as the

harmonic-oscillator number states of the cavity and the
membrane, respectively; then the eigensystem of the first three
terms Hopc = �ca

†a + ωMb†b + g0a
†a(b† + b)2 in Hamilto-

nian (1) can be expressed as

Hopc|s〉a|m̃(s)〉b = Es,m|s〉a|m̃(s)〉b, (2)

where the eigenvalues are

Es,m = s�c + mω
(s)
M + δ(s). (3)
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FIG. 1. (Color online) (a) Schematic diagram of the quadratically
coupled optomechanical system with a “membrane-in-the-middle”
configuration. (b) Diagram of the eigensystem (unscaled) of the
Hamiltonian Hopc (limited in the subspace spanned by the zero-,
one-, and two-photon states).

Here we introduce the s-photon coupled membrane’s resonant
frequency ω

(s)
M and frequency shift δ(s):

ω
(s)
M = ωM

√
1 + 4sg0

ωM

, δ(s) = 1

2

(
ω

(s)
M − ωM

)
. (4)

The s-photon squeezed number state in Eq. (2) is defined by

|m̃(s)〉b = Sb(η(s))|m〉b, (5)

where Sb(η(s)) = exp[η(s)(b2 − b†2)/2] is the squeezing oper-
ator, with the squeezing factor

η(s) = 1

4
ln

(
1 + 4sg0

ωM

)
. (6)

In particular, when s = 0, we have |m̃(0)〉b = |m〉b, ω
(0)
M =

ωM , and δ(0) = 0. For convenience, the eigensystem of the
Hamiltonian Hopc limited in the zero-, one-, and two-photon
cases is shown in Fig. 1(b).

III. PHOTON BLOCKADE IN THE CAVITY

To investigate the photon blockade, we analytically and
numerically examine the second-order correlation function of
the cavity photons.

A. Approximate analytical results

In this section, we analytically calculate the second-order
correlation function of the cavity photons by treating the
weak-driving term in Hamiltonian (1) as a perturbation. For
simplicity, we phenomenologically add an anti-Hermitian term
to Hamiltonian (1) to describe the dissipation of the cavity

photons. The effective non-Hermitian Hamiltonian takes the
form

Heff = HS − i
γc

2
a†a. (7)

Here we only consider the dissipation of the cavity field and
neglect the membrane’s dissipation. This approximation is
justified in the time scale 1/γc � t � 1/γM (where γM is
the rate of mechanical dissipation) because γc � γM . In our
numerical results, the mechanical dissipation is taken into
account.

In the weak-driving regime, �/γc � 1, the photon number
is small, so we can work within the few-photon subspace
spanned by the basis states |0〉a , |1〉a , and |2〉a . A general
state of the system in this subspace can be expressed as

|ϕ(t)〉 =
2∑

s=0

∞∑
m=0

Cs,m(t)|s〉a|m̃(s)〉b, (8)

where Cs,m are probability amplitudes. In terms of Eqs. (7)
and (8), and the Schrödinger equation, we obtain the equations
of motion for the probability amplitudes:

Ċ0,m = −iE0,mC0,m − i�

∞∑
n=0

b〈m|ñ(1)〉bC1,n, (9a)

Ċ1,m = −(γc/2 + iE1,m)C1,m − i�

∞∑
l=0

b〈m̃(1)|l〉bC0,l

− i
√

2�

∞∑
l=0

b〈m̃(1)|l̃(2)〉bC2,l , (9b)

Ċ2,m = −(γc + iE2,m)C2,m − i
√

2�

∞∑
n=0

b〈m̃(2)|ñ(1)〉bC1,n.

(9c)

These transition rates can be calculated using the relations
b〈m̃(s)|ñ(s ′)〉b = b〈m|Sb(η(s ′) − η(s))|n〉b (s,s ′ = 0,1,2) and

b〈m|Sb(ξ )|n〉b =
√

m!n!

(cosh ξ )n+1/2

Floor[ m
2 ]∑

l′=0

Floor[ n
2 ]∑

l=0

(−1)l
′

l!l′!

×
(

1
2 tanh ξ

)l+l′

(n − 2l)!
(cosh ξ )2lδm−2l′,n−2l , (10)

where the function Floor[x] gives the greatest integer less than
or equal to x.

We now approximately solve Eq. (9) using a perturbation
method. If there is no driving field, the cavity field will be in a
vacuum. When a weak driving field is applied to the cavity, it
may excite a single photon or two photons into the cavity, and
thus we have the approximate scales C0,m ∼ 1, C1,m ∼ �/γc,
and C2,m ∼ �2/γ 2

c . To approximately solve Eq. (9), we drop
higher-order terms in the zero- and one-photon probability
amplitudes, i.e., dropping the second and third terms in
Eqs. (9a) and (9b), respectively. For an initial empty cavity, we
have C1,m(0) = 0 and C2,m(0) = 0; then the long-time solution
of Eq. (9) can be approximately obtained as

C0,m(∞) = C0,m(0)e−iE0,mt , (11a)
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C1,m(∞) = −�

∞∑
l=0

b〈m̃(1)|l〉bC0,l(0)e−iE0,l t(
E1,m − E0,l − i

γc

2

) , (11b)

C2,m(∞) =
√

2�2
∞∑

n,l=0

b〈m̃(2)|ñ(1)〉b
(E2,m − E0,l − iγc)

× b〈ñ(1)|l〉bC0,l(0)e−iE0,l t(
E1,n − E0,l − i

γc

2

) . (11c)

where C0,m(0) and C0,l(0) are determined by the initial state of
the membrane. Based on Eqs. (8) and (11), the long-time state
of the system can be obtained. Note that this approximation
method has been used to study the photon statistics in cavity-
QED systems [29–32].

When the cavity field is in state (8), the equal-time (namely
zero-time-delay) second-order correlation function can be
written as

g(2)(0) ≡ 〈a†a†aa〉
〈a†a〉2

= 2P2

(P1 + 2P2)2
, (12)

where P1 = ∑∞
m=0 |C1,m(t)|2 and P2 = ∑∞

m=0 |C2,m(t)|2 are
the probabilities for finding a single photon and two photons
in the cavity, respectively. In the weak-driving case, we
have P1 � P2; then g(2)(0) ≈ 2P2/P

2
1 . We assume that the

membrane is initially in its ground state |0〉b, i.e., C0,m(0) =
δm,0; then the long-time state of the system can be obtained
from Eq. (11). Accordingly, the photon probabilities P1 and
P2 and the correlation function g(2)(0) can be obtained.

Interestingly, we examine the limit case g0/ωM � 1. In
this case, we expand the squeezing operators up to zero order
in g0/ωM . However, we keep the energy-shift terms in the
denominator of the amplitudes because these terms could be
comparable to the cavity field decay rate. The correlation
function can be approximated as

g(2)(0) ≈ 4
(
�c + δ(1)

)2 + γ 2
c(

2�c + δ(2)
)2 + γ 2

c

. (13)

When g0/ωM � 1, the present optomechanical system re-
duces to an effective three-level system formed by these three
states: |0〉a|0〉b, |1〉a|0̃(1)〉b, and |2〉a|0̃(2)〉b. The correspond-
ing values for the energy of these three states are 0, �c + δ(1),
and 2�c + δ(2). The difference between δ(2) and 2δ(1) causes
the energy-level anharmonicity, which is the physical origin for
the appearance of the photon blockade. Note that the driving
detuning �c is a tunable quantity by changing the driving
frequency.

In the single-photon resonance (spr) case, �c = −δ(1), the
correlation function becomes

g(2)
spr(0) ≈ γ 2

c

(δ(2) − 2δ(1))2 + γ 2
c

. (14)

We have g(2)
spr(0) < 1 when δ(2) �= 2δ(1). The larger the an-

harmonicity δ(2) − 2δ(1) is, the smaller the correlation func-
tion g(2)

spr(0) is. If we expand the frequency shifts δ(1) and
δ(2) up to g2

0/ωM , i.e., δ(1) ≈ g0 − g2
0/ωM and δ(2) ≈ 2g0 −

4g2
0/ωM , then the correlation function becomes g(2)

spr(0) ≈
γ 2

c [4(g2
0/ωM )2 + γ 2

c ]−1 [10,14], which is the same as that for

the Kerr-type nonlinear cavity with the Kerr parameter g2
0/ωM .

This is because the energy spectrum of this system is the same
as a Kerr nonlinearity when we expand δ(1) and δ(2) up to
second order in g0/ωM .

In the two-photon resonance (tpr) case, �c = −δ(2)/2, the
correlation function becomes

g
(2)
tpr (0) ≈ (δ(2) − 2δ(1))2 + γ 2

c

γ 2
c

. (15)

We see g
(2)
tpr (0) > 1, when δ(2) �= 2δ(1). An interesting relation

is g
(2)
tpr (0)g(2)

spr(0) = 1.

B. Numerical results

We now turn to the numerical solution case. Including
both optical and mechanical dissipations, the quantum master
equation of the system is

ρ̇ = i[ρ,HS] + γc

2
(2aρa† − a†aρ − ρa†a)

+ γM

2
(n̄M + 1)(2bρb† − b†bρ − ρb†b)

+ γM

2
n̄M (2b†ρb − bb†ρ − ρbb†), (16)

where we assume that the cavity field is connected with a
vacuum bath, while the membrane’s environment is a heat
bath at temperature TM . γM is the mechanical dissipation
rate, and n̄M = [exp(ωM/kBTM ) − 1]−1 is the average thermal
phonon number of the membrane, with kB being the Boltzmann
constant.

By numerically solving Eq. (16), the steady state of the sys-
tem can be obtained, and the second-order correlation function
g(2)(0) of the cavity field can be calculated accordingly [33].
In the following, we illustrate the dependence of g(2)(0) on
other parameters such as the coupling strength g0, the driving
detuning �c, the cavity field decay rate γc, and the thermal
phonon number n̄M in the membrane.

In Fig. 2, we plot the correlation function g(2)(0) as a
function of �c when the coupling strength g0 takes various
values. Here, the solid (red) curves are plotted using the
numerical solution of Eq. (16), while the dashed (black)
curves are based on the analytical solution in Eq. (11).
Figure 2 shows that there is no photon blockade (g(2)(0) � 1)
for g0 < γc. When g0 > γc, the photon statistics transits
between super-Poissonian (g(2)(0) > 1) and sub-Poissonian
(g(2)(0) < 1) distributions with the change of �c. In particular,
the dips and peaks in these curves correspond to the single-
and two-photon resonant driving cases, respectively. In the
single-photon resonant driving case, a single photon can be
resonantly excited into the cavity, while the probability for
finding two photons in the cavity is largely suppressed due
to the energy restriction; this represents a photon blockade
(g(2)(0) � 1, i.e., a dip). In the two-photon resonant driving
case, the probability for two photons inside the cavity is
resonantly enhanced, and this corresponds to a peak in the
correlation function g(2)(0). Therefore, the location of these
dips and peaks in Figs. 2(b) and 2(c) can be determined by the
resonance conditions.

In the approximate analytical solution, the initial state
of the membrane is assumed to be |0〉b. Therefore, the
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FIG. 2. (Color online) The equal-time second-order correlation
function g(2)(0) versus the driving detuning �c for various values of
the optomechanical coupling strength g0. The solid (red) curves are
numerical results using the solution of the quantum master equation
(16), while the dashed (black) curves are based on the approximate
analytical solution (11). Other parameters are γc/ωM = 0.1, �/ωM =
0.01, γM/ωM = 0.001, and n̄M = 0.

well-matched dips and peaks (marked as Dl=0,2 and Pl=0,2,4

in Fig. 2) are determined by the resonant transitions involving
the state |0〉a|0〉b, while the other peaks in the solid curves
correspond to the transitions involving states |0〉a|n �= 0〉b.
In particular, the dip Dl and the peak Pl in Figs. 2(b)
and 2(c) correspond to the single- and two-photon resonance
conditions �c + δ(1) + lω

(1)
M = 0 and 2�c + δ(2) + lω

(2)
M = 0,

respectively. The respective locations of the dip Dl and the
peak Pl are �c = −(δ(1) + lω

(1)
M ) and �c = −(δ(2) + lω

(2)
M )/2.

They are related to the single-photon process |0〉a|0〉b ↔
|1〉a|l̃(1)〉b and the two-photon process |0〉a|0〉b ↔ |2〉a|l̃(2)〉b,
respectively.

To clarify the inherent parameter condition for observing
the photon blockade, we illustrate, in Fig. 3, the correlation
function g(2)(0) as a function of γc and g0 under the single-
photon resonant driving conditions: (a) �c = −δ(1) and (b)
�c = −(δ(1) + 2ω

(1)
M ). We can see three features from Fig. 3:

(i) The curves g(2)(0) = 1 provide a boundary for different
photon distributions: super-Poissonian and sub-Poissonian.
We see that the g(2)(0) � 1 appears in the region g0 > γc.
When g(2)(0) < 1, the g(2)(0) decreases with increasing g0.
This means that the photon blockade grows when increasing
the quadratic coupling strength. This result is different from
the linear optomechanical coupling case [13] in which the
correlation function exhibits an oscillating feature due to the
modulation of the phonon sidebands. In the present case, when
the single-photon process is resonant, the phonon sidebands
will not be resonant in the dominating two-photon transitions
[34].

FIG. 3. (Color online) Plot of g(2)(0) as a function of the coupling
strength g0 and the cavity field decay rate γc under the single-photon
resonant driving conditions: (a) �c = −δ(1) and (b) �c = −δ(1) −
2ω

(1)
M . Other parameters are �/ωM = 0.01, γM/ωM = 0.001, and

n̄M = 0.

(ii) In the region γc/ωM > 1, the value of g(2)(0) could
be smaller than 1 for a large coupling strength g0. This
phenomenon is also different from the linear optomechanical
coupling case, in which the correlation function g(2)(0) < 1
appears only in the resolved sideband regime γc/ωM < 1.
We can explain this from the fact that, though the usual
resolved-sideband condition γc < ωM does not satisfy, the
two-photon coupled phonon states |l̃(2)〉b can be still resolved
in the region γc > ωM because of ω

(2)
M > γc.

(iii) In the single-photon resonant driving cases, the corre-
lation function g(2)(0) for the case of �c = −(δ(1) + 2ω

(1)
M ) is

much smaller than that for the case of �c = −δ(1). This phe-
nomenon can be understood based on the photon probabilities
in the cavity. As an example, we consider the parameters in
Fig. 2(c). In the weak-driving case, the correlation function
can be approximately expressed as g(2)(0) ≈ 2P2/P

2
1 . When

the driving detuning changes from �c = −δ(1) to �c =
−(δ(1) + 2ω

(1)
M ), the single-photon probability decreases by one

order of magnitude, but the two-photon probability decreases
by three orders of magnitude. Consequently, the driving of
�c = −(δ(1) + 2ω

(1)
M ) will induce a stronger photon blockade

than the case of �c = −δ(1).
Based on the above analysis, we now answer the questions

1 and 2 proposed in the introduction: (i) For observing the
photon blockade (g(2)(0) � 1), the system should work in
the deep-resolved-sideband regime γc � ωM and the single-
photon strong-coupling regime g0 > γc. (ii) The single-photon
phonon-sideband resonant driving �c = −(δ(1) + 2ω

(1)
M ) is

helpful to induce a strong photon blockade.
To answer question 3, we investigate the influence of the

mechanical thermal phonon number n̄M on the correlation
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FIG. 4. (Color online) Plot of g(2)(0) versus the mechanical
thermal phonon number n̄M under the single-photon resonance con-
ditions. Other parameters are g0/ωM = 0.8, γc/ωM = 0.1, �/ωM =
0.01, and γM/ωM = 0.001.

function, as shown in Fig. 4. In the single-photon resonant
driving cases, the value of g(2)(0) increases when increasing
n̄M . This means that the photon blockade is limited by the
thermal noise of the mechanical environment. To maintain the
photon blockade, the mechanical thermal noise needs to be
suppressed.

IV. CONCLUSION AND REMARKS

In conclusion, we have studied the steady-state photon
statistics of a quadratically coupled optomechanical cavity,
which is weakly driven by a monochromatic laser field. We
have obtained the approximate analytical expression of the
second-order correlation function for the cavity photons by
treating the driving term as a perturbation. We numerically
solved the quantum master equation including both optical

and mechanical dissipations. We found that the photon
blockade can be induced by the quadratic optomechanical
coupling under the single-photon resonant driving condi-
tion. In particular, the phonon sideband resonant driving
�c = −(δ(1) + 2ω

(1)
M ) could enhance the phonon blockade.

To observe the photon blockade, the system should work in
both the deep-resolved-sideband regime and the single-photon
strong-coupling regime. We have also found that the generated
photon blockade effect is limited by the thermal noise from
the mechanical environment.

Finally, we present some remarks on the experimental
feasibility for observing a photon blockade induced by the
quadratic optomechanical couplings. Currently, the resolved-
sideband regime (ωM � γc) is accessible in some experimen-
tal systems. The key challenge is the realization of g0 > γc.
So far, the experimentally accessible couplings are too weak
to reach this regime. However, recent advances have been
made in the enhancement of this coupling strength. For the
coupling strength g0 = 1

2ω′′
c (0)x2

zpf (xzpf being the mechanical
zero-point fluctuation), the value of ω′′

c (0) has been increased
significantly from about 30 MHz/nm2 [27] to 20 GHz/nm2

[35] using a fiber cavity with a smaller mode size. For a
xzpf ∼ 5 pm, suggested in Ref. [25], the coupling strength g0

can reach several kilohertz. In addition, a quadratic coupling
g0 ∼ 2π × 0.7 MHz has been theoretically estimated in a
near-field optomechanical system [36].
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E. L. Hu, and A. Imamoǧlu, Nat. Photonics 6, 93 (2012).

[7] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V.
Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Nature (London)
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