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Abstract—We give detailed insight into photon counting OTDR
(ν−OTDR) operation, ranging from Geiger mode operation of
avalanche photodiodes (APD), analysis of different APD bias
schemes, to the discussion of OTDR perspectives. Our results
demonstrate that an InGaAs/InP APD based ν−OTDR has the
potential of outperforming the dynamic range of a conventional
state-of-the-art OTDR by 10 dB as well as the 2-point resolution
by a factor of 20. Considering the trace acquisition speed of
ν−OTDRs, we find that a combination of rapid gating for high
photon flux and free running mode for low photon flux is the
most efficient solution. Concerning dead zones, our results are less
promising. Without additional measures, e.g. an optical shutter,
the photon counting approach is not competitive.

Index Terms—Distributed detection, fiber metrology, optical
time-domain reflectometry, photon counting

I. INTRODUCTION

O
PTICAL Time Domain Reflectometry [1] is a well

known technique for fiber link characterization. Most

of today’s commercially available optical time domain reflec-

tometers (OTDRs) are based on linear photon detectors, such

as p-i-n or avalanche photodiodes (APDs). Although single

photon detection features unmatched sensitivity, OTDRs based

on this technique (ν−OTDR) [2] have reached the market only

in niches [3].

Several single photon detection techniques are possible [4]-

[9], but only few of them are suitable for in-field measure-

ments. Geiger-mode operated InGaAs/InP APDs (for telecom

wavelengths) [5] [10] [11] are the most promising candidates,

due to their robustness and manageable cooling.

In this paper we discuss the advantages and limitations of these

devices, when used in an ν−OTDR. We concentrate in par-

ticular on the dynamic range, 2-point resolution, measurement

time and dead zone. All ν−OTDR measurements are supple-

mented by measurements using a conventional state-of-the-

art OTDR (Exfo, FTB7600). This makes it easier to evaluate
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the ν−OTDR performance. Our discussion also contains the

possible yield of newly emerged gating techniques like rapid

gating [12] [13] [14].

We note that some years ago ν-OTDRs based on silicon APDs,

suitable for C-band operation, were demonstrated [15] [16].

Although silicon APDs show superior behavior, concerning

afterpulsing and timing jitter, the upconversion of telecom

photons to the visible regime demands more expensive optics

and more sophisticated alignment. Therefore we believe that

they are less suitable when robustness is required.

Paper organization : In Sect.II we provide information about

Geiger-mode operation of InGaAs/InP APDs and discuss its

major impairment, the afterpulsing effect. Sect.III focusses on

ν−OTDR operation and performance (dynamic range, 2-point

resolution, measurement time, dead zone) and compares it with

the performance of a conventional state-of-the-art long haul

OTDR (Exfo FTB7600). Sect.IV considers time efficient bias

schemes (rapid gating, free running) and finally we summarize

our results in Sect.V.

II. GEIGER-MODE APD

A. Basic operation

In Geiger-mode, the APD is biased beyond its breakdown

voltage, typically by a few percent. This provides a sufficiently

large gain (order of 106) to detect a single incident photon

(with detection efficiency η). In contrast to a linear mode

APD, the output signal is no longer proportional to the

number of primary charges. Whenever an avalanche occurs

and the current reaches a certain discrimination level, a

detection is counted, independent of how many primary

charges caused or were created during the avalanche.

To reset the APD for the next detection, the avalanche needs

to be quenched. This is typically done by lowering the bias

voltage, either actively or passively [17].

An APD based on InGaAs/InP is particularly well suited for

use with the principal telecom wavelength bands. Although

the dark count1 rate is higher than in silicon based APDs,

high sensitivity can be regained by cooling, typically around

−50◦C (see also Sect.II-B).

There are different ways of applying the overbias (Vbias > Vbd

(breakdown voltage)) to the diode. The most common ones

are the gated mode and the free running mode [18]. In gated

mode the overbias is applied only during a short time ∆tgate
(called gate), in a repetitive manner with frequency fgate
(respecting fgate < 1

∆tgate
). Typically ∆tgate ∈ [2ns, 20µs]

1A detection which was not initiated by a signal photon but thermal
excitation or tunneling.

http://arxiv.org/abs/1001.0694v2
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and fgate ∈ [100Hz, 10MHz]. In free running mode, the

overbias is applied until a photon or noise initiates an

avalanche.

While the gated mode achieves high signal to noise ratios

when a synchronized signal is being detected, the free running

mode is most suited when the photon arrival time is not

known (e.g. in OTDR).

More recent developments, summarized by the name rapid

gating [12] [13] [14], apply very short gates (≈ 200 ps)

in order to severely limit avalanche evolution and reduce

afterpulsing (see Sect.II-C). The technical challenge consists

in discriminating the rather small avalanche signal from

the capacitive response to overbias of the diode itself. In

”classical gating”, described in the previous paragraph, one

usually waits until the avalanche signal is easy to discriminate.

Typical gating frequencies in rapid gating are of the order of

1 GHz.

In Sect.IV we will discuss pros and cons of these different

approaches, in particular concerning their applicability for

ν−OTDRs.

B. Detection sensitivity

A figure of merit for the sensitivity of a detector is its

noise equivalent power (NEP ). For example, the bandwidth

normalized NEPnorm of a linear photo detector is given by

[21] [22]

NEPnorm =
∆Inoise
S ·G [

W√
Hz

] (1)

where ∆Inoise [A/
√

Hz] is the standard deviation of the total

noise current (thermal-, dark-, signal shot- and in case of gain

also gain noise), normalized with respect to the bandwidth of

the detector, S [A/W] is the detector photosensitivity and

G is the gain of the diode (p-i-n diode : G = 1, linear APD

(typically) : G = 10− 100).

APDs are superior to p-i-n diodes in the circuit noise limited

regime2 [23], but lose their advantage when the gain noise

becomes important, i.e. at stronger signal powers. The

minimal detectable power NEPnorm,0 [W/
√

Hz] is obtained

by setting the signal power and thus the signal shot-noise

equal to zero. NEPnorm,0 can usually be found in the data

sheet of the diode, typically 10−15 − 10−13 [W/
√

Hz] for

InGaAs APDs at 25◦C.

A similar expression can be derived for Geiger-mode APDs

(see App.B, Eq.20):

NEPnorm =
hν

η
·
√

2 · p̂noise [
W√
Hz

] (2)

where η is the detection efficiency and p̂noise is the noise

detection probability per gate (including signal and dark count

shot noise), normalized with respect to the gate width ∆tgate

2Circuit noise results for example from thermal motion of charges in
resistors or charge fluctuation in transistors in the receiver amplifier.
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Fig. 1. Bandwidth normalized noise equivalent power (NEPnorm,0, see
Eq.3) as function of Geiger-mode APD temperature. The detection efficiency η
is kept constant at 10%. At ambient temperatures the noise equivalent power
is increased by almost a factor of 10 with respect to the usual operating
temperature of −50◦C.

in seconds. Again, setting the input optical power equal to

zero, we infer the minimal detectable power (App.B, Eq.21)

NEPnorm,0 =
hν

η
·
√

2 · p̂dc [
W√
Hz

] (3)

where p̂dc denotes the dark count probability per gate, nor-

malized with respect to the gate width ∆tgate in seconds.

Inserting the parameters of the Geiger mode APD used in

our experiments (p̂dc = 2000 s−1, η = 10%, T = −50◦C,

Sect.III-A), we estimate NEPnorm,0 ≈ 10−16 [W/
√

Hz].

In Fig.1 we see the evolution of NEPnorm,0 as function

of temperature. We observe that when approaching ambient

temperatures, we almost reach the regime of the best linear

mode diodes. Conversely, one might be tempted to cool linear

diodes to −50◦C to reach the NEP of Geiger mode APDs.

Even if this might be in general achievable, one should not

forget, that the output signal still needs to be amplified. Even

at ambient temperatures the small pulse amplifier noise usually

constitutes the dominating noise source leading to much higher

effective NEPs.

By analyzing the performance of a conventional OTDR in

Sect.III, we will gain more insight into the sensitivity limits

of linear mode APD detection systems.

C. Afterpulsing

One of the major impairments of InGaAs/InP APDs is

the afterpulsing effect. Imperfections and impurities in the

semiconductor material are responsible for intermediate energy

levels (also called trap levels), located between the valence

band and the conduction band. During an avalanche, these

levels get overpopulated with respect to the thermal equi-

librium population. If the APD gets reactivated right after

the quenching of an avalanche, the probability of thermal

excitation or tunneling of one of these charges into the

conduction band and the subsequent initiation of an afterpulse
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Fig. 2. Afterpulse probability as function of dead time τ . The detection
efficiency η is equal to 10% and the temperature T=−50◦C. An active
quenching application specific integrated circuit (ASIC) [19] was used.

avalanche, is high. Although fundamentally the improvement

of semiconductor purity and thus the reduction of the number

of trap levels is preferable, different mitigation measures can

be carried out :

a) dead time : A purely passive measure is the introduction

of a dead time. The trap population decreases exponentially

with time, due to thermal diffusion. Finally the thermal equi-

librium configuration is restored. The impact of afterpulsing

can therefore be mitigated by maintaining the bias voltage

below breakdown, i.e. the application of a dead time τ , after a

detection takes place. Dead times severely limit the maximum

achievable detection rate.

b) heating : An increased temperature accelerates the diffusion

of trapped charges. However, at the same time charge excita-

tion from the valence into the conduction band increases, lead-

ing to globally increased noise, which eventually reduces the

detector sensitivity. Thus one cannot achieve low afterpulsing

and high sensitivity at the same time. It is necessary to find a

trade-off depending on the particular application.

c) quenching technique : As soon as the avalanche has gained

enough strength such that the current pulse can be detected, it

needs to be quenched. The quenching speed is crucial to limit-

ing the number of secondary charges which can populate trap

levels. Here, fully integrated active quenching circuits yield

much better results than non-integrated ones [19]. Another

approach is rapid gating (Sect.II-A). Avalanche evolution is

terminated by short gate durations (200 ps) and the number

of secondary charges is kept low.

In Fig.2 we plot an example of afterpulse probability as

function of dead time τ , using a fully integrated ASIC based

active quenching circuit [19]. Whenever a detection takes

place, we activate a second gate of width ∆tgate = 10 ns
with a temporal delay of τ . In this second gate, no incident

photons are present. If there is a detection it is either a dark

count or an afterpulse. Since for large τ only the actual

dark counts remain, we can subtract it from the total count

rate and obtain the pure afterpulsing probability (→ Fig.2).

During larger gates, the afterpulse probability sums up and

afterpulsing increases. One can easily calculate the afterpulse

probability of a gate of width ∆tgate (≤ 10µs) by

pAP,∆tgate
(τ) = 1− (1− pAP,10ns(τ))

m (4)

where pAP,10ns(τ) is the afterpulse probability in a gate of 10

ns width and m =
∆tgate

10ns .

We note that if no afterpulse occurs in the first activated

gate after a detection, it can also happen in any succeeding

gate. However, the probability decreases due to trap charge

diffusion. To get the total afterpulse probability, or rather

the signal to afterpulse ratio, one needs to account for this

summing effect as well. The lower the signal detection rate, the

more summing-up takes place. Thus a higher signal detection

rate improves the signal to afterpulse ratio.

In Fig.3 we illustrate the impact afterpulsing can have in a

ν−OTDR measurement. Firstly and most importantly we must

consider dead zones (see Sect.III-D for definition, not to be

confused with dead time). Whenever an important loss (at 25

km) or a reflection (at 36 km) occurs, it is followed by a

tail which prevents the detection of the Rayleigh backscatter

directly behind it. Secondly, the backscatter trace is shifted to

higher values, since more detections than in the pure signal

case occur (pile-up effect). Thirdly, the slope of the trace is

flatter than it should be.
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Fig. 3. Illustration of the afterpulsing effect on ν−OTDR trace. Most severe
are the dead zones after large loss events (at 25 km) and reflections (at 35
km). More subtle is the change of the slope of the trace which is usually
smaller than what is measured when afterpulsing can be neglected.

How much afterpulsing can be tolerated, generally depends

on the particular measurement. For instance in a coarse

measurement on a long span of fiber, where only peak

positions or large loss events are of interest, one can tolerate

a fairly high afterpulsing contribution. On the other hand,

in the case of short links, where high precision for fiber

attenuation measurement and dead zone minimization is

desired, afterpulsing must be kept to a few percent or even

lower, depending on required precision of the measurement.

Numerical afterpulse correction methods were also analyzed

[20], but it was found that for high precision measurements

the algorithm lacks robustness due to possible variations in
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the afterpulse probability. It should therefore be used only

when the requirements on precision are not stringent.

III. PHOTON COUNTING VS. CONVENTIONAL OTDR

Although this section is mainly concerned with the ν-OTDR

technique, we also perform measurements using a state-of-

the-art conventional3 OTDR (FTB-7600, EXFO), a product

especially designed for long-haul applications (up to 50 dB

dynamic range). This makes it easier for us to highlight the

advantages and drawbacks of the photon counting approach.

The experimental setup and a detailed explanation is given in

Fig.4.

Fig. 4. Basic ν-OTDR setup. The laser (we use the laser of the FTB-7600,
Ppeak = 400 mW) emits pulses with a frequency fpulse adapted to the
length of the fiber under test Lfiber (→ fpulse = c

2·Lfiber
). The signal

is split at a 99/1-coupler. The 99% part is launched into the fiber under test
(FUT) via a circulator. Backscattered light from the fiber exits the lower port
of the circulator and illuminates the InGaAs/InP-APD. The 1% part is used
to measure the time of departure t0 of the laser pulse (for synchronization
reasons) using a conventional photodiode (Newport, 1GHz). The output signal
is sent to a delay generator. A delayed signal at t0+tdelay is sent to the APD
to apply a detection gate of length ∆tgate and the backscattered intensity
corresponding to the applied delay is measured. The APD reverse bias is equal
48.7 V, yielding a detection efficiency η = 10% at −57◦C (minimal value).
We measure a dark count probability per gate equal to p̂dc = 2000 s−1

(normalized with respect to the gate width, Eq.3). This corresponds to a dark
count probability of 2 · 10−5 for a gate width of 10 ns and 2 · 10−2 for a
10 µs gate.

For a fixed delay, a number of laser pulses Npulse (repeti-

tion frequency fpulse) are sent and Ngate(= Npulse) gates

are activated. A counter records the number of detections.

The incident signal power can be inferred from the ratio of

detections to activated gates (for details, see App.A).

To get information on the backscatter of the entire fiber, the

delay needs to be scanned, repeating the procedure explained

before for each single delay position. The sampling resolution,

i.e. the delay step ∆tdelay (tdelay = i ·∆tdelay, i = 1, 2, 3...),
needs to be adapted to the requirements of the particular

measurement (e.g. zooming or coarse full trace measurement).

The detection bandwidth is given by B = 1
2∆tgate

.

We note that this is only the most basic version of a photon

counting OTDR. One of the advantages of this system is

that due to the low gating frequency, we can totally exclude

3Based on linear-mode APD detection.

afterpulse effects (dead time 2 ms). Therefore we can deter-

mine the unadulterated dynamic range and 2-point resolution.

Nevertheless, data acquisition is very time consuming. For

example the measurement of the entire 200 km fiber, discussed

in the next section (Fig.5), took about 6 hours. In Sect.IV we

will see, how it can be performed more efficiently.

A. Dynamic range

To measure the dynamic range of both devices for different

laser pulse widths, we take a 200 km fiber, composed of a

50 km spool and an installed fiber link of 150 km (Swisscom,

Geneva-Neuchatel), which itself consists of several fibers. The

length of the fiber allows a maximal laser pulse repetition rate

of flaser = c
2·Lfiber

= 500 Hz, where c is the speed of light

in standard optical fiber.

We start measuring the trace with the FTB-7600 for 3 min-

utes4 with a laser pulse width of 1 µs. The device acquires

180 s·500 Hz = 9·104 different traces. The final output trace is

the numerical average of these single traces (Fig.5, light grey

curve). For a fair comparison the detection bandwidth should

be equal for the two devices. For the conventional OTDR it

is automatically chosen by the device and not available to us.

We infer its value by looking at the noise period at the end of

the measurement range. For a pulse width of 1µs we obtain 4

MHz. Under these conditions the dynamic range is found to

be 34.5 dB.

We then perform the ν-OTDR measurement, ensuring that

we do not saturate the detector with the backscatter from

the beginning of the fiber. Therefore we insert an additional

attenuator in front of the APD to reach the unsaturated regime.

We adjust the attenuation to yield a detection rate of about

90% of the gate rate for the first delay position. At each delay

position we count the number of detections within 3 minutes,

which yields the same statistics per sampling point as in the

previous case (180 s ·500 Hz = 9 ·104 samplings). We choose

∆tdelay equal to 3 µs (=300 m sampling point separation

in fiber) and ∆tgate = ∆tpulse. With increasing delay the

backscatter power and thus the detection rate decreases. When

we start to approach the noise level of the detector, we

pause the measurement and remove a part of the attenuation

(to regain 90% detection rate), reduce the delay for a few

kilometers (to get an overlap with the previous part) and

resume the measurement. In this way we obtain several single

traces of adjacent parts of the fiber. In the following we

will refer to this as partial trace measurement. By means

of the overlaps, the entire trace can be reconstructed. Each

partial trace measurement contributes approximately 20 dB to

the overall ν-OTDR dynamic range. For example, to cover

50 dB of fiber loss, we need to perform three partial trace

measurements5.

The result of the ν-OTDR measurements is also shown in

Fig.5 (blue curve). It is important to note that we adapt the

4We choose 3 min because this is the time specified in the definition of
OTDR dynamic range for conventional OTDRs [24].

5The first measurement covers 0-20 dB, the second 15-35 dB and the third
30-50 dB respecting the necessary overlap between different partial trace
measurements.
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Fig. 5. OTDR traces of 200 km fiber link using a laser pulse width of
1µs. The light gray curve represents the result of the conventional OTDR
(Exfo FTB-7600) after 3 minutes of measurement in standard configuration.
In this configuration it uses a detection band width of 4 MHz at the end of the
measurement range. The ν−OTDR result is represented by the blue curve.
The measurement bandwidth is 500 kHz using the same number of samplings
for each point as the conventional device. The bandwidth adapted results for
different pulse widths can be found in Fig.6.

gate width to the laser pulse width to obtain the minimal

NEP0 (App.B, Eq.19) without affecting the 2-point resolution

(limited by the laser pulse width). This means that in the case

of Fig.5, the detection bandwidth of the ν−OTDR is B =
1

2·∆tgate
= 500 kHz6. To be able to compare the measured

results in a representative manner, we average the conventional

OTDR trace in order to obtain the same bandwidth as was

used in the ν−OTDR measurement. We gain 2.5 dB, yielding

a corrected dynamic range of 37 dB. The ν−OTDR advantage

is found to be roughly 9 dB in this case.

We repeat the measurement for different pulse widths keeping

all other parameters unchanged. The final results are shown

in Fig.6. The detection bandwidths were adapted as before. It

holds that B = 1
2∆tpulse

for both devices.

For pulse widths between 30 ns and 1 µs the dynamic range

difference is about 9-10 dB. This is a direct consequence of

the smaller NEPnorm,0 (see Sect.II-B) of the Geiger-mode

APD, since bandwidth and integration time per sampling point

were equally chosen. This means that the NEPnorm,0 of

the ν−OTDR is roughly a factor 63-100 smaller7 than the

NEPnorm,0 of the conventional OTDR (noise dominated by

the small pulse amplifier). However, going to larger laser

pulses, we observe increased noise for the ν-OTDR and the

advantage gets smaller. We suppose that this happens due to

the increased backscatter power from the beginning of the

fiber. Although the diode is not active, the charge persistence

effect (also sometimes called charge subsistence) can have a

non negligible impact on the noise counts in a subsequently

activated gate (for more details see also Sect.III-D).

In summary, by adapting sampling statistics and detection

6The conventional device uses a higher bandwidth since higher sampling
resolution is useful when the position of an event needs to be determined with
higher precision.

7Respecting the functional dependence between NEP and dynamic range
given in Eq.25, using NEP0 ∝ NEPnorm,0
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Fig. 6. Dynamic ranges of FTB-7600 and ν−OTDR for different laser pulse
widths. The length of the used fiber was 200 km. The detection bandwidths
B were adapted in each case, it holds that B = 1

2∆tpulse
.

bandwidth of both devices we find an advantage of about 9-

10 dB in dynamic range for the ν-OTDR. By increasing the

laser pulse width we observe increased detector noise and the

effective advantage gets smaller. We uncouple the question of

measurement time since it is highly dependent on the gating

technique used in the ν−OTDR. This discussion is postponed

to section IV.

B. 2-point resolution

When considering the 2-point resolution8, one can divide

OTDR operation into two regimes a) the receiver limited and

b) the laser peak power limited regime. In case a) the ultimate

timing resolution is either given by the amplifier bandwidth or

the detector jitter (using fine laser pulses), whereas in case b)

the limited laser peak power makes it necessary to use larger

pulse widths (larger than the limit given in case a)) in order

to reach high dynamic ranges. In the receiver limited regime,

the advantages of photon counting were already discussed in

[20], yielding a maximal 2-point resolution of 10 cm for the

ν-OTDR and 1 m for the conventional device. In long haul

OTDR applications, we operate in the laser peak power limited

regime.

It is easy to see that in this regime the sensitivity advantage

(NEPnorm,0) of photon counting translates directly into an

advantage in 2-point resolution.

Example : we consider a reflective event at the end of the

dynamic range (with a certain pulse width and measurement

time) of the FTB-7600, see Fig.7.

The ν−OTDR can achieve the same dynamic range with a

much smaller pulse width, see Fig.6. According to App.D,

an advantage of 10 dB in dynamic range9 corresponds to an

advantage in 2-point resolution by a factor of 20. In Fig.8 we

see the results of three ν−OTDR measurements focusing on

8By 2-point resolution we mean the minimal distance, necessary between
two reflective events, in order to be able to recognize them as distinct peaks
on the OTDR trace output (e.g. dip between peaks at least 1 dB lower than
the peaks themselves)

9Bandwidth normalized.
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Fig. 8. Step by step reduction of laser pulse width in ν−OTDR measurement,
when zooming on the reflective event seen by the FTB-7600 (Fig.7). The lower
graph is again a zoom on the two reflective events which were revealed by
the second graph (peak 2 and 3). Due to its larger sensitivity the ν−OTDR
can afford smaller laser pulses at distances where the FTB-7600 reaches its
limits.

the reflective event at about 102.8 km. With each reduction

in pulse width more and more structure is revealed and we

actually find 3 reflections. The ratio of the peak widths agrees

well with the calculated one.

In summary, when the OTDRs are operated in the laser

peak power limited regime, the sensitivity advantage of the

ν−OTDR translates directly into an advantage in 2-point

resolution. Its amount is described by Eq.27 in App.D.

C. Measurement time

We start discussing the measurement time by taking a look

at the time necessary to obtain a sufficient signal to noise ratio

(SNR) for a specific delay position in the fiber, from which

we receive a backscatter power Popt (see App.E):

t =
1

fpulse
·
(

SNR ·NEPnorm ·
√
B

Popt

)2

(5)

where NEPnorm (see Eq.20) is the noise equivalent power

normalized with respect to detector bandwidth in [W/
√

Hz],

B the detector bandwidth in [Hz] and fpulse the laser pulse

repetition rate in [Hz]. This formula applies to both the Geiger

and linear mode operation as long as linearity between input

and output signal is guaranteed10.

While the Geiger mode exhibits linearity only in a relatively

restricted domain of Popt, the linear mode is able to cover

several orders of magnitude of input power. Therefore Eq.5

is applicable for a much wider range of optical powers and

shows the significant advantage of the linear mode when larger

powers need to be measured (∝ P−2
opt ).

More interesting from the ν−OTDR perspective is the case

when Eq.5 applies as well for Geiger-mode, i.e. for sufficiently

small powers (order -100 dBm). We can then easily calculate

the ratio of measurement times (assuming fpulse, B and Popt

to be equal):

t(conv)

t(pc)
=

(

NEP
(conv)
norm

NEP
(pc)
norm

)2

(6)

where the superscript pc signifies photon counting (i.e. Geiger

mode), and conv represents the conventional detection mode

(i.e. linear mode).

NEPnorm can be split into a signal initiated noise contribution

NEPnorm,sig (e.g. due to signal shot noise) and a contribution

from signal independent sources (dark current, dark counts)

represented here by NEPnorm,0 :

NEP 2
norm = NEP 2

norm,sig +NEP 2
norm,0 (7)

For sufficiently small input power, NEPnorm becomes

NEPnorm,0. In Sect.III-A we estimated the ratio of the

NEPnorm,0 of conventional and ν−OTDR to lie within 63

and 100. Thus the ratio given in Eq.6 approaches a value

between 4000 and 10000. This means that we continuously

pass from a huge linear mode advantage (Popt large) to a

huge Geiger mode advantage (Popt small).

We stress at this point that this result applies for

the measurement of a specific delay position. OTDR

measurements consist of scanning a range of different

powers, i.e. the exponentially decreasing backscatter power.

In case of the conventional OTDR the achievement of a

sufficient SNR for a certain delay position, e.g. far down the

fiber, means that all delays closer to the beginning of the

fiber have been scanned at least with the same SNR. Thus we

already obtain the full trace up to that point. How large the

actually scanned interval is in the case of photon counting

depends on the gating technique. For example, using the basic

approach, explained earlier (Fig.4), one would scan exactly

10Linearity in Geiger mode applies if the signal detection probability per
gate psig,gate depends linearly on the input power Popt, see App.A Eq.9 &

10. For sufficiently small Popt it holds that : psig,gate = η ·
Popt·∆tgate

hν
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one position. In Sect.IV we discuss how the NEP advantage

of photon counting can be used more efficiently.

D. Dead zone

Dead zones are parts of a fiber link where the OTDR trace

does not display the actual Rayleigh backscatter, but a signal

induced by another source. One example that we have already

encountered is the afterpulsing effect. If not accounted for it

leads to tails after large loss events or reflections (see Fig.3).

Unfortunately this is not the only origin of dead zones. If

we mitigate the afterpulsing effect by using an appropriate

dead time, another effect, very similar to afterpulsing gets

dominant : charge persistence. Even though the APD is not

biased beyond breakdown between adjacent gates, there is still

a bias which can weakly multiply primary charges created

by photons incident during that time. These weak avalanches

might however lead to increased trap population and increased

noise avalanche probability in the next gate (Vbias > Vbdown).

This effect, although less severe than afterpulsing, becomes

visible under the same circumstances, namely after large loss

events and reflections.

To estimate the impact of this effect on the OTDR output,

we perform a measurement on a fiber link containing a large

loss event (17 dB), with a reflection (-45 dB) just before it.

This link simulates a typical situation encountered in passive

optical networks, where a splitter of high multiplicity induces a

significant loss. Weak reflections right in front can be induced

by bad connectors.

We perform a measurement of this particular fiber link situa-

tion, using our ν−OTDR in basic mode, which ensures that

no afterpulsing effect is present and the charge persistence

effect becomes visible. Our results, including the measurement

using the conventional OTDR, are shown in Fig.9. We observe

2 4 6 8 10 12
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0

4

8

RBS level 2

RBS level 1

d
B

distance [km]

 conventional OTDR

 photon counting OTDR-45dB Refl.

17 dB loss

Fig. 9. Behavior of conventional and photon counting OTDR when subjected
to significant change in backscatter power level (here : 17 dB). We introduced
a reflection of -45dB in front of the loss, simulating for example a bad
connector. The black line represents a fit of the backscatter behind 8 km
and can be used as a reference to assess the magnitude of the dead zone.

the emergence of a tail approximately 10 dB below the loss

edge, which decays by approximately 3.5 dB/km. The lower

Rayleigh backscatter level gets visible again after about 2 km

(20µs).

The result obtained with the conventional OTDR is much

better. The emergence of the tail starts on a significantly lower

level. Full sensitivity is regained after 1 km. The results found

for the ν−OTDR, confirm the observations made in [20] and

[25]. One possibility to mitigate dead zones, induced by charge

persistence, is the use of an optical shutter as performed in

[25]. If the initial backscatter is blocked by the shutter and

the gate gets activated, as well as the shutter deactivated right

after the loss event, much better results can be obtained.

In summary, concerning dead zones, the conventional OTDR

shows superior behavior, when no additional measures are

taken in the case of the ν−OTDR, e.g. using an optical shutter.

IV. TIME EFFICIENT BIAS SCHEMES

The way we implemented the ν-OTDR in Sect.III is one

of the simplest and trace acquisition is time consuming. It

is well suited to study general characteristics, but not for

other applications. Its apparent drawback is the wasting of

backscattered signal, due to the fact that fgate = fpulse, i.e.

only one gate per laser pulse is activated.

A more efficient approach is the train of gates scheme [20].

Unlike to the basic mode, the gating frequency is higher than

the laser pulse repetition rate and more than one gate gets

activated per laser pulse, see Fig.10. In the ideal case we

could choose a gating frequency fgate in the way that the

designated sampling resolution is obtained. Unfortunately we

have to account for the afterpulsing effect and thus need to

apply a dead time τ (whose length depends on the tolerable

afterpulsing)11. In App.F we discuss the impact of dead time

on the detection statistics in detail. To follow the general

discussion here it can be skipped though.

A measure for the acquisition speed is the achievable detection

rate fdet. We state a linearized formula for fdet, which

illustrates the most important relations very well :

fdet =
1

1
η·µ·Γ + τ

(8)

where η is the detection efficiency, µ is the incident photon

flux [photons/sec], Γ = fgate · ∆tgate is the detection duty

cycle and τ is the dead time.

a) high flux : If the photon flux is large, the detection rate

is limited by the dead time, i.e. fdet,max = 1
τ

. In order

to increase the detection rate, the dead time needs to be

decreased. In Sect.II-C we have already started to discuss the

possibilities of afterpulse mitigation. The quenching technique,

that yields to date the lowest afterpulsing, is rapid gating [12]

[13] [14]. Dead times of the order of 10 ns can be considered

realistic. This is approximately a factor 1000 better than the

best actively quenched circuits can deliver. To maintain a

11Like depicted in Fig.10, we can number each gate in the train of gates,
1...n. In the ideal case (no dead time) each of these gates gets activated for
each laser pulse sent into the fiber. In reality, when a dead time needs to be
applied, it is not certain that gate i gets activated. It is possible that it falls
into the dead time application range (gate 4-7 in Fig.10).
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reasonable duty cycle, gating frequencies of the order of 1

GHz are used (∆tpulse ≈ 200 ps).

b) low flux : If the flux is small, the dead time is insignificant

Fig. 10. Different bias schemes for backscatter measurement : basic, train
of gates and free running mode. τ represents the dead time.

and fdet = η · µ · Γ. Here the most important parameter is

the duty cycle Γ which should be preferably high. Increasing

the duty cycle will finally lead to a situation that is called

free running mode [18], Fig.10. The overbias is applied until

a signal photon or a noise effect initiates an avalanche. The

photon flux µ below which the free running mode yields

higher detection rates is roughly 1
η·τ

, see also App.F. We

see that in this case improved afterpulsing and thus smaller

dead times, would extend the application range to higher

photon fluxes. To date the best low afterpulsing solution for

the free running mode is the earlier discussed integrated active

quenching approach [19]. Fig.11 illustrates our discussion.

At this point we want to demonstrate, that using the free

running mode in its application regime (low flux), the acqui-

sition speed of the conventional OTDR can be considerably

outperformed.

Example : We want to scan a 10 km interval of a 200 km

fiber (⇒ fpulse = 500 Hz). We assume τ = 10µs, η = 0.1
⇒ the maximal flux is µ = 106 photons/s, which corresponds

to a power of Pstart = −99 dBm12. At the end of the 10

km interval the power drops to about Pstop = −103 dBm

(assuming regular fiber behavior, attenuation =0.2 dB/km).

From Pstop one can infer p̂sig (Eq.22) and using p̂dc= 2000

s−1 we obtain NEP
(pc)
norm = 3.6 · 10−16 W/

√
Hz (see Eq.20),

which enters into Eq.5 for measurement time calculation. The

bandwidth B of the measurement is managed by appropriate

averaging of adjacent points after the full data is acquired.

12It depends on the laser power, pulse width and the fiber link quality, to
which distance this corresponds. Choosing Ppeak = 400 mW and assuming
that this is also the effective power that reaches the fiber (no internal loss),
∆tpulse = 100 ns and a regular fiber behavior (loss = 0.2 dB/km), then -99
dBm correspond to backscatter power coming from a distance of 158 km.

Fig. 11. According to Eq.8 we can determine the flux regimes where each
of the techniques at disposal deliver their best performance. In the low flux
regime µ < 1

η·τ
the detection duty cycle is most important, therefore the

free running mode is the optimal solution. As soon as the dead time becomes
the limiting factor for the detection rate, rapid gating can take advantage of
its significantly lower afterpulsing, resulting in much smaller required dead
times.

Here we suppose a bandwidth B of 10 MHz (averaging on

50 ns intervals) and a signal to noise ratio (SNR) of 4. All

together we compute a measurement time of approximately

20 s.

To obtain the time of the conventional OTDR we calculate

the NEP
(conv)
norm and the ratio of Eq.6. In the beginning of

Sec.III-C, we stated that the NEP
(conv)
norm,0 was about 63-100

times larger than the NEP
(pc)
norm,0 = 10−16 W/

√
Hz. The

signal power is low enough to neglect the signal induced

noise contribution and we obtain simply NEP
(conv)
norm ≈ 63 ·

NEP
(pc)
norm,0 = 6.3 · 10−15 W/

√
Hz

⇒ t(conv)

t(pc)
=

(

6.3 · 10−15

3.6 · 10−16

)2

≈ 300

yielding a total measurement time for the conventional device

of about 1.5 h, assuming the same detection bandwidth B.

We stress that during this time, the conventional device obtains

information not only on our 10 km measurement range, but

also about the entire range before. The ν−OTDR only scans

the designated 10 km, but finishes doing this in around 20 s.

V. CONCLUSION

The huge advantage of Geiger-mode APDs with respect to

its linear mode counterparts is the small core noise equivalent

power NEPnorm,0. Our comparison of a state-of-the-art con-

ventional OTDR (based on linear mode APD) and a photon

counting OTDR (based on Geiger-mode APD) reveals a differ-

ence of roughly two orders of magnitude. We demonstrate that

this resource has the potential to improve the dynamic range by

10 dB as well as the 2-point resolution by a factor of 20 (in the

laser peak power limited regime). The important question is,

how efficient can it be used in OTDR applications (concerning

the measurement time)? To sample the backscatter of a fiber

we have different possibilities at hand, i.e. train of gates

(with classical gating), free running mode or rapid gating.

For sufficiently low backscatter power (order of -100 dBm;

long fibers) we show that the free running mode is capable of

efficiently using the NEP advantage. For example, measuring

a 10 km interval far down the fiber, yielded a measurement
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time of around 20 s, while the conventional device needs to

integrate for about 1.5 h to average out the noise sufficiently.

At higher backscatter power, i.e. closer to the beginning of

the fiber, we show that rapid gating can largely profit from its

reduced afterpulsing, which makes dead times of the order of

10 ns realistic.

We see a combination of rapid gating for the beginning of the

fiber and free running mode for its end part as the currently

best ν−OTDR solution. Alternatively one can also imagine

a hybrid of conventional OTDR for high flux and photon

counting for low backscatter power, including high resolution

scans with fine laser pulses on short distances.

Concerning dead zones, the conventional OTDR is clearly

superior. It is more robust to sudden changes in backscatter

power, while the ν−OTDR suffers from the charge persistence

effect. This effect can for example be mitigated by using an

additional optical shutter.

APPENDIX A

POWER MEASUREMENT WITH GATED APD

We consider coherent light, with a mean photon number

per second µ, incident on the diode (detection efficiency η).

We apply gates of duration ∆tgate, which means that on

average µ · ∆tgate photons hit the diode during a gate. Due

to the limited detection efficiency not every photon leads to a

detection. If our detector would be photon number resolving,

the average number of signal detections per gate would be

given by η·µ·∆tgate. Since our APD does not have this ability,

all cases where more than one signal detection would occur,

results in only one detection output. According to Poissonian

statistics, the probability of having no signal detection is given

by e−η·µ·∆tgate , hence the probability of having an APD signal

detection output is given by :

psig,gate = 1− e−η·µ·∆tgate . (9)

µ can be expressed by the incident optical power Popt as

µ =
Popt

hν
(10)

Solving for Popt yields

Popt =
−hν

η ·∆tgate
ln(1− psig,gate) (11)

Measuring the ratio of the number of detections Ndet (in-

cluding signal detections Nsig and dark counts Ndc ) and the

number of activated gates (Ngate), yields the signal detection

probability per gate

psig,gate =
Ndet −Ndc

Ngate

and finally the incident optical power Popt.

If the signal is weak, then it is apparent that first of all

the signal needs to be separated from noise by applying a

sufficiently large number of gates Ngate, see also App.B. Once

this is achieved, one has to consider the precision or statistical

error of the result, which also is a function of Ngate. Two

examples : a) Ngates = 10, ∆tgate = 100ns, pdc,gate =
2 · 10−4, psig,gate = 0.2, the probability of a dark count to

appear is negligible and we obtain 2 ±
√
2 signal counts=

total counts, from which we can calculate an optical input

power lying in [0.7 pW, 5.3 pW]. b) Ngates = 10000 and

the other parameters like before, we obtain a number of

total counts of 2002 ±
√
2002 from which 2 ±

√
2 are dark

counts and 2000±
√
2000 are signal counts. From the signal

counts we infer an optical input power lying within [2.8 pW,

2.9 pW]. The statistical error of the second measurement is

much smaller.

APPENDIX B

NOISE EQUIVALENT POWER OF GEIGER-MODE APD

In the treatment of the APD noise we mainly consider two

contributions, i.e. the shot noise of a) the signal counts and b)

the dark counts (assuming that afterpulse contributions can be

neglected, for example by choosing a sufficiently large dead

time).

Let Popt be the incident optical power on the diode. With the

energy per photon hν, the detection efficiency η and the gate

width ∆tgate, we infer the signal detection probability per gate

(linearized version of Eq.9, for sufficiently small Popt) :

psig,gate = η · Popt ·∆tgate
hν

(12)

After applying Ngate gates of the same width the mean number

of signal detections Nsig is

Nsig = psig,gate ·Ngate (13)

Assuming Poissonian statistics we calculate the fluctuation

∆Nsig =
√

psig,gate ·Ngate (14)

The same derivation holds for the dark counts : we introduce

a dark count probability per gate pdc,gate (which will be

measured directly) leading to

∆Ndc =
√

pdc,gate ·Ngate (15)

thus the total noise fluctuation :

∆Ntot =
√

∆N2
sig +∆N2

dc (16)

The noise equivalent power (NEP ) is inferred by calculating

the optical power necessary to produce ∆Ntot counts when

applying Ngate gates. In order to achieve this we replace Popt

by NEP in Eq.12 and multiply by Ngate:

∆Ntot = η · NEP ·∆tgate
hν

·Ngate (17)

Using Eq.14-16 and solving for NEP yields

NEP =
hν

η
·
√

psig,gate + pdc,gate
Ngate∆t2gate

[W] (18)

The minimal detectable power NEP0 is obtained by setting

the signal shot noise contribution equal to zero :

NEP0 =
hν

η
·
√

pdc,gate
Ngate∆t2gate

[W] (19)

The existence of Ngate in these equations represents the

iteration of a measurement and is a function of time
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(Ngate = fpulse · t)). The elemental measurement time

is represented by ∆tgate, the duration of a single gate,

which can be interpreted as the detection bandwidth via

B := 1
2·∆tgate

. These formulas are practical when a NEP
for a particular measurement needs to be calculated (see also

App.C). In order to obtain a formula which makes it easy

to compare different detectors, we normalize with respect to

Ngate (which represents nothing else than the measurement

time) and bandwidth B :

NEPnorm =
hν

η
·
√

2 · (p̂sig + p̂dc) [
W√
Hz

] (20)

and

NEPnorm,0 =
hν

η
·
√

2 · p̂dc [
W√
Hz

] (21)

where

p̂dc :=
pdc,gate
∆tgate

, p̂sig :=
psig,gate
∆tgate

(22)

are the signal and dark count probability per gate, normalized

with respect to the gate width in seconds 13.

APPENDIX C

DYNAMIC RANGE OF OPTICAL TIME DOMAIN

REFLECTOMETER

The strongest backscatter signal is observed right after the

emission at time t0 =
∆lp
c

, coming from the fiber locations

within the interval [0;
∆lp
2 ], where c is the speed of light in the

fiber and ∆lp is the width of the laser pulse. The corresponding

backscatter power is given by [24]

PBS,0 = S · P0,eff · e−2αsL(1− e−αs∆lp) (23)

where S is the fibers caption ratio, P0,eff is the effective laser

peak power corrected for internal component (e.g. circulator)

and connector loss and αs the scattering coefficient. If we

assume that αs∆lp << 1, which is true in standard fiber (αs ≈
0.04km−1) and ∆lp < 2 km (∆tp < 10µs) we can expand

the exponential and get

PBS,0 ≈ S · P0,eff · αs ·∆lp (24)

The dynamic range is then given by the ratio of PBS,0 and

the minimal detectable power NEP0 [W ] (Eq.19):

dynR = 5 log(
PBS,0

NEP0
) (25)

where the factor 5 accounts for the roundtrip in the fiber.

Finally we obtain :

dynR ≈ 5 log(
S · P0,eff · αs ·∆lp

NEP0
) (26)

We note that NEP0 like used here, includes the measurement

time and decreases ∝
√
t (see also Eq.19 in the case of the

13The relation between signal count/dark count probability per gate and gate
width is almost linear over a large range of practical gate widths (typically
ranging from nanoseconds to microseconds).Knowing p̂sig and p̂dc makes it
easy to calculate the signal count and dark count probability of a particular
gate of widths ∆tgate, just by multiplying it by ∆tgate.

ν−OTDR, where the measurement time t is represented by

the number of applied gates, Ngate = fpulse · t).
The operational definition of the dynamic range of an OTDR,

given for example in [24], contains a measurement time of

3 minutes. It is apparent that an extended measurement time

enhances the NEP0 and thus the dynamic range. In general, if

the measurement time is increased by a factor d, the standard

deviation of the noise is lowered by a factor
√
d and thus the

NEP0 by the same amount.

APPENDIX D

2-POINT RESOLUTION ADVANTAGE OF ν-OTDR

We assume an x dB ν-OTDR advantage in dynamic range

(with respect to conventional OTDR, using the same laser

pulse width ∆lp). Now we look for a factor α such that α·∆lp
yields a reduction of the ν-OTDR dynamic range by x dB.

Using Eq.26,19 and ∆tgate =
∆lp
c

(adapting laser pulse width

and gate width) we have to fulfill

5log((α ·∆lp)
3

2 ) = 5log((∆lp)
3

2 )− x

yielding

α = 10−
2

15
x (27)

For example : x = 10 dB → α = 0.046. Thus the ν-OTDR

can achieve the same dynamic range with a 20 times smaller

pulse width.

APPENDIX E

SIGNAL TO NOISE RATIO AS FUNCTION OF MEASUREMENT

TIME

We derive a formula for the SNR ratio as a function of

time from the photon counting perspective. However, the final

result, after linearization will not contain any photon counting

specific quantity and is therefore generally applicable.

We define the signal to noise ratio (SNR) as the ratio of

signal counts Nsig to the total fluctuation of the counts ∆Ntot

including fluctuation of signal and dark counts (like defined

in App.B).

SNR =
Nsig

∆Ntot

=
psig,gate ·Ngate

√

(psig,gate + pdc,gate) ·Ngate

using Eq.13 and 16. Now we introduce the bandwidth normal-

ized NEP (Eq.20) and use Ngate = fpulse · t where t is the

measurement time

⇒ SNR =

√
2 · hν
η

·
psig,gate ·

√

fpulse · t
NEPnorm ·

√

∆tgate

then replacing psig,gate using Eq.9 and 10:

SNR =

√
2 · hν
η

·
(1− e−

η
hν

·Popt·∆tgate) ·
√

fpulse · t
NEPnorm ·

√

∆tgate
(28)

If the optical input power is sufficiently small, the signal

detection probability increases linearly with the optical power

and we can expand the exponential to obtain

SNR =
Popt ·

√

fpulse · t ·
√

2 ·∆tgate

NEPnorm
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=
Popt ·

√

fpulse · t
NEPnorm ·

√
B

(29)

where we used B = 1
2·∆tgate

, the detection bandwidth.

This final formula is independent of any photon counting

quantities and does also apply for the general case, including

linear APD detection. In the linear regime there is even no such

severe restrictions as in photon counting mode since much

higher Popt can be processed.

On the other hand, if measurement time needs to be calculated

as a function of SNR, we obtain straight forward

t =
1

fpulse
·
(

SNR ·NEPnorm ·
√
B

Popt

)2

(30)

APPENDIX F

TRAIN OF GATES DISCUSSION

The application of a dead time can have considerable impact

on the gate activation statistics. Fig.12 shows what happens if

the product fgate · τ is chosen too large.

If we assume, that the probability of detecting a signal photon
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Fig. 12. Dead time application (here : τ = 10µs corresponding to 1 km
in terms of sampling distance) has considerable impact on the gate activation
statistics. If the gating frequency fgate is chosen too high, then the activation
minimum approaches zero, no signal can be acquired there.

in the first gate of the train of gates is psig,gate1 , then gate 2

gets activated with probability (1 − psig,gate1) (otherwise it

falls into the dead time of gate 1). The probability that gate i

gets activated (i ≤ fgate · τ ) is then given by

pact,gate i = (1− psig,gate1)
(i−1) (31)

where we assume, that the signal detection probability is

almost constant at the beginning of the fiber. This expression

approaches 0 when i is large. In the worst case, ”activation

holes” appear in a repetitive manner (see Fig.12, in the case

where the minima of the periodic structure at the beginning

touch zero probability) and therefore detections around these

locations are impossible or only possible with very low statis-

tics.

To avoid this, we can define a criteria, which ensures that

each gate has a sufficient number of activations. The first
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Fig. 13. The maximally allowed gating frequency fgate,max, in order to
avoid activation holes, is a function of the photon detection probability in the
first gate pph,gate1 and the designated dead time, which itself is set by the
designated afterpulsing probability. Depending on the choice of the activation
minimum value one can infer the product fgate,max · τ , which also signifies
the number of non activated gates after a detection. An example is given in
the text.

minimum plays the role of a bottleneck. When it is above

some threshold (to be defined), all the other minima are as

well14. The minimum depends on psig,gate1 and fgate · τ .

Using Eq.31 we can calculate, the maximally suitable gating

frequency fgate,max, depending on a designated threshold, see

Fig.13.

Example : assuming τ = 1 µs, psig,gate1 = 0.25 and an

activation minimum of 0.4. Then we infer fgate,max · τ = 4
(see arrows in Fig.13) and therefore fgate,max = 4

τ
= 4 MHz.

If the maximally suitable gating frequency fgate,max is not

large enough to obtain the designated sampling resolution,

it is necessary to shift the start delay of the train of gates.

For instance, if we want a sampling resolution of 5 m, but

fgate,max = 4 MHz, yielding only 25 m, we need to delay

the train (with respect to the laser pulse departure) four times

by 50 ns. This of course increases the total measurement time

by a factor 5.

We note that fgate,max, is in principle bounded by 1/∆tgate.

If the suggested fgate,max, according to Fig.13, is larger than

1/∆tgate, we are naturally led to the free running mode, where

the diode stays active until a detection is obtained [18], see

Fig.10.

This happens if

µ <
b

η · τ (32)

or equivalently

Popt < hν · b

η · τ (33)

where µ is the photon flux (number of photons per second,

cw) and Popt the corresponding power, η the detector

efficiency, τ the detector dead time and b a constant

depending on the activation minimum criteria, explicitly :

14The reason for this is the fiber loss, which decreases the backscattered
signal and therefore yields less detections and dead time applications. The
dead time effect gets less severe. When the backscatter power is very low
there is almost no difference to the ideal case
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for an activation minimum of 0.2(0.4, 0.6, 0.8), one obtains

b = 1.61(0.92, 0.51, 0.23). Due to its superior duty cycle, the

free running mode is the ideal low power solution.
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