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Abstract
The introduction of photon-counting detectors is expected to be the next major breakthrough in
clinical x-ray computed tomography (CT). During the last decade, there has been considerable
research activity in the field of photon-counting CT, in terms of both hardware development and
theoretical understanding of the factors affecting image quality. In this article, we review the recent
progress in this field with the intent of highlighting the relationship between detector design
considerations and the resulting image quality. We discuss detector design choices such as
converter material, pixel size, and readout electronics design, and then elucidate their impact on
detector performance in terms of dose efficiency, spatial resolution, and energy resolution.
Furthermore, we give an overview of data processing, reconstruction methods and metrics of
imaging performance; outline clinical applications; and discuss potential future developments.

1. Introduction

1.1. A brief history of photon-counting detectors
To count photons is the most intuitive approach for detecting x-rays, and if it were not for technical
challenges, photon-counting detectors (PCDs) would have been standard from the beginning of radiology.
Early on, gas detectors were commonplace, and Geiger–Müller devices counted individual interactions of
ionizing radiation. The Nobel-prize-awarded multi-wire proportional chamber (Charpak 1997) combined
photon counting with spatial resolution. The development was driven by fundamental physics research, but
photon-counting gas detectors were briefly used for imaging in a Paris hospital (Dubousset et al 2007). In
nuclear imaging, photon counting was used from the very beginning for the Anger camera as well as for the
first PET system. In this case, a scintillator, typically NaI or CsI, converted the incident gamma rays into
visible light that was detected by photosensitive devices. For x-ray imaging the challenges for photon
counting are much harder than for nuclear imaging. The average energy of the photons is only around
70 keV as compared to 140 keV for SPECT and 511 keV for PET. Moreover, the x-ray fluence rate for a
computed tomography (CT) scan can be up to 109 mm−2 s−1, while for nuclear imaging it is as low as 100
mm−2 s−1, putting much higher constraints on fast pulse processing for x-ray imaging.

The first photon-counting imaging system approved by the U.S. Food and Drug Administration was the
Sectra MicroDose Mammography (Åslund et al 2007) in 2011, with around one thousand installations
worldwide for breast-cancer screening and diagnosis. The first full-field photon-counting CT prototype was
evaluated in the clinic in 2007 based on a CdZnTe detector, and though limited in the count rate it could
accommodate, it still produced material-specific images of high quality (Benjaminov et al 2008). There are
currently at least four photon-counting CT systems under evaluation. Three of these, including one mobile
head CT system, utilize cadmium-based sensors (Yu et al 2016c, Si-Mohamed et al 2017a, Han-soo 2017),
and one uses silicon-based sensors (da Silva et al 2019). In particular, one cadmium-based system has
generated a large number of publications (Yu et al 2016a, 2016c, Symons et al 2018a, 2018b, 2017b,
Pourmorteza et al 2016, 2017). Furthermore, a CdTe-based photon-counting system limited to breast CT
(Kalender et al 2017) has been evaluated on patients. We are now at a crossroads to emerging clinical systems
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within the next few years, and the different solutions will likely continue to compete based on imaging
performance, reliability, and cost.

1.2. The clinical case for photon-counting CT
Despite the considerable improvements that CT technology has undergone in nearly half a century of
existence, there are numerous areas where the improvements promised by PCDs can provide solutions to
clinical problems (Willemink et al 2018). Their higher spatial resolution can improve visualization of lung
nodules (Kopp et al 2018); small bone details, such as in temporal bone imaging; small blood vessels, such as
coronary arteries where calcium blooming is a problem; or implants such as stents (Symons et al 2018a,
Mannil et al 2018, Sigovan et al 2019). The improved contrast-to-noise ratio (CNR), in particular for
contrast-enhanced imaging (Gutjahr et al 2016), can be used, for example, to improve the visualization of
blood vessels (Symons et al 2018b) or contrast-enhancing tumors. PCDs have also been demonstrated to
improve differentiation between grey and white matter in the brain (Pourmorteza et al 2017). Furthermore,
the ability to generate material-selective images has applications in neuroradiology, such as distinguishing
intracranial hemorrhage from calcification (Hu et al 2016) and iodinated contrast (Phan et al 2012), for
which dual-energy CT has been shown to be effective. The potential for improved material-selective imaging
with PCDs may also offer better visualization of atherosclerotic plaques by improving the ability to separate
materials such as lipid, calcium, and iodine (Alessio and MacDonald 2013, Boussel et al 2014).

Another promising aspect is improved low-dose imaging. The health hazard posed by low-dose ionizing
radiation is a contested question, but pediatric patients undergoing CT examinations with cumulative doses
of more than 50–60 mGy have been shown to exhibit an increased risk of brain cancer and leukemia (Pearce
et al 2012). In spite of this, CT is often the imaging alternative with best benefit versus risk for the patient,
and the dose in x-ray imaging should therefore be kept as low as reasonably achievable. By rejecting
electronic noise, PCDs can allow new imaging protocols with lower doses than what is possible today. This
fact can have important implications for imaging of children and adolescents, who are more
radiation-sensitive than adults, and for lung-cancer screening, where it is particularly important to minimize
the dose since the examination is performed on large numbers of healthy individuals (Symons et al 2016).

The energy-resolving capabilities of PCDs can be used to reduce artifacts due to beam hardening or metal
implants (Nasirudin et al 2015). They can thus provide improved diagnostic quality when imaging regions
with weak attenuation differences surrounded by dense bony structures, such as in the brain (Pourmorteza
et al 2017). Another potential application is found in the emerging field of radiomics, where large numbers
of quantitative radiomic features are extracted from medical images and analyzed to find patterns indicative
of diagnosis. These radiomic features are currently dependent on acquisition parameters, which limits
reproducibility (Berenguer et al 2018). The potential of photon-counting CT to generate quantitative
material maps can mitigate this variability. Improved tissue characterization also shows potential for
improving radiotherapy planning (Simard et al 2019).

Among the more speculative proposed applications of photon-counting CT are the use of new contrast
agents. Gadolinium, which is used in MRI, is an attractive candidate for photon-counting CT because of the
location of its K-edge in the central part of the diagnostic energy range (Roessl et al 2011). However, it is still
unclear whether gadolinium contrast agents can generate sufficient contrast at patient-safe concentrations.
Dual- or triple-contrast agent protocols, where iodine, gadolinium, and potentially also bismuth are
administered at different time points to show different phases of contrast uptake in a single scan, have also
been proposed (Symons et al 2017a, 2017b, Dangelmaier et al 2018). Further, there is ongoing research into
the development of new nanoparticle-based contrast agents containing heavy elements such as gold,
tantalum, or ytterbium (Cormode et al 2017, Kim et al 2018, Lambert et al 2018).

As an example of the clinical use of a high-resolution spectral PCD, an excised human heart with a
calcified coronary artery containing an iodinated gel was imaged using a state-of-the-art dual-energy CT
scanner (figure 1) and a prototype silicon-based spectral PCD (figure 2). The imaging task was to visualize
the artery and separate calcified regions from iodine. The dual-energy image was decomposed into several
material basis pairs: calcium (water), iodine (water), calcium (iodine) and iodine (calcium), where the basis
not shown is within the parenthesis. The spectral PCD images (figure 2) were decomposed into three bases:
water, iodine, and calcium. An overlay image was formed using the basis images in which calcium and iodine
were colored red and green, respectively. The high resolution combined with the simultaneous spectral
acquisition facilitated by the multi-energy-bin PCD shows potential to improve the diagnostic quality of the
CT images.

1.3. Outline
The purpose of this article is to summarize and discuss recent insights into the characteristic features of
PCDs and how they relate to the imaging performance of the CT system. Section 2 outlines the theoretical
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Figure 1. An image of an excised human heart with a calcified coronary artery containing iodinated gel. The leftmost image is a
67 keV virtual monoenergetic image. Two-material basis decomposition has been performed with the basis pairs: calcium (water),
iodine (water), calcium (iodine), and iodine (calcium). The image set was acquired using a state-of-the-art dual-energy CT
scanner. The slice thickness was 0.625 mm, the focal spot was 1.2 mm, and the x-ray tube was operated at 120 kVp and 384 mAs.
The images were acquired at the Karolinska Hospital, Stockholm, Sweden. Adapted from Grönberg et al (2020) (© 2020 Springer
Nature Switzerland AG. Part of Springer Nature.). Adapted with permission of Springer. CC BY 4.0.

Figure 2. An image of an excised human heart imaged with a prototype silicon-based spectral PCD. The leftmost image is a
67 keV virtual monoenergetic image. Three-material basis decomposition was performed with water, calcium, and iodine as
bases. An overlay image was formed in which the regions of calcium and iodine are colored red and green respectively. The image
was acquired at 120 kVp using a focal spot 0.4 mm, and reconstructed with a 0.625 mm slice thickness. The dose was matched to
that of the dual-energy image in figure 1. Adapted from Grönberg et al (2020) (© 2020 Springer Nature Switzerland AG. Part of
Springer Nature.). Adapted with permission of Springer. CC BY 4.0.

benefits of PCDs over energy-integrating detectors (EIDs). Section 3 outlines the different design choices
that must be made when developing a PCD. Section 4 discusses how image quality is affected by the detector
properties. Section 5 describes the steps needed to generate images from the measured data. Section 6
describes different metrics of imaging performance that can be used to guide the system design. Finally, in
section 7, we discuss what these insights mean for the future of photon-counting CT.
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2. Benefits of PCDs

2.1. Weighting of photons
In the photon-detection process and/or image formation, different weight can be given to photons of
different energy, affecting both the contrast and the noise of the signal.

The contrast between two projection measurements depends on the energy of the transmitted x-ray
photons. Generally, low-energy photons carry more contrast information than high-energy photons. Also, if
two projection measurements have different material composition, the dependency of contrast on photon
energy is elevated, and increased contrast can be obtained by increasing the weight given to photons that
carry more contrast information. Weighting some photons more than others increases the variance relative
to the mean value, thus reducing the signal-to-noise ratio (SNR). There is a fundamental trade-off between
the increase of contrast and the reduction of the SNR, and there is an optimal set of photon weights that
maximizes the CNR for a given imaging task (Schmidt 2009). The weighting of photons will often be
performed indirectly via the material-decomposition process (see section 5.2), where it can be seen as the
utilization of the contrast and noise of the signal to obtain a material thickness estimation with minimum
variance.

An EID weights each detected photon by its energy, thus adding additional weight to high-energy
photons, for which the contrast is lower. In addition, the non-uniform weighting of photons results in a
reduction of the SNR. The reduction of the SNR2 of an EID due to the weighting of the photons is commonly
referred to as the Swank factor (Swank 1973), and it is given by

IEID =

[´∞

0 ϵS(ϵ)dϵ
]2

´∞

0 ϵ2S(ϵ)dϵ
, (1)

where ε is signal amplitude and S(ε) is the normalized distribution of signal amplitudes registered by the
detector. The magnitude of the Swank factor depends on the distribution of signal amplitudes; the more the
amplitudes are distributed over different energies, the lower the Swank factor. The distribution of signal
amplitudes in turn depends on the spectrum from the x-ray tube, the attenuation of the imaged object, and
the response of the detector.

Ideal purely PCDs intrinsically weight all photons equally (one photon, one count). Counting photons
therefore gives relatively more weight to low-energy photons compared to energy integrating, resulting in a
higher contrast, in particular for low absorbing materials.4 PCDs also avoid the negative effect of the Swank
factor. In addition, spectrally resolving PCDs allow giving different weight to photons of different energy as a
part of the signal processing, and the weighting can be, for example, tailored to maximize the CNR.

As an illustration of the effect of photon weighting, consider the task of separating between two
projection measurements with a typical 120 kVp x-ray tube spectrum for which the x-rays pass through (a)
10 cm water and (b) 9 cm water plus 1 cm of 10 mgml−1 iodine-water solution, respectively. In this example,
we simulate an ideal PCD that detects all photons and registers the counts in two energy bins, slow and shigh,
separated by a threshold at 50 keV. The results are compared to a simulation of an ideal EID that integrates
the energy for all transmitted photons for the same imaging task. In order to optimize the CNR for the PCD,
a weighted sum of the two energy bins is formed:

s = xslow +(1− x)shigh, (2)

where 0⩽x⩽1, where x= 0.5 corresponds to the PCD without energy weighting. As figures-of-merit we
evaluate the following: the contrast between the two projections, defined as C = (sA − sB)/sA; the
signal-to-noise ratio, defined as SNR = sA/σ(sA), where σ is the standard deviation; and finally, the
contrast-to-noise ratio, defined as CNR = C× SNR = (sA − sB)/σ(sA).

The contrast, SNR, and CNR for the PCD are plotted versus x in figure 3, and the performance of the EID
is included for reference. The SNR of the PCD obtains its maximum at x= 0.5, i.e. equal weight to both
energy bins. The contrast, on the other hand, increases monotonically as more weight is given to the
low-energy bin (higher x). The CNR, which is the product of the contrast and the SNR, reaches a maximum
of 1.17 for x= 0.76. The corresponding relative CNR2, which is proportional to x-ray dose, is 1.37. In other
words, for this imaging case, it is motivated to sacrifice SNR in order to gain contrast, and thus achieve a
superior CNR.

For the simulated ideal EID (gray lines in figure 3), on the other hand, the suboptimal energy weighting
results in a relative contrast of 0.82 (compared to the PCD without energy weighting), and a relative SNR of

4 Materials with low absorption transmit relatively more low-energy photons.
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Figure 3. An example of the projection-domain contrast, SNR, and CNR for a task of separating 10 cm water and 9 cm water plus
1 cm of 10 mgml−1 iodine-water solution. The PCD is ideal with two energy bins for which energy weighting has been
performed in accordance with equation (2). The performance is compared to that of an ideal EID for the same imaging task. Each
figure-of-merit has been normalized to the performance of a PCD without energy weighting (x= 0.5).

0.96 (in accordance with the Swank factor). In total, the sub-optimal energy weighting of the EID results in a
relative CNR of 0.79, or, equivalently, a relative CNR2 of 0.63, which is to be compared with 1.37 for the PCD
with optimal energy weights. In other words, the ideal spectral PCD with optimal energy weights is, for this
particular imaging task, 2.17 times more dose efficient compared to the ideal EID. It can be noted that the
performance of the EID is similar to that of the spectral PCD with x= 0.27.

2.2. Material-specific imaging
Another benefit of energy-resolving PCDs is that they allow measuring the composition of the imaged object
through a process known as material decomposition. This method is based on the fact that the linear
attenuation coefficient µ(E) of any material in the human body can be well approximated by a linear
combination of a small number of basis functions f j(E): µ(E) =

∑Nm

j=1 ajfj(E), where the coefficients ai are
referred to as basis coefficients (Alvarez and Macovski 1976). Since there are two dominant physical processes
contributing to x-ray attenuation in the diagnostic CT energy range, namely photoelectric absorption and
Compton scattering, Nm = 2 basis functions are commonly assumed to be sufficient for substances
containing only light elements, such as human tissues. In addition to these two, one additional basis function
must be included for each heavy element whose attenuation coefficient contains a K-edge discontinuity
within the diagnostic energy range (Roessl and Proksa 2007, Schlomka et al 2008).

This low dimensionality means that it is possible to completely characterize the energy dependence of the
linear attenuation coefficient at every point in the imaged volume with a small number of energy bins: at
least two bins are needed for non-enhanced imaging, and three bins with a contrast agent. Compared to the
dual-energy systems in clinical use today, the capability to measure the amounts of three or more basis
materials is one of the benefits of PCDs, along with other advantages such as the reduction of spectral
overlap, the absence of spatial mismatch between the energy-bin images, and the ability to obtain spectral
information also in the peripheral parts of the image as opposed to dual-source systems, where one detector
has a limited field of view due to geometric constraints.

From the energy-resolved measured data, the material composition at each point in the imaged volume
can be inferred through material decomposition. This process, which can take place before, during, or after
the image reconstruction, (see section 5.2) results in a set of reconstructed basis images. These basis images
show the distribution within the imaged object of each of the selected basis materials, e.g. water, calcium, and
iodine. Once such a set of basis images has been generated, it is straightforward to obtain distribution maps
of other substances (e.g. muscle and fat) through a simple linear transformation. Another possibility is to use
the basis material maps to generate images of the x-ray attenuation coefficient at each energy (i.e. virtual
monoenergetic images; see Leng et al (2017)), which are free of beam-hardening artifacts (see section 5.4).

5
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A further possibility is to form a linear combination of the basis images to generate an image that is
optimal for maximizing detectability for a specific imaging task. It turns out that this methodology gives a
detectability for an optimal linear observer that is equal to the detectability obtained from optimal weighting
of the original energy-bin images, provided that photon statistics are sufficient (Alvarez 2010, Persson et al
2018b). In other words, as long as the detector is operating far enough above the fluence level that causes
photon starvation, the material-decomposition process preserves the information available in the measured
data. Since material decomposition also has the theoretical ability to remove beam hardening completely,
displaying weighted basis images makes it possible to avoid the trade-off between beam-hardening artifacts
and image detectability that is observed when generating weighted sums of the original bin images
(Shikhaliev 2005).

Since a larger number of estimated basis components makes the material decomposition process more
ill-conditioned, the benefit of adding each new basis material diminishes with an increasing number of basis
functions used in the decomposition. At the same time, using a detector with a large number of energy bins
makes it possible to choose a number of basis functions that is optimal for a given task. By using four or
more energy bins, it is thus possible, in principle, to quantify several contrast agents independently.

Furthermore, it is still an open research question whether the two-basis approximation is exact down to
the precision that photon-counting CT scanners are able to measure. Multiple studies indicate that the
two-material approximation is insufficient for performing high-precision measurements of the attenuation
coefficient (Williamson et al 2006, Bornefalk 2012b, Alvarez 2013). This suggests that it should be possible to
separate more than two components (e.g. water, calcium and iron) from each other when imaging
unenhanced human tissue. Measuring the concentration of three materials can be desirable when imaging,
for example, vulnerable plaques (Wang et al 2011b) or liver iron overload (Luo et al 2015).

However, even if three-material decomposition of unenhanced tissue turns out to be feasible, it is likely
that the high sensitivity to noise in three-basis decomposition will limit its application to large-area tasks
(Alvarez 2013), unless prior assumptions about mass or volume preservation are included (section 5.2). The
two-basis approximation is also inaccurate at sharp edges in the object, which get a unique spectral signature
due to the non-linear partial volume effect (Glover and Pelc 1980), a phenomenon that can be used to obtain
subpixel spatial information from spectral measurements (Persson et al 2018a).

2.3. Spatial resolution
One of the main advantages of the PCD is the improved spatial resolution compared to conventional
detectors. PCDs that have been designed for full-body clinical CT generally have pixel sizes ranging from
0.225 to 0.5 mm at the detector; this is smaller than conventional EIDs today, which have pixel sizes generally
on the order of 1 mm (Leng et al 2016, Persson et al 2014, Shefer et al 2013, da Silva et al 2019). Recent
developments have, however, enabled improvements of the spatial resolution of EIDs reaching approximately
0.5 mm pixel pitch at the detector (Yanagawa et al 2018).

The spatial resolution of EIDs has been held back by several practical limitations. To mitigate pixel
crosstalk, the detectors are made up of scintillator crystals that have to be diced into pixels, and on the edges
of each pixel, there is a reflecting material which keeps the secondary light from escaping the pixel (Shefer
et al 2013). The finite thickness of the reflectors creates dead area between the pixels, reducing the geometric
efficiency. If the pixels are made smaller, the dead area takes up a larger fraction of the detector area.
Semiconductor detectors, on the other hand, do not emit any secondary light and therefore require no
reflectors. Instead, the detector consists of a continuous piece of semiconductor material, and these direct
conversion detectors are pixelated by charge-collecting electrodes. The pixels can therefore be made smaller
without losing geometric efficiency.5

Also, due to the nature of the energy-integrating signal formation, there is a small contribution of
integrated electronic noise for each detector channel. If the pixels are made smaller, the number of detector
channels per detector area increases, as does the total amount of integrated noise. A PCD, on the other hand,
can adapt the lowest energy threshold to the noise floor for each channel and avoid counting noise, even for
very small pixels.

Several approaches have been suggested for improving the spatial resolution of scintillator detectors, such
as using an attenuating grid to obtain a smaller pixel aperture (Flohr et al 2007). However, this comes at the
expense of a substantial reduction in dose efficiency. It has also been proposed to use high-resolution
flat-panel detectors for CT (Gupta et al 2006). However, there are some remaining issues that have to be
addressed in order to make the technology feasible, including the characteristics of the scintillator material

5 At the expense of an increased fraction of charge sharing; see section 3.2.4.
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Figure 4. A comparison of the high-resolution imaging performance on the 28 lpmm−1 (A), 22 lpmm−1 (B) and 14 lpmm−1

(C) patterns of a CATPHAN 700 phantom (CTP714, The Phantom Laboratory) for (a) a conventional (single-energy) CT system
with 0.7 mm focal spot, (b) a prototype silicon-based PCD with 0.4 mm focal spot. Both images were acquired with axial mode at
120 kVp with comparable dose and reconstructed with a high-resolution kernel. Adapted with permission from da Silva et al
(2019). © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE).

(e.g. speed, afterglow, and lag), object scatter corrections due to removal of the anti-scatter grid, and the
dynamic range of the detector.

The benefit of the improvement in spatial resolution made possible by PCDs has been demonstrated on
multiple occasions (Leng et al 2018, Bartlett et al 2019, Symons et al 2018a, von Spiczak et al 2018). Figure 4
shows an example of the high-resolution performance of a conventional CT system and a silicon-based
full-body PCD prototype. Details about the prototype system can be found in da Silva et al (2019). In this
example, the PCD can resolve approximately twice as many line pairs per millimeter as the conventional CT
system. Most conventional dual-energy CT systems have limited spatial resolution owing to aspects of the
system design. For example, if the spectral separation comes from the source, it is common to use a larger
focal-spot size to facilitate a sufficient tube output. Spectral PCD systems, on the other hand, will facilitate
simultaneous spectral and high-resolution imaging. Figure 5 shows a comparison of the spatial resolution of
a state-of-the-art dual-energy system and a silicon-based full-body PCD prototype for imaging the structures
of the inner ear.

In addition to the improved spatial resolution in the transaxial and longitudinal direction caused by the
smaller pixel size, PCDs also have an advantage over EIDs in terms of the angular spatial resolution. The
reason for this is twofold: First, PCDs do not suffer from scintillator afterglow which can lead to lag between
consecutive measurements in EIDs if the sampling rate is high. Second, the electronic noise level in EIDs
tends to increase for higher sampling rate, so that increasing the angular resolution leads to a penalty in dose
efficiency. PCDs, on the other hand, are able to reject the electronic noise as will be discussed in section 2.4
and can therefore avoid this dose penalty. This allows higher sampling rates, provided that enough
bandwidth is available to read out the data (Sjölin and Danielsson 2017). Potentially, the faster sampling rates
could also be used to detect rapid motion.

With an increased spatial resolution of the detector comes a risk of introducing aliasing artifacts in the
reconstructed image. This can be avoided by maintaining sufficient radial and angular sampling rates. In the
radial direction, the sampling rate is automatically increased since the sampling interval (pixel
center-to-center distance) is reduced. In the angular direction, on the other hand, the sampling rate (number
of views per revolution) must by increased in order to avoid visible angular blur and aliasing artifacts.

As a final remark on spatial resolution, we note that the detector pixel size and the angular sampling rate
are not the only factors impacting the spatial resolution of the imaging system. In order to fully utilize the
increased spatial resolution of the detector, appropriate adjustments must be made to the focal spot size,
image reconstruction grid, and reconstruction algorithms. All of these aspects significantly impact the CT
imaging chain.

2.4. Low-dose imaging
A further application of photon-counting imaging is low-dose imaging. There are two reasons why PCDs are
able to provide superior performance for low-dose imaging tasks compared to energy-integrating detectors.

The first reason is the overall improvement in image quality achievable with PCDs, as described in
previous sections. This includes CNR improvement through better utilization of the energy information in
the detected x-ray beam and improvement in visualization of small objects. Since the detectability of a
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Figure 5. An example of the spatial resolution of the structures of the inner ear of a human volunteer comparing a conventional
dual-energy CT system (top row), and a silicon-based full-body PCD prototype (bottom row). The images were dose-matched,
and both images were acquired at 120 kVp and reconstructed at 67 keV monoenergy. The dual-energy images were acquired using
1.2 mm focal spot, and the PCD images were acquired using a 0.6 mm focal spot. The dual energy images were acquired at the
Karolinska Hospital, Stockholm, Sweden. The PCD prototype is described in described in da Silva et al (2019).

feature in the image increases with dose, these potential improvements in image quality at equal dose can be
traded for a lower dose by keeping the image detectability fixed and lowering the tube current instead.

Second, PCDs have a particular advantage for imaging with low dose levels, namely their ability to reduce
the impact of electronic noise. PCDs use a threshold to separate real counts from noise, and by setting the
threshold high enough above the noise floor, the electronic noise can be rejected. In this case, the only
degradation caused by electronic noise is a small broadening of the energy-response function due to random
fluctuations in the pulse-height measurements. EIDs, on the other hand, measure the total x-ray energy
deposited during a certain time interval, and the electronic noise will be included in the measurement as a
random additive term. The magnitude of this term is relatively constant, whereas the quantum noise is
proportional to the incident fluence rate; therefore the electronic noise can go more or less unnoticed at high
doses but becomes prohibitive at low doses or for large patients (Duan et al 2013). On the other hand, the
detective quantum efficiency (DQE) (see section 6.3) of a PCD is, theoretically, constant down to the
zero-flux limit. The relative advantage of photon-counting CT compared to energy-integrating CT is
therefore larger at low dose levels (Yu et al 2016a). PCDs may therefore allow new low-dose imaging
protocols at dose levels where electronic noise is prohibitive with current state-of-the-art scanners, with
potential applications in pediatric imaging and lung cancer screening (Symons et al 2016).

3. Detector design considerations

3.1. General functionality of a PCD
PCDs for x-ray CT are so-called direct-conversion detectors, wherein the x-ray photons are converted
directly into an electric signal as opposed to first being converted to visible light. PCDs for CT generally
consist of semiconductor sensors with an applied bias voltage. An interacting photon creates a cloud of
charge carriers, creating a signal which is processed and registered by an application-specific integrated
circuit (ASIC). Each detected photon interaction results in a count in an energy bin corresponding to the
energy deposited in the interaction.
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Table 1. Comparison of properties of cadmium-based and silicon-based detectors. Compared to a CdTe/CZT detector, constructing a
full-area silicon detector system is more complex because of the edge-on sensor geometry. FWHM, full width at half maximum.

Detector material CdTe/CZT Silicon

Preferred orientation Face-on Edge-on
System construction complexity Less complex More complex
Typical lowest threshold 20–25 keV 5–10 keV
Typical energy resolution (FWHM) 5–10 keV 3.5–5.4 keV
K-fluorescence escape probability High Low
Compton-scatter probability Low High
Mobility-lifetime product Low High
Amount of polarization at high fluence rate High Low
Material processing technology Under development Mature

Figure 6. A comparison of the geometry of a face-on (a) and edge-on (b) detector configuration. The volume outlined by the
dashed lines corresponds to a detector pixel. Detectors with edge-on geometry may have several electrodes (depth
segments/strata) per pixel in order to reduce the detected count rate per ASIC channel.

Despite many years of development, PCDs have only recently approached the performance necessary for
being used in clinical CT scanners. The main challenges are achieving good performance at high count rate,
obtaining good spectral fidelity, and manufacturing a full-field detector with sufficiently low density of
imperfections at a competitive cost. In the following, we examine the different detector design considerations
that need to be accounted for in order to optimize detector performance.

3.2. The detector material
There are currently two main converter material candidates: cadmium (zinc) telluride (CdTe or CZT) and
silicon (Si). Both candidates have pros and cons, some of which we will mention here, and their properties
are summarized in table 1. More comprehensive accounts for the properties of the detector material and the
functionality of the ASICs can be found in the literature (Ballabriga et al 2016).

3.2.1. Detector physics
One of the main differences between CdTe/CZT and Si detectors is the relative x-ray stopping power. CdTe
has a high linear attenuation coefficient, requiring only about 1.7 mm to stop 95% of the x-rays in a 120 kVp
spectrum filtered by 30 cm of water. Silicon, on the other hand, has a relatively low atomic number and
requires roughly 55 mm to stop the same fraction of x-rays under the same conditions. As it is not feasible to
make the semiconductor wafers much thicker than a few millimeters, the silicon wafers are mounted edge-on
with respect to the incoming x-rays (Bornefalk and Danielsson 2010). This way, the effective depth of the
detector is determined not by the thickness of the wafer, but by the length of the wafer, allowing the detector
to have as long an absorption length as necessary. See figure 6 for an illustration of the face-on (CdTe/CZT)
and edge-on (Si) geometries.

Another difference between the detector materials is the prevalence of the different types of x-ray
interactions that occur in the material. In materials containing heavy elements (high-Z materials), such as
CdTe/CZT, the main interaction mechanism is photoelectric absorption; Compton and Rayleigh scattering
accounts for only a few percent of the total absorption. Silicon, on the other hand, has a high probability of
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Table 2. The distribution of primary interactions in a 50 mm deep Si detector and a 1.6 mm deep CZT detector for a 120 kVp spectrum
attenuated by 30 cm of water.

Interaction Si CZT

Total 0.94 0.94
Photoelectric 0.28 0.87
Compton 0.56 0.04
Rayleigh 0.10 0.04

Compton interactions, which dominate over the photoelectric effect for photons with energy higher than
48 keV. An example of the distribution of primary interactions in a 50 mm Si detector and a 1.6 mm CZT
detector is shown in table 2. The distribution of interactions is computed for a typical 120 kVp x-ray tube
spectrum that has been filtered through 30 cm of water (Cranley et al 1997, Hubbell and Seltzer 2004).

However, keep in mind that it is not straightforward to assess the signal quality based on the distribution
of primary interactions in the detector material. For example, in the event of a Rayleigh scattering, there is a
high likelihood that the photon will scatter with a small angle and interact again within the same detector
pixel. In the same way, the charge from a photoelectric interaction can be shared between two pixels,
distorting the measured energy and resulting in a double count. A Compton-scattered photon deposits parts
of its energy in the first interaction and continues in a new direction. If a Compton-scattered photon is
detected at least once, it adds to the detection efficiency of the detector. However, the spectral information is
largely lost. If the Compton-scattered photon is detected more than once, then the signal is degraded due to
count multiplicity (see section 4.2).

For high-Z detector materials, there is a high probability of K-fluorescence emission, namely, a
photoelectric interaction with a high-Z element (e.g. Cd and Te) results in the emission of K-shell
characteristic x-rays (Shikhaliev et al 2009). For CZT, approximately 70% of all photoelectric absorptions
result in the emission of characteristic x-rays (Krause 1979). The energies of the emitted characteristic x-rays
lie between 23 and 27 keV, and the mean free path in the detector material is approximately 120 µm. The
emission and reabsorption of characteristic x-rays result in a skewing of the energy spectrum (see
section 4.4), a reduction of the spatial resolution (see section 4.3), and count multiplicity, which reduces the
quantum efficiency of the detector (see section 4.2).

As illustrated in this section, the detection mechanisms of PCDs are complex. In the end, what matters
for the signal quality is (1) the number of photons that are registered at least once (section 4.1), (2) the count
multiplicity (section 4.2), (3) the spatial distribution of the counts (section 4.3), and (4) the associated
spectral response (section 4.4). To get a full picture of the imaging performance, these effects must be
evaluated simultaneously (section 6.3).

3.2.2. Collection of charge carriers
When a photon interacts in the semiconductor detector material, a cloud of charge carriers (electron–hole
pairs) is created. The number of charge carriers is proportional to the energy deposited in the interaction.
The electrons and holes drift in opposite directions through the detector material by an applied high-voltage
bias (typically 150–1000 V, depending on the material and the material thickness), and the electrons and
holes are collected by the electrodes and the back side, or vice versa (Fang et al 2018).

The signal in the electrode does not result from the collection of the charge itself, but rather from the
movement of the charge in the electric field in the detector bulk (Hamel and Paquet 1996). When the
charged particles move in the electric field, an electrical current is induced on the electrode. Therefore, the
particles that are collected on the back side also contribute to the signal. How much the movement of
particles induces a signal on the electrode depends on the strength of the so-called weighting potential (Xu
et al 2011). By using very small pixels, the weighting field is strong only very close to the electrode, and only
particles moving there contribute significantly to the signal. This is the so-called small-pixel effect(Barrett
and Myers 2003), and it is used to minimize the signal from slowly moving holes in CdTe/CZT.

It is possible to collect either the holes or the electrons at the electrode. For detectors with low hole
mobility and a high risk of hole trapping, such as for CdTe/CZT, it is advantageous to collect the electrons.
For silicon detectors, the two types of charge carriers have similar mobility and there is a low risk of trapping,
and both options are therefore feasible. For CdTe/CZT, it is desirable to drift the holes as short a distance as
possible due to the low mobility, and since they are collected at the back side, the back side of the sensor
should preferably face the x-rays.

3.2.3. Sensor thickness
The sensor thickness plays a part in determining the average charge collection time and the charge cloud
diameter, and therefore the amount of charge sharing. Thicker sensors also degrade spectral response due to
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increased probability of charge-carrier recombination during the drift through the wafer. For face-on
detectors, such as CdTe/CZT, the sensor thickness determines the total absorption efficiency of the detector,
and typical thicknesses range from 0.9 to 3 mm (Barber et al 2013, Taguchi and Iwanczyk 2013). For edge-on
detectors, the wafer thickness determines the pixel pitch in one direction (the pixel pitch in the other
direction is determined by the width of the charge-collecting electrodes; see figure 6). A typical value of
sensor thickness for edge-on Si detectors is 0.5 mm (Xu et al 2013a).

3.2.4. Charge sharing
Charge sharing affects the quantum efficiency of the detector (since a photon can be lost if the charge is split,
so that both pulses are below the lowest energy threshold), the spectral response, and the DQE via count
multiplicity.

Factors that affect the prevalence of charge sharing include the distribution of energies deposited in the
detector material (higher deposited energies create more charge sharing); the size of the charge cloud when it
reaches the electrode (affected by charge mobility, thickness of material, bias voltage, and location of
interaction); the pixel size (smaller pixels result in more charge sharing); the number of neighboring pixels
(four for face-on, and two for edge-on); and the lowest threshold (a high lowest-energy threshold reduces the
rate of double counts). Furthermore, charge sharing can be reduced by using an attenuating anti-scatter grid
located over the pixel boundaries (Tkaczyk et al 2009). Many approaches for modeling the effects of crosstalk
between detector pixels and energy bins have been investigated (Taguchi et al 2016, Faby et al 2016).

3.2.5. Electronic noise
The electronic noise on an ASIC channel is affected by many factors, including the capacitance connected to
the ASIC channel input, the sensor leakage current, the temperature, and the properties of the ASIC analog
channel (Xu et al 2013b). The electronic noise in a PCD affects the energy resolution and the quantum
efficiency of the detector by defining the lowest possible threshold setting without counting noise.

Silicon sensors need to be sensitive to low-energy Compton interactions in order to obtain a high
detection efficiency, and it is therefore important to be able to set the lowest-energy threshold as low as
possible. This is possible only if the electronic noise in the ASIC is low. In comparison, the noise
requirements for an ASIC used with a CdTe/CZT sensor are less stringent, since most of the useful events
deposit an energy of 25 keV or more.

3.2.6. Depth segmentation
A sensor in the edge-on geometry can divide the pixels into depth segments/strata, effectively dividing the
count rate by the number of segments (Liu et al 2016). This capability is important if the count-rate
tolerance is an important factor in the total detector performance. In addition, the depth segmentation
introduces a redundancy in the pixel channels that improves reliability.

3.2.7. Imperfections in the detector material
One drawback of cadmium telluride is its relatively high density of imperfections, which can act as traps or
recombination centers for electrons and holes (Bolotnikov et al 2005). This is detrimental to the detector
performance in two ways: First, the build-up of trapped charges in the semiconductor gives rise to an electric
field that causes the charge-collection efficiency to degrade or even break down at high photon fluence rates,
a phenomenon known as polarization (Siffert et al 1976, Bale and Szeles 2008). Second, the amount of
charge that contributes to the measured signal becomes dependent on the interaction location, resulting in
degraded energy resolution in the form of tailing in the energy spectrum (Xu et al 2011). This tailing can be
reduced by making the detector pixels small relative to the wafer thickness, thereby decreasing the sensitivity
of the measured signal to the hole motion, and therefore also hole trapping, through the small-pixel effect
(Barrett et al 1995). At the same time, using too-small electrodes can result in loss of energy resolution, in
addition to the spectral degradation caused by charge sharing, due to incomplete charge collection in the
case when the surface of the material is not a perfect dielectric and there is a slight surface conductivity
(Bolotnikov et al 1999).

In contrast, silicon sensors can be manufactured with a very low density of imperfections. Since this
material also has a higher charge-carrier mobility compared to CdTe, the mobility-lifetime products for
electrons and holes in silicon are approximately 3–4 orders of magnitude larger than those of CdTe (Fang
et al 2018), meaning that most charge carriers live long enough to contribute to the signal. This leads to
negligible charge tailing compared to CdTe/CZT, apart from the Compton interactions (Xu et al 2013a), and
ensures that polarization is much less of a problem.
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Figure 7. A schematic drawing of a typical digital channel comprising a set of pulse-height comparators and subsequent digital
counters.

3.2.8. Other factors
Other important factors related to the detector material are production reliability, stability over time, and
production cost. In the end, these factors may be important to the adoption of PCDs in the clinic.

3.3. Signal processing
3.3.1. The analog channel
The induced current on the electrode is convolved with the transfer function of the ASIC analog processing,
which in general terms consists of a charge-sensitive amplifier and a shaping filter. The main purpose of the
analog processing is to produce an output pulse with a pulse height that is proportional to the integral of the
induced current, which in turn is proportional to the charge collected on the electrode, and to do so with a
high signal-to-noise ratio.

One of the main parameters of the analog channel is the shaping time, which determines the temporal
width of the ASIC filter kernel. For high count-rate applications, the shaping time should be kept as short as
possible in order to avoid pulse pileup. However, the shaping time needs to be long enough to ensure that the
height of the output signal is proportional to the energy. If the shaping time is too short, then the amplitude
of the output signal will depend on the length of the input signal (a longer input signal resulting in a lower
amplitude and vice versa), and the energy resolution is adversely impacted. A long shaping time also
generally leads to a decreased relative noise level, since the input signal is low-pass filtered more heavily by
the shaper. Hence there is a trade-off between pileup tolerance, noise level, and energy resolution, which has
been addressed by, for example, using dual shapers (Sundberg et al 2018).

3.3.2. The digital channel
The ASIC channel on a multi-bin PCD has several pulse-height comparators (thresholds) that are used to
identify the arrival of a new photon pulse and to estimate the energy of the photon interaction (see figure 7).
Each comparator compares the amplitude of the output signal from the analog channel to a programmable
reference voltage supplied by a digital-to-analog converter. The comparator returns a one or a zero
depending on whether the signal exceeded the reference voltage or not. The photon counts are categorized
into a set of counters (energy bins), generally one for each comparator.

The number of energy thresholds varies between different photon-counting ASICs (Taguchi and
Iwanczyk 2013). In order to perform a two-basis material decomposition, it is necessary to have only two
energy thresholds. However, the performance of the material decomposition depends on the position of the
thresholds, and the optimal selection of the thresholds is task dependent. Having more thresholds ensures
that a close-to-optimal CNR can be obtained for all imaging tasks in a scan (Shikhaliev 2008, Zheng et al
2020), and that close to the minimum possible noise can be achieved in material-specific images (Alvarez
2011, Faby et al 2015). Also, more thresholds can improve the effectiveness of corrections, such as
charge-sharing or pileup correction (see section 3.3.2).
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The way the digital part of the ASIC analyzes the output from the comparators is commonly referred to
as the counting mode, and the exact implementation differs between ASICs. The counting modes are
generally categorized as either paralyzable or non-paralyzable, referring to the behavior of the channel under
heavy pulse pileup (section 4.5).

For a non-paralyzable detector, when a photon pulse crosses the lowest threshold, a counter is
incremented, and a dead time is initiated during which no other photons are counted. After the dead time,
the channel can count again. The dead time is selected such that the signal induced by the longest input
pulses are below the lowest energy threshold at the end of the dead time. With increasing number of detected
photons per second on the channel, the output from the non-paralyzable channel approaches a fixed number
(the maximum number of dead times that fit within a single readout interval).

In a paralyzable detector, the dead time is extended until the signal drops below the threshold. At high
flux rates, pileup can cause the signal level to exceed the threshold level for longer periods, resulting in
increased dead time. Paralyzable behavior occurs, for example, if the detector is configured to count the
number of times the input signal crosses each threshold, known as the threshold-crossing frequency. In
presence of severe pileup, the input signal does not fall below the highest threshold, and the
threshold-crossing frequency therefore drops to zero.

It is also possible to implement other counting modes, such as detection of local maxima (peak sample
and hold) using the comparators, and Hsieh and Pelc (2016) have shown that more sophisticated counting
modes can substantially improve the performance of the detector.

3.3.3. Charge summing and anti-coincidence logic
Charge sharing and the emission/reabsorption of characteristic x-rays has a significant negative impact on
the imaging performance of the detector (Schlomka et al 2008, Xu et al 2011, Shikhaliev et al 2009).

The corrupted signal can be partially restored by means of interpixel communication (Koenig et al 2014,
Ji et al 2018). One way of correcting the signal is to use analog charge summing (e.g. the Medipix3RX ASIC)
(Ballabriga et al 2007, Koenig et al 2013, Nilsson et al 2007). A circuit on the ASIC sums the charge in
overlapping clusters of, for example, 2× 2 pixels prior to comparison with the energy thresholds, and the
photon count is allocated to the pixel that registered the largest collected charge. The analog
charge-summing mode obtains an energy resolution corresponding to the increased pixel size, while keeping
the spatial resolution defined by the native pixel size. However, the detector reduces its capability to cope
with high count rates by a factor equal to the number of pixels for which the charge is summed.

Digital anti-coincidence logic has been implemented in, for example, silicon strip detectors developed for
mammography (Fredenberg et al 2010b). The scheme identifies double-counting events where the pulses in
two neighboring pixels cross over the lowest energy threshold simultaneously, and it keeps the first detected
pulse (which generally is larger) and disregards the second pulse. This method improves the noise properties
and the spatial resolution by removing double counting, but does not improve the spectral imaging
capability since no energy correction is made.

A spectral version of the digital anti-coincidence logic, referred to as digital charge summing, has been
evaluated in simulation (Hsieh and Sjolin 2018). For the evaluated imaging cases, and for a detector with
only two energy thresholds, the digital charge summing achieved roughly half the benefit (improved dose
efficiency) compared to the analog charge summing. Digital charge summing has the potential to be much
faster than its analog counterpart, since the digital charge summing needs only a short coincidence window
to register if two events are simultaneous; otherwise, the channel operates as normal. The probability of false
coincidences (i.e. two events in neighboring pixels randomly occurring within the coincidence window) is
therefore low, but not negligible.

Further, it has also been suggested that, instead of correcting the charge-sharing events, the coincidences
can be registered in so-called coincidence counters, read out from the ASIC and handled in post-processing
(Hsieh 2020).

4. Effects impacting image quality

The effect of x-ray scatter, characteristic fluorescence reabsorption, and charge sharing between pixels is
described by three processes: degradation of the spatial resolution, increase of noise, and degradation of the
spectral information.

4.1. Quantum efficiency
The key figure of merit for the dose efficiency of an x-ray detector is the quantum efficiency, which describes
how many of the incoming photons are detected. For the quantum efficiency, it does not matter if the photon
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is detected in a photoelectric event or a Compton-scattering event, or if it is affected by K-fluorescence or
charge sharing. As long as the photon is detected at least once, it contributes to the detection efficiency.

Naturally, the thickness of the detector material impacts the quantum efficiency. However, thicker
detectors can affect other important aspects of the detector performance. For face-on detectors, a thicker
material affects the charge collection time, and therefore the energy response, via an increase of charge
trapping/recombination and charge sharing. Edge-on detectors do not suffer from the same downside to
increasing the depth of the detector, apart from the increase in detector material and the resulting more
stringent demands on alignment precision, since the distance the charge travels remains the same.

The position of the lowest threshold can have a large impact on quantum efficiency by determining how
many low-amplitude input pulses are detected. Any process of spectral degradation that causes some of the
photon pulses to become lower than the lowest threshold leads to a reduction of the DQE. For Si, this effect
can be caused by charge sharing and Compton scattering. For CdTe/CZT, this effect can, in addition, be
caused by K-fluorescence emission/reabsorption and the trapping/recombination of charge carriers.
Photon-induced pulses dropping below the lowest energy threshold as a consequence of charge sharing can
lead to regions of insensitivity at the boundaries between pixels (Tlustos et al 2006). The lowest energy
threshold also determines the number of double counts to a large extent by inclusion or exclusion of
low-energy charge sharing and K-fluorescence reabsorption. For Si, the lowest threshold is often set at
around 5–15 keV in order to include many Compton interactions (Bornefalk and Danielsson 2010, Persson
et al 2014), and for CdTe/CZT, the lowest energy threshold is often assumed to lie at 20–25 keV (Xu et al
2011, Shikhaliev 2009, Yu et al 2016a). In practice, it may not be optimal to reject electronic noise
completely, but instead to operate the detector with the threshold at a low enough level where a small
number of false counts are generated by the noise floor, as long as the extra noise is outweighed by the benefit
of detecting more primary detection events (Rajbhandary and Pelc 2018).

The semiconductor wafer is not necessarily sensitive in the entire bulk of the detector. For CdTe/CZT,
there can be a dead layer near the back side of the sensor which is insensitive to x-rays (Matsumoto et al 2000,
Moralles et al 2007),6 and for Si, there is generally an inactive guard ring around the wafer protecting against
leakage current. The dead layers can have a large impact on the performance of the detector, in particular for
CdTe/CZT since the detector material is highly attenuating. For example, a 20 µm dead layer on a CdTe/CZT
detector reduces the quantum efficiency by approximately 9%, whereas a 200 µm guard ring on a Si detector
reduces the quantum efficiency by approximately 1.5% (for a 120 kVp spectrum attenuated by 10 cm of
water). A dead layer on CdTe/CZT detectors can also form as a consequence of high x-ray flux (Du et al
2002). Furthermore, there is a dead layer close to the pixels, where an interaction gives rise to charges that
only move through part of the weighting field and therefore generate a reduced signal (Boucher 2013).

4.2. Count multiplicity
As a consequence of scatter, K-fluorescence, or charge sharing, a photon can be counted more than once.
Count multiplicity gives extra weight to a fraction of the photons, resulting in a reduction of the
zero-frequency DQE and noise correlations between neighboring pixels (Michel et al 2006).

As a consequence of count multiplicity, the zero-frequency DQE is reduced by a factor

Imultiplicity =

(
∑∞

n=1 nrn

)2

∑∞

n=1 n2rn
, (3)

where rn is the fraction of detected photons that are counted n times. Comparing equation (3) to the Swank
factor of an EID (1), we can see that the expressions are identical apart from that the signal amplitude (ε) in
equation (1) is exchanged for the multiplicity (n) in equation (3).

Counting photons in more than one pixel results in pixel-to-pixel correlations and a non-white noise
power spectrum (NPS) (Xu et al 2014). The detector NPS can be obtained by taking the discrete Fourier
transform (DFT) of the auto-covariance of the counts measured by the detector array (Cunningham 2000).
In the special case for which a fraction p of the λ photons that are counted in a pixel are counted also in the
neighboring pixels (p/2 to the left and p/2 to the right), the auto-covariance is given by

Cov [N0,Ni] =











λ(1+ p), for i = 0

λp, for |i|= 1

0, for |i|> 1,

(4)

6 The x-rays generally enter through the back side.
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Figure 8. The normalized noise power spectrum (NPSnorm) on the detector as a result of double-counting photons in neighboring
pixels with probability p. The NPS is plotted up to the Nyquist frequency without oversampling.7

where N i is the number of counts in the ith pixel. To illustrate the effect of the pixel-to-pixel correlations on
the noise, consider the NPS normalized by the square of the mean number of counts in each pixel:

NPSnorm(u) =
NPS(u)

λ2(1+ p)2
, (5)

where NPS(u) = DFT[Cov [N0,Ni]], and u is spatial frequency. Examples of NPSnorm for different values of p
are shown in figure 8 (the curves have been normalized by 1/λ to obtain unity NPSnorm for p= 0, and the
spatial frequency axis is normalized by the sampling frequency). The increase of NPSnorm at the zero
frequency is inversely proportional to the decrease of the zero-frequency DQE given by (3):

NPSnorm(u = 0) = 1/Imultiplicity =
(1− p)+ 4n

((1− p)+ 2n)2
. (6)

An important observation is that the pixel-to-pixel correlations lead to a higher number of events detected in
each pixel; each pixel registers λ(1+ p) photons, as opposed to only λ. This can also be seen as the integral of
the normalized NPS reduces as p increases. When the pixels are considered together, however, it becomes
clear that the quantum efficiency has indeed been reduced, as indicated the increase of the zero-frequency
NPS. This property of correlated noise must be considered when, for example, evaluating the detector’s CNR
performance.

4.3. Spatial resolution
The spatial resolution of the PCD is determined, first and foremost, by the center-to-center distance between
the electrodes on the semiconductor surface. For edge-on detectors (e.g. silicon), the thickness of the
semiconductor wafer determines the spatial resolution in one of the dimensions.

Charge sharing, K-fluorescence reabsorption, and Compton scattering degrade the spatial resolution
somewhat by causing events to be detected in positions other than where they first interacted with the
detector. This effect leads to a blur of the point-spread function (PSF), and therefore a degradation of the
modulation transfer function (MTF). These effects can partially be corrected using anti-coincidence logic or
similar methods.

Charge sharing, unless corrected, also limits the smallest feasible pixel size indirectly due to the increase
in count multiplicity and the degradation of the energy response of the detector. If pixels that are too small
are used, the detector will lose much of its spectral capabilities and some of its dose efficiency (Rajbhandary
et al 2018).

The spatial resolution of the detector is not constant over the range of detected energies. High-energy
interactions are predominantly registered close to the center of the pixel, since charge sharing occurs at the

7With oversampling (e.g. quarter-pixel offset of the detector), the NPS is mirrored around the native Nyquist frequency.
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Figure 9. An example of the benefits of a native high-resolution image acquisition, here when imaging tissue of an excised human
heart (same as that shown in figure 2). Images (a) and (b) were acquired with a conventional CT system with 0.7 mm focal spot,
and reconstructed with a soft kernel and a bone kernel, respectively. Image (c) was acquired by a prototype silicon-based PCD
with roughly half the native pixel size and a 0.4 mm focal spot, and reconstructed with a high-resolution filter kernel. The images
were acquired at comparable dose and slice thickness (0.625 mm). The native high-resolution acquisition of the PCD has less
noise in a high-resolution image, which improves the visibility of the low-contrast high-resolution structures within the tissue.

pixel boundaries, giving them a more narrow PSF, whereas low-energy interactions can be registered over the
full extent of the pixel (Stierstorfer et al 2019). This implies that the detector MTF has an energy dependence,
and the spatial resolution can be enhanced by giving more weight to the high-energy bins at the cost of
increased noise in the reconstructed image. In the case that monoenergetic images are formed from material
basis maps, the spatial resolution will therefore depend on the choice of monoenergetic energy. In order to
have a full characterization of the spatial resolution of the detector, the full energy range should be evaluated.

4.3.1. The spatial resolution and noise trade-off
A common misconception when it comes to high-resolution detectors is that having small pixels comes with
a noise penalty. Indeed, the noise in each detector pixel will increase if the pixels are smaller, since fewer
photons are detected in each pixel. However, high-resolution image acquisition improves the
resolution-noise trade-off in the reconstructed image. That is, for the same image noise, the high-resolution
system will have better spatial resolution at equal dose, and conversely, for the same spatial resolution, the
high-resolution system will have lower noise. The literature predicts noise variance reductions between 14%
and 83% from a 2× increase in native resolution (Baek et al 2013, Kachelrieß and Kalender 2005). The
highest noise reductions are observed when reconstructing high-resolution images. For low-resolution
images (e.g. for soft-tissue imaging) the benefit is reduced. In addition, the high-resolution system can use
reconstruction kernels with higher cut-off frequency without introducing aliasing artifacts than a system
with lower native resolution. An example of the benefit of a native high-resolution detector is shown in
figure 9, in which the two images to the left are acquired using a conventional CT system reconstructed with
a soft kernel (a) and a bone kernel (b), and the right-most image (c) was acquired using a prototype PCD,
with roughly half the pixel size, and reconstructed using a high-resolution kernel. The native high-resolution
acquisition of the PCD improves the spatial resolution and noise trade-off, and allows reconstructing
high-resolution images with less noise and aliasing artifacts.

4.4. Energy response
In contrast to properties like detection efficiency and spatial resolution, which are important for all detectors,
the ability to measure the energy distribution of the incident spectrum is unique to energy-resolving
detectors. The precision with which each deposited energy is measured is partly determined by the number
of energy thresholds (see section 3.3.2). At the same time, the number of thresholds is not the only factor that
affects the spectral imaging performance.

The energy-resolving capability of PCDs is also determined by non-ideal effects in the detector materials
and the readout electronics that give a non-ideal energy response, i.e. cause the registered signal to deviate
from the expected amplitude. In a hypothetical ideal PCD, each photon gives rise to an electrical signal with
amplitude proportional to the incident photon energy. In CdTe-based and CZT-based detectors
(figure 10(a)), K-fluorescence gives rise to two secondary clusters of peaks in the detected spectrum distinct
from the photopeak: fluorescence peaks at the fluorescence energy (23 and 26 keV for Cd, and 27 and 31 keV
for Te), (Thompson et al 2009) and K-escape peaks at the original energy minus the fluorescence energy
(Shikhaliev et al 2009, Xu et al 2011). The response of a silicon-based detector (figure 10(b)), on the other
hand, exhibits a large fraction of Compton interactions at low energies and reproduces the photoelectric part
of the spectrum with diminished magnitude, but it is otherwise not distorted in the way characteristic of the
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Figure 10. (a) The energy response function of a 1.6 mm thick CdTe-based detector with 0.225× 0.225 mm2 pixels. (b) The
energy response function of an edge-on silicon-based detector with 60 mm absorption length and 0.5× 0.5 mm2 pixels. The
fluorescence peaks in the silicon energy response function come from 20 µm tungsten foils interspersed between the silicon
wafers. The simulation models used are described by Persson et al (2020).

response from a CdTe-/CZT-based detector (Bornefalk and Danielsson 2010). In both CdTe/CZT and Si
detectors, charge sharing causes spectral tailing, which is a background of charge-shared counts of relatively
constant magnitude (figure 10) (Xu et al 2011, Liu et al 2014). Spectral tailing can also be caused by
incomplete charge collection (section 3.2.7).

In addition, electronic noise in the readout electronics causes further spectral degradation by adding a
random error to the registered amplitude of each pulse. In practice, this characteristic has the effect of
convolving the detected spectrum with a Gaussian kernel. Typical photopeak widths reported for detectors
designed for high-flux x-ray imaging are 3.5–5.4 keV full width at half maximum (FWHM) for Si (Xu et al
2013a) and 5–10 keV FWHM for CdTe/CZT (Iwanczyk et al 2009, Brambilla et al 2013, Barber et al 2015).
Spectral response models incorporating physical effects and electronic properties have been published for
silicon (Liu et al 2015a, 2015b) and CdTe/CZT (Schlomka et al 2008, Cammin et al 2014, 2016, Taguchi et al
2016, 2018b).

The effect of the spectral distortion is that it degrades the performance of the detector for tasks that have
a strong energy-dependent component. While the performance for density-imaging tasks, such as detection
of non-enhancing tumors, is only weakly affected by non-ideal energy resolution (Schmidt 2010), imaging
tasks involving calcium and iodine are more strongly affected (Rajbhandary et al 2018). Good
energy-resolving capability is especially important for material quantification tasks, since these cannot be
performed at all with a non-energy-resolving CT. The impact of the detector energy response on material
quantification performance has been investigated by several authors (Roessl and Herrmann 2009, Wang and
Pelc 2012, Rajbhandary et al 2018).

Apart from the detector energy response, the incident spectrum shape is also an important factor
affecting spectral imaging performance, and multiple studies have investigated how performance can be
optimized by varying the x-ray tube voltage (kVp) and prepatient filtering, such as with a K-edge filter
(Wang and Pelc 2012, Chen et al 2015, Atak and Shikhaliev 2015, 2016). To understand how the incident
spectrum shape interacts with the detector response function, note that misregistration of photon energies
does not degrade spectral imaging performance if it is possible to correct for the spectral distortion and
thereby recover the original spectrum. Instead, degradation of imaging performance occurs only when there
is overlap between detected energies originating from different incident energies, so that it is impossible to
recover the incident spectrum without ambiguity (Persson et al 2018b). Figure 11 illustrates how
K-fluorescence can give rise to spectral overlap, depending on the incident energy spectrum distribution.
K-fluorescence and charge sharing give rise to spectral tailing that overlaps with incident energies present in
the true spectrum, which exacerbates the harmfulness of these effects on the spectral imaging performance.
On the other hand, Compton scatter events in a silicon-based detector do not overlap much with the
spectrum of photoelectric events. Instead, their detrimental effect on energy-resolving imaging stems from
the fact that one energy of a Compton event can correspond to a range of incident energies. The Compton
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Figure 11. A conceptual illustration of how the effect of spectral distortion depends on the spectrum incident on the detector. A
photon with the original incident energy Ein = 60 keV loses 23 keV through the escape of a K-fluorescence event and deposits
Edep = 37 keV. (a) For a spectrum filtered through 100 mm of water, the deposited energy overlaps with the incident spectrum,
and the original energy cannot be recovered after detection. (b) For a spectrum filtered through 500 mm of water, the deposited
energy does not overlap with the spectrum, and the original energy can be recovered by adding 23 keV to the measured energy.
Note that this is a simplified example, and that a more realistic model should also include spectral overlap due to charge sharing.

Figure 12. Simulation of the fluence rate incident on the detector in an ECG-gated chest scan, one of the most demanding
imaging cases in terms of detector count-rate performance. A tube voltage of 120 kVp and a fixed tube current of 550 mA was
assumed, representing the high-current phase of the ECG-gated protocol. (a) Chest CT image used for the simulation, with
attenuation values in Hounsfield units (HU). (b) Incident fluence rate on the detector, after transmission through the patient. The
highest fluence rates occur near the skin line and behind the lungs. The simulation model is described in Persson et al (2016).

events are therefore less useful than the photoelectric events for determining the incident energy
distribution, but they do not confound the spectral information provided by the photoelectric events.

4.5. Pulse pileup
Photons that interact within a short time period ‘pile’ onto each other, resulting in count loss, distortion of
the Poisson counting process, and degradation of the energy information. In order for a PCD to be feasible
for clinical CT, the detector has to be able to cope with very high fluence rates that can exceed
3.5× 108 mm−2 s−1 at the detector (Persson et al 2016). Figure 12 shows how the photon fluence rate is
distributed on the detector for an imaging protocol that is demanding in terms of high-count-rate capability.
The effects of pulse pileup can be mitigated by decreasing the pixel size, but the benefit is limited since small
pixels are more prone to charge sharing, which causes double counting and spectral degradation (Hsieh et al
2018). The mathematical description of pulse processing by an electronic channel is known as a dead-time
problem, and these problems have been studied extensively for several decades and have applications in many
scientific fields (Müller 1973, Carloni et al 1970, Wielopolski and Gardner 1976). Still, analysis of the effects
of pulse pileup in spectral PCDs, and how to account or correct for this effect, is an active topic of
investigation today.
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Figure 13. The mean value and variance predicted by two pileup models: the ideal non-paralyzable (INP) model and the
semi-nonparalyzable (SNP) model. The input and output counts rates have been normalized by the characteristic count rate
N0 = 1/τ .

4.5.1. Statistical degradation
In the presence of pileup, the output count process is no longer Poisson distributed. A simple, but commonly
used, model of the photon-counting process is the so-called ideal non-paralyzable (INP) model (Tenney
1984). The INP model predicts the statistics and spectral distortion under two simplifying conditions: (1)
there is a fixed dead time after each photon detection during which all additional events are lost, and (2) the
registered energy in the case of pileup is the sum of the energy of the associated photon interactions. The
mean and variance of the output count process Y for the INP model is given by

µY =
λ

1+λτ
, σ2

Y =
λτ

(1+λτ)3
, (7)

where λ is the input count rate and τ is the dead time. The mean value and the variance of the output count
rate for a non-paralyzable detector with non-zero pulse length, the so-called semi-nonparalyzable (SNP)
model (Xu et al 2011), have been derived analytically (Grönberg et al 2018) and are given by

µY =
λ

e−λτs +λτ
, σ2

Y =
λe−λτs(2− e−λτs)

(e−λτs +λτ)3
, (8)

where λ is the input count rate, τ is the dead time, and τ s is the average time at the end of the dead time
during which, if a photon interacts, a new dead time is initiated directly after the first dead time. The length
of τ s depends on the length and shape of the photon-induced pulses and is often a large fraction of τ
(0.77%–0.86% in Liu et al (2016)). Examples of the mean value and the variance predicted by the INP and
the SNP model with τ s = 0.8 as a function of count rate is plotted in figure 13. The input and output count
rates have been normalized by the characteristic count rate N0 = 1/τ . In the ideal case, without pileup and
with Poisson statistics, the output count rate is equal to the input count rate, and the variance is equal to the
mean value.

Pileup introduces a non-linear response to variations in the flux rate, and the statistics start to deviate
from Poisson behavior. The effect of pileup on image quality is therefore not straightforward to assess, and
looking at, for example, count-rate linearity tells only half the story. One way to incorporate both the effect
of non-Poisson statistics and the non-linearity of the output count rate is to consider the CNR for the task of
differentiating between two similar projection measurements with a small difference δ in photon flux. A
flux-dependent doseefficiency can then be defined as the ratio of the CNR2 with and without pileup:

DE(λ) =
CNR2

with pileup

CNR2
without pileup

=
(µY(λ+ δ)−µY(λ))

2
/σ2

Y(λ)

(λ+ δ−λ)2/λ
=

(µY(λ+ δ)−µY(λ))
2

δ2σ2
Y(λ)/λ

. (9)

An example of the dose efficiency as a function of count rate is plotted in figure 14(a), and the CNR2 versus
the thickness of attenuating material (here water) is shown for different maximum count rate (N0, 2N0, and
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Figure 14. (a) The dose efficiency for a low-contrast imaging task as a function of the input count rate (normalized with N0),
comparing the ideal non-paralyzable model and the semi-nonparalyzable. (b) The CNR2 estimated by the semi-nonparalyzable
model versus the thickness of water attenuation for three different input count rates of the unattenuated beam (Nmax). Even
though the input count rate is high when there is little water in the beam path, and the DQE is reduced by pileup, the CNR2 is still
relatively high since pileup mainly affects high-flux projections, for which the SNR is high.

3N0) in figure 14(b). As an example of a maximum input count rate, consider a case for which the maximum
x-ray flux on the detector is 3.5× 108 mm−2 s−1 (Persson et al 2016), and the detector has 0.25 × 0.25 mm2

pixels and a 100 ns dead time; then the maximum input count rate is 2.2N0

(3.5× 108 mm−2s−1 × 0.252 mm2 × 100× 10−9 s = 2.2). Even though the dose efficiency is reduced for the
higher count rates, the CNR2 is still high since pileup mainly affects projections that have high statistics.

The effect of the statistical degradation from pileup in the final CT image is limited by several factors.
First, the central rays, where the x-ray flux is generally low due to patient attenuation, contribute much more
to the image than the peripheral rays due to the nature of tomographic image reconstruction. Second, the
x-ray flux at the periphery of the patient is lowered by the bowtie filter of the x-ray tube. Also, pileup
increases the noise for high-flux projections, for which the SNR is high (see figure 14(b). Combined, these
effects help mitigate the impact of statistical degradation from pulse pileup.

4.5.2. Spectral distortion
Pulse pileup introduces errors in the registered photon energies, resulting in a distortion of the energy
spectrum. The consequence is a reduction in the spectral separation between energy bins, and thus a
reduction of the basis-material-decomposition performance.

The effect of spectral degradation from pileup occurs earlier than the loss of dose efficiency (equation
(9)), which can, for example, be seen by observing that the response of the individual energy bins deviates
from linear behavior at much lower count rates than the total number of counts (Fredenberg et al 2010b). It
has also been shown that pulse pileup affects the imaging performance more for spectral detection tasks than
for density imaging tasks (Wang et al 2011a).

The spectral distortion depends on, for example, the photon-counting mode, the dead time (if
applicable), the pulse shape in the ASIC, and the input spectrum. Many approaches for modeling the spectral
effects of pulse pileup can be found in the literature (Taguchi et al 2010, 2011, Wang et al 2011a, Cammin
et al 2014, Roessl et al 2016). Other approaches for handling the effects of pileup include empirically
estimating parameters to model the non-ideal effects (Zimmerman and Schmidt 2015, Alvarez 2011). Also,
methods for correcting the effects of pileup after read-out (e.g. by using neural networks) have been
investigated (Touch et al 2016, Feng et al 2018).

Some authors have also suggested using the so-called pileup trigger method to help mitigating spectral
pileup (Kappler et al 2011). This method uses a threshold that is placed above the highest energy of the input
spectrum to identify if a photon has been subject to pileup.

5. Image formation

5.1. Energy bin images
The most straightforward ways of generating reconstructed images from spectral CT data are either
summing the counts in all energy bins before reconstruction, thereby generating a conventional-looking CT
image, or reconstructing a CT image from the measured data in each energy bin (Yu et al 2016c). In
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comparison with material decomposition, reconstructing bin images has the advantage of being easy to
implement since it does not require accurate models of the source and detector. On the other hand, this
method has the drawback of not being able to correct for the effect of beam hardening. The bin images can
be reconstructed with filtered backprojection or with an iterative algorithm similar to those used for
single-energy CT (Salehjahromi et al 2018). By summing the images with carefully selected weight factors,
the optimal CNR for a specific imaging task can then be attained (Schmidt 2009).

Another option is to display the images individually, which has the benefit of showing the attenuation in
a narrow energy range, but leads to high noise since only a subset of the photons are used to form the image.
This trade-off between precise spectral information and noise can be mitigated by applying postprocessing
algorithms that act jointly on the different bin images and exploit similarities between them to reduce noise.
An example is the HYPR-LR algorithm, in which low spatial frequencies from the individual bin images is
combined with high spatial frequencies from a full-spectrum image, thereby generating images combining
spectral information with low noise (Leng et al 2011). This type of bin image noise reduction can also be
incorporated in an iterative reconstruction algorithm, such as the spectral prior image constrained
compressed sensing (SPICCS) algorithm, which uses total variation regularization to penalize structural
differences between the bin images and a full-spectrum image (Yu et al 2016b).

Other, more sophisticated regularization methods that exploit redundancy between the bin images have
also been studied, including total nuclear variation (Rigie and La Rivìere 2015), total generalized variation
(Niu et al 2018b), and dictionary learning (Zhang et al 2017). Denoising based on non-local means filtering
where the broad-spectrum image is used to weight pixels according to similarity was studied by Li et al
(2017) and Zhang et al (2016 combined non-local-means-like regularization in the spectral dimension with
SPICCS. Block-matching, where patches with similar structure in different parts of the image are identified
in the broad-spectrum image and used to denoise each other (Harrison et al 2017) have also been
demonstrated. The observation that most of the image pixels tend to be spanned by a small number of basis
materials, whereas k-edge elements are often confined to localized regions, can be exploited for noise
reduction as shown by Gao et al (2011). There are also algorithms exploiting the low dimensionality of
spectral CT images in combination with SPICCS (Zeng et al 2020) or patch-based denoising (Niu et al
2018a). Finally, a new and promising research direction is the application of convolutional neural networks
for bin image denoising (Clark and Badea 2020).

5.2. Material decomposition
A standalone material-decomposition step can be performed before the reconstruction (in projection space)
or after the reconstruction (in image space). Another possibility is to perform reconstruction and material
decomposition simultaneously, as discussed in section 5.3. Image-space decomposition is straightforward to
implement, since it can take the form of a simple linear transformation of the energy-selective reconstructed
images (Persson et al 2014, Symons et al 2017a). However, this does not compensate for the non-linearity of
the x-ray attenuation and therefore does not remove beam-hardening artifacts completely. Iterative
image-space decomposition has been proposed as a way of solving this problem (Heismann and Balda 2009).

A more straightforward way of eliminating beam hardening, thereby obtaining a quantitatively reliable
image, is by using projection-space material decomposition, where the counts in the different energy bins are
mapped to line integrals of basis coefficients before reconstruction. This method is well suited for
photon-counting CT with its perfect geometric alignment between energy bins, but it can be more difficult
to implement for systems exhibiting mismatch between the high- and low-energy projection rays, such as
dual-source CT. In statistical terminology, the mapping from counts to line integrals is called an estimator. If
the number of energy bins is equal to the number of basis materials, this estimator can be a simple mapping
from counts to estimated line integrals, given by a polynomial fit, for example (Alvarez and Macovski 1976).
If there are more energy bins than basis functions, the choice of estimator is more complicated.

There are a number of statistical properties that are desirable for such an estimator: ideally, it should be
unbiased, meaning that the output should be equal to the true projected basis coefficient on average; the
output should preferably have low variance; and it should be robust in the sense that it is able to perform well
under a variety of conditions without generating image artifacts. For example, streak artifacts may result if
the estimated basis sinograms contain anomalous measurements.

The maximum-likelihood estimator is commonly used in photon-counting CT research (Roessl and
Proksa 2007, Schlomka et al 2008, Si-Mohamed et al 2018). This estimator builds on the fact that the
registered counts mi in each energy bin i is Poisson distributed and finds the set of projected basis coefficients
A such that the x-ray beam is most likely to have passed through, given the measured counts. This estimator
has the favorable property of being asymptotically unbiased and efficient for large measured count numbers,
meaning that the variance approaches its theoretical minimum given by the Cramér–Rao lower bound
(CRLB) (see section 6.2) (Kay 1993).
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Mathematically, the maximum-likelihood estimate is calculated by minimizing the negative
log-likelihood function

l(A) =
Nb
∑

i=1

λi(A)−mi lnλi(A) (10)

with an iterative algorithm. This equation builds on a model for the expected number of counts λi(A) in
each of the Nb energy bins, as a function of the projected basis coefficients A. An example of such a model is

λi(A) =

ˆ

S(E)wi(E)e
−

∑Nm
j=1 Ajfj(E)dE (11)

with Nm denoting the number of basis materials, S(E) denoting the spectral density as a function of energy E,
and wi(E) denoting a weight function describing the spectral sensitivity of the energy bin to different
incident photon energies. Ehn et al (2016) proposed a modification of this forward model that can be fitted
well to a limited number of calibration measurements.

One drawback of the maximum-likelihood estimator is that it is calculated with an iterative algorithm,
which is time-consuming. Other estimators have therefore been proposed with the aim of increasing speed.
Alvarez proposed using a linearized, approximate forward model to obtain a linear estimator, which is then
corrected using a look-up table to reduce bias (Alvarez 2011, 2016). As an extension of this method, different
linearized forward models can be applied in different regions of the space of possible A values (Rajbhandary
et al 2017).

Another estimator was proposed by Lee et al (2017a, 2017b). This estimator is a three-step method which
builds on approximating the set of possible transmittance functions that can be expressed as

X(E) = e−
∑Nm

j=1 Ajfj(E) as a low-dimensional space. This allows the decomposition problem to be formulated as
follows: (1) least-squares fitting of the transmittance X(E) that best agrees with the registered counts; (2)
least-squares fitting of a combinations of basis functions

∑

j Ajfj(E) to log X(E); and (3) post-correcting for
bias. In recent years, neural network estimators have also attracted attention. These are based on networks of
simple processing units, called neurons, that are trained to map measured bin counts directly to the
corresponding basis coefficient line integrals (Zimmerman and Schmidt 2015).

Since basis images tend to be noisier than conventional CT images, significant attention has been paid to
methods of reducing basis image noise. In analogy with the SPICCS algorithm for bin image denoising, the
prior-knowledge-aware iterative denoising method uses an image reconstructed from the sum of all energy
bins as a prior image and penalizes structural differences between this image and basis images, after rescaling
(Tao et al 2018). More advanced basis decomposition methods, such as block-matching methods (Wu et al
2019), dictionary learning (Wu et al 2020) or neural-network-based methods (Chen and Li 2019), are able to
reduce noise by aggregating information from multiple pixels when forming the basis images.

Another way of reducing basis image noise is by enforcing a constraint, such as volume or mass
conservation, in the basis decomposition (Liu et al 2009, Mendonça et al 2010, Ronaldson et al 2012,
Malusek et al 2013, Lee et al 2014, Curtis and Roeder 2017, Ren et al 2019). Such a constraint provides an
additional equation in addition to the x-ray measurements, allowing three-material decomposition with two
energy bins or four-basis decomposition with three energy bins. Even if a sufficient number of energy bins
are available, it may be desirable to include constraints in order to reduce noise in the decomposed basis
images. A drawback of this approach is that the constraints build on prior assumptions about the material
compositions that can occur in the body, and if these assumptions are in disagreement with reality, including
the constraints will result in systematic errors in the resulting basis images (Bornefalk and Persson 2014,
Yveborg et al 2015a). Whether the benefits of such constraints outweigh the drawbacks is therefore
dependent on the specific imaging task.

5.3. Image reconstruction
The process of reconstructing photon-counting images depends on which material-decomposition algorithm
is used. An ordinary single-channel reconstruction algorithm such as filtered back-projection can be used to
reconstruct one image for each energy bin, allowing image-space material decomposition to be performed
subsequently. Projection-space material decomposition, on the other hand, can be implemented either as a
one-step or two-step inversion, depending on whether the mapping from measured counts to basis images
takes place in a single processing step or whether basis sinograms are generated as an intermediate step.

In two-step inversion, projection-space material decomposition is first used to generate a set of basis
sinograms, one for each basis material (Schlomka et al 2008). From these basis sinograms, a set of
reconstructed basis images is then generated with a reconstruction algorithm such as filtered back-projection
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or an iterative method. In the case of an iterative method, there is the possibility of choosing whether the
image reconstruction should treat the different bases independently (Schirra et al 2013) or as a joint
optimization problem (Sawatzky et al 2014). The noise in the basis images resulting from basis
decomposition is anti-correlated between basis materials, since the basis decomposition algorithm is able to
measure the total attenuation more accurately than it can measure the exact amount of each basis material in
the beam path. By modifying the data weighting to take this anti-correlated noise structure into account, the
reconstructed image noise can be reduced. At the same time, the coupling between basis materials
introduced in this way increases the complexity of the reconstruction problem and can also lead to artifacts
caused by crosstalk between the basis images (Persson and Grönberg 2017).

In one-step inversion, on the other hand, the mapping from registered counts to basis images takes place
in one single step, eliminating the ray-wise decomposition step. This step typically takes the form of an
iterative optimization, which searches for the set of basis images that best corresponds to the measured
counts in each projection line and energy bin. In this case, the reconstruction necessarily treats the basis
images as a joint optimization problem. The development of algorithms that optimize image quality while
satisfying computational requirements is an active research topic. Several one-step algorithms have been
proposed, based on primal-dual optimization (Barber et al 2016) or separable quadratic surrogates (Long
and Fessler 2014), which can be accelerated with momentum terms (Mechlem et al 2018). A comparison of
the computational cost of five such algorithms can be found in Mory et al (2018).

5.4. Image display
The result of the image reconstruction algorithm is a set of reconstructed images, one for each basis material.
These can either be displayed as is (e.g. as maps of contrast agent concentration) or combined together to
form a final image. Basis material decomposition is often claimed to increase image noise, and this is true in
the sense that the individual basis images (e.g. a K-edge image) exhibit higher noise levels than a
conventional CT image formed from the summed counts in all energy bins. On the other hand, as pointed
out in section 2.2, the basis images can be combined in a weighted sum and yield the same optimal CNR as a
weighted sum of the bin images (Rajbhandary and Pelc 2016). Another option is to combine the basis images
with a conventional gray-scale image, which can always be reconstructed from the raw data in addition to the
basis images, to form a color-overlay image combining high resolution and/or low noise with a material
distribution map (Pourmorteza et al 2016, Symons et al 2017b). Thus, material decomposition does not
cause any of the available information to be lost, but rather enables additional ways of presenting the image
data.

One or more basis images can be used to form a virtual non-contrast image (Faby et al 2015). Another
display technique currently used in dual-energy CT is to form virtual non-calcium images, which can
suppress bone and thereby help in visualizing bone marrow (Kellock et al 2017). The different basis images
can also be combined to form virtual monoenergetic images (Leng et al 2017, Symons et al 2018b), as is
common in dual-energy scanners today. By varying the display energy, the CNR can be optimized for a given
imaging task. More advanced ways of forming virtual monoenergetic images include prior-knowledge-aware
iterative denoising (Tao et al 2019b) and neural-network-based methods (Feng et al 2019). Approximate
material maps and virtual monoenergetic images can also be generated through image-space material
decomposition from reconstructed bin images (Zhou et al 2019), although this approach gives less accurate
results since it does not eliminate beam hardening.

Another possibility for image display is to form a synthetic Hounsfield image, which is an image with CT
numbers equal to those of an energy-integrating CT image for a specified set of acquisition parameters, but
with beam-hardening artifacts eliminated (Bornefalk 2012a). This may facilitate the transition from
energy-integrating to photon-counting CT by providing image measurements that can be compared to
existing reference values.

6. Detector performance metrics

As described in the preceding sections, the physical effects affecting detector performance can lead to
trade-offs between different desirable detector properties. For example, a smaller detector pixel size gives
higher spatial resolution and less sensitivity to pileup but also leads to more crosstalk between pixels, causing
double counting and degraded energy resolution. When designing a PCD, it is therefore important to devise
accurate metrics of detector performance in order to evaluate the effects of design decisions on image quality.
Full-scale simulation of a photon-counting CT acquisition may in many cases be too time-consuming,
especially if the objective is to characterize noise properties, which requires simulating many noise
realizations. For this reason, a number of mathematical metrics of detector performance have been
developed.
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For energy-resolving PCDs, the question of how to measure detector performance is further complicated
by the need to take energy resolution into account. Since energy information can be used in different ways, it
also becomes useful to distinguish between different types of tasks in order to describe the detector
performance. In a detection task, the objective is to detect if a certain feature is present or absent in the image.
This feature can be a small feature, such as a bone fragment or a small blood vessel, or a large feature that is
hard to distinguish from the surrounding anatomy, such as a tumor. In a material quantification or material
separation task, on the other hand, the objective is to measure the composition of the imaged object. Within
the framework of basis material decomposition, this is done by measuring the amount of each basis material
present in every voxel in the imaged volume. This method allows making quantitative tissue
characterizations, which can be important for example in bone densitometry or calcium scoring. The
method also facilitates generation of material-specific maps (e.g. iodine maps) which allows distinguishing
iodinated contrast agents from non-enhancing anatomical structures, or virtual non-contrast images where
the contrast agent is removed and only the tissue attenuation remains. Quantification of iodine
concentration is important, for example, in follow-up of cancer treatments. Separation between iodine and
calcium is crucial to assess the degree of stenosis in calcified plaques, determining whether catheterized
invasive diagnostics or stenting is required (Alessio and MacDonald 2013, Boussel et al 2014). It is also
important in CT perfusion imaging in general and in assessment of stroke when selecting patients for
thrombectomy to remove the obstruction to the blood supply.

The most important difference between detection and quantification tasks in terms of their requirements
on detector performance is that quantification tasks are generally more dependent on energy resolution than
detection tasks. This characteristic can be seen by considering a purely counting PCD with no
energy-resolving capabilities. Such a detector can perform relatively well for most detection tasks just by
detecting the difference in the number of transmitted photons caused by the presence of a feature. A
non-energy-resolving detector, on the other hand, is not able to distinguish between different materials, but
only to measure their total attenuation.

6.1. Contrast-to-noise ratio
A common way to compare the performance of two imaging systems is to evaluate the CNR, or perhaps
more commonly the CNR2, for a given imaging task. However, when comparing detector systems with
different energy response, such as an EID and a PCD, the relative CNR2 is highly task dependent. The relative
performance depends not only on the choice of materials in the two projections for which the CNR is
computed, but also on the density, or thickness, of those materials. As an example, consider figure 15, where
we have compared the projection domain CNR2 of a Si PCD, a Si spectral PCD with optimal energy
weighting, and an EID. The two projections that were used to compute the CNR2 comprised 20 cm of soft
tissue and 19 cm of soft tissue plus 1 cm of an iodine/water solution with varying concentration up to
10mgml−1. The CNR2 curves reach a minimum at slightly different iodine concentrations, i.e. there is an
offset between the curves. Both the PCD and the EID reach zero CNR2 for some concentrations of iodine,
whereas the spectral PCD never reaches zero due to the optimal energy weighting (Yveborg et al 2013). The
relative performance of the photon-counting systems compared to the energy-integrating system has a strong
dependence on the iodine concentration (figure 15(b)). Comparing imaging systems with a different energy
response through a single relative CNR2 measurement is therefore likely to be misleading. In fact, altering the
imaging task can change which of the detector systems obtains the highest CNR. This also applies when
comparing different photon-counting systems (e.g. silicon-based and CdTe/CZT-based detectors) since they
too have different energy response. A possible solution to this problem is to make sure that the selected
imaging tasks are clinically relevant and evaluate the performance for a range of imaging tasks in order to get
a picture of the overall performance of the system.

6.2. Cramér–Rao lower bound
Whereas CNR indicates how much a certain feature stands out from the background relative to the noise
level, another measure is needed for assessing the performance for material-specific imaging. This role is
filled by the CRLB (Kay 1993). The CRLB gives a lower bound on the variance for any unbiased estimator, or
a lower bound on the covariance matrix when estimating a multivariate parameter. In the context of
photon-counting CT, the CRLB gives a lower bound on the covariance matrix of estimated projected basis
coefficients. Roessl and Herrmann (2009) derived the CRLB for both photon-counting and EIDs and used
this formula to study how the noise in basis images depends on detector design parameters. The noise level in
the image domain can be obtained from the projection-space CRLB through back-projection (Roessl et al
2011).

It may seem like a lower bound on image variance is of limited value since it does not provide any
information about the upper limit of the variance. In practice, however, the maximum-likelihood estimator
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Figure 15. (a) A comparison of the projection domain CNR2 for a photon-counting detector without energy resolution (PCD), a
spectral photon-counting detector (spectral PCD) with optimal energy weighting, and an energy integrating detector (EID). The
projections used to compute the CNR2 comprised 20 cm soft tissue and 19 cm soft tissue plus 1 cm of an iodine/water solution
with varying concentration. (b) The ratio of the CNR2 curves, showing that the relative performance of the imaging systems is
highly dependent on the iodine concentration.

Figure 16. Illustration of CRLB for realistic simulation models of CdTe-based and silicon-based detectors and an ideal detector, in
a three-basis (water/bone/iodine) decomposition. The tube voltage is 120 kVp and the object consists of 200 mm of water, 5 mm
of bone and 10 mm of iodine (10 mgml−1). In each plot, the contours show the ellipse that the decomposed projected basis
coefficients will fall inside with 95% probability according to the CRLB, when aggregating data from a 9× 9 mm2 detector
segment. The CdTe-based detector is 1.6 mm thick and divided into 0.225× 0.225 mm2 pixels. The silicon sensor has an
absorption depth of 60 mm, a pixel pitch of 0.5× 0.5 mm2, and 20 µm thick tungsten scatter blockers between the wafers. The
detector models are as described by Persson et al (2020), with the difference that the CdTe-based and the silicon-based detector
here both have eight energy bins. Object scatter was taken into account assuming a one-dimensional tungsten anti-scatter grid of
25× 0.1 mm lamellae with 1.0 mm (for Si) and 1.125 mm (for CdTe) spacing in front of the detector. The ellipses representing
the silicon-based and CdTe-based detectors are more elongated compared to the ideal detector, showing that imperfect energy
resolution makes it more difficult to identify the material composition.

comes close to attaining the CRLB (Roessl et al 2011). Figure 16 illustrates the CRLB for a three-basis
decomposition task, for a CdTe-based and a silicon-based detector model.

It is important to note that the lower limit of basis projection variance is a lower limit of the variance of
any unbiased estimator. If the estimator is allowed to be biased, the variance can be allowed to be lower than
this limit. An extreme example would be a material-decomposition algorithm that predicts the same
projected basis coefficients regardless of the measured data, which gives an estimator with zero variance and
large bias. In practice, it may be desirable to use inequality constraints, such as non-negativity (Barber et al
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2016, Long and Fessler 2014), and thereby reduce variance for certain basis configurations at the expense of a
small amount of bias.

In contrast to CNR, which is relevant for detection tasks, the CRLB measures the ability of the imaging
system to identify the material composition of the imaged object. The CRLB therefore provides a measure of
the energy-resolving capability of a PCD, and it has been applied to investigating the relationship between
pixel size and energy resolution in PCDs (Rajbhandary et al 2018). Faby et al used the CRLB to validate the
statistical optimality of an image-based decomposition method, which was then used to study the effect of
energy-bin correlations and compare the performance of photon-counting systems with other dual-energy
CT techniques (Faby et al 2015, 2016). Another application of the CRLB is to estimate the covariance matrix
between basis line integrals in ray-wise material decomposition in order to obtain the data weighting for the
reconstruction step in a two-step material-decomposition algorithm (Schirra et al 2013, Sawatzky et al 2014).

6.3. Spectral DQE (energy-dependent spatial resolution and noise)
Characterization of conventional x-ray detectors is typically done using the noise-equivalent quanta (NEQ)
and DQE. These metrics are based on linear-systems theory and are typically expressed as functions of spatial
frequency u. The NEQ can be calculated from the incident number of photons q, the large-area gain G,
detector MTF, and NPS as follows (Cunningham 2000):

NEQ(u) =
q2G2MTF2(u)

NPS(u)
. (12)

The NEQ of a detector is the number of noise quanta that an ideal detector, which registers every
incoming photon and its exact position of incidence, would need to register in order to achieve the same
detectability as the detector under consideration. This metric is dependent on the illumination conditions.
For example, a detector which has an NEQ of 15 000 mm−2 for a particular spatial frequency band when
irradiated by 20 000 photons per mm2 is 75% as efficient as an ideal detector, since the ideal detector could
achieve the same detectability with only 15 000 incident photons. The DQE is obtained by normalizing the
NEQ by the number of incident photons,

DQE(u) =
NPS(u)

q
, (13)

which can be shown to be equal to the squared ideal-linear-observer detectability relative to an ideal detector,
d ′(u)2/d ′

ideal(u)
2 (Cunningham 2000). In the above example, the DQE is equal to 15 000/20 000= 0.75 for

the given spatial frequency band.
DQE is a useful metric of detector performance because it takes both noise and resolution into account.

It is therefore a better measure of dose efficiency than CNR, which does not incorporate the effect of spatial
resolution. Whereas the CNR increases by low-pass filtration of the image after acquisition, such processing
leaves the DQE unchanged, reflecting the fact that low-pass filtering does not add information to the image.

PCDs with a single energy bin (i.e. non-energy-resolving detectors) can be analyzed with the traditional
NEQ and DQE metrics. An early such study was made by Durst et al (2007); Acciavatti and Maidment (2010)
compared the DQE of photon-counting and EIDs; and Stierstorfer et al modeled the DQE of a CdTe-based
detector (Stierstorfer 2018, Stierstorfer et al 2019). A common way of simulating signal and noise transfer
characteristics is to model the detection process as a cascade of simple processes, the so-called
cascaded-systems analysis (Cunningham 2000). Tanguay et al (2013) developed the theory for
cascaded-systems analysis of PCDs and used it to study the impact of non-ideal physical effects on detector
performance (Tanguay et al 2015, Tanguay and Cunningham 2018). Furthermore, Xu et al (2014) studied a
silicon-strip PCD for mammography with a cascaded model, and Ji et al (2018) used a cascaded model to
study anti-coincidence logic in a CdTe-based detector.

To analyze the ability of PCDs to perform energy-resolved imaging, cascaded-systems analysis has also
been applied to energy-resolving detectors by Tanguay and Cunningham (2018) and in the work of Taguchi
et al (2016, 2018a, 2018b), where such a model was used to study the effect of N ×N binning of pixels into
macro-pixels in a CdTe-based detector. Energy-resolving silicon-strip detectors also been studied, by
Fredenberg et al (2010a) and Chen et al (2016). However, fully understanding how the resulting signal
transfer and noise characteristics affect image quality requires an extension of the NEQ and DQE concepts to
energy-resolving detectors. Important steps in this direction were taken by Richard and Siewerdsen (2008) in
the context of dual-energy radiography.

A natural extension of the NEQ and DQE metrics to energy-resolving PCDs was proposed by Persson
et al (2018b) and will be briefly outlined here. An equivalent spatial-domain description has been described
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by Rajbhandary et al (2019). Although it may be tempting to simply extend the NEQ to be dependent on
incident photon energy in addition to spatial frequency, this definition does not work with broad-spectrum
illumination since it fails to describe how different incident energies can be confounded during the detection
process as described in section 4.4. Instead, NEQ needs to be defined as a function of two energy indices so
that NEQ(u,E1,E2) describes how much the joint presence of photons with energy E1 and E2 in the incident
spectrum contributes to image detectability at spatial frequency u.

To compute this generalized NEQ, it is necessary to know detector characteristics. The signal transfer is
described by the transfer function Hk(u), which corresponds to the MTF but without absolute value and
without the normalization to 1 at u = 0. The noise characteristics of the sampled signal is described by the
cross-spectral density Wd+ , essentially a frequency-dependent covariance matrix between energy bins. From
these quantities, the generalized NEQ is obtained as

NEQ(u,E1,E2) =
∑

k1

∑

k2

q(E1)H
∗

k1
(u,E1)

(

W−1
d+

)∗

k1,k2
(u)Hk2(u,E2)q(E2) (14)

with q(E) denoting the spectral photon density and * denoting complex conjugate.
Under the assumption that the object consists of a small set B of basis materials, it is more convenient to

express the generalized NEQ in matrix form through a basis transformation. The elements NEQB

l1,l2(u) of
this NEQ matrix describe the contribution to image detectability from the addition of differential amounts
of basis materials l1 and l2. In addition to allowing the detectability to be calculated for detection tasks, this
matrix also describes the performance for quantification tasks in a set of decomposed basis images. Namely,
the matrix elements of its inverse

(

NEQB(u)−1
)

l1,l2
give, up to a scale factor, the CRLB for the covariance of

basis images l1 and l2 as a function of frequency (Persson et al 2018b, equation 25). This allows calculating
the squared ideal-linear-observer detectability in basis image l as

d ′2
l =

ˆ

(

∆ˆ̃Al(u)
)2

Var
(

ˆ̃Al(u)
)du (15)

where ∆Ãl(u) is the difference between target and background in the Fourier transform Ãl(u) of the basis

image, and Var
(

ˆ̃Al(u)
)

is the variance of an efficient estimator for Ãl.

As an illustration of equation (15), the relative squared ideal-linear-observer detectability for detection of
features of different sizes in an iodine basis image is shown in figure 17 for simulation models of CdTe-based
and silicon-based detectors. As shown in this figure, a system with smaller pixels, such as the simulated CdTe
system, has an advantage for imaging of small features. At the same time, a system with high energy
resolution, such as the simulated silicon system, has an advantage for imaging larger features in a
material-selective basis image, in particular for three-basis decomposition where energy resolution is
particularly important in order to separate iodine and calcium. It is also interesting to note that the CdTe
detector performance exhibits a relatively weak kVp dependence, whereas the silicon detector benefits
strongly from using low kVp, where the fraction of Compton scatter is low. These observations show that the
spectral linear-systems framework provides important clues for how to best utilize PCDs, especially in view
of the ongoing trend towards using lower kVp to save patient dose.

In analogy with equation (13), a generalized DQE matrix can also be defined by normalizing the NEQ
matrix by the NEQ matrix of a detector with perfect quantum efficiency, energy resolution, and spatial
resolution:

DQEB

l1,l2(u) =
NEQB

l1,l2(u)
√

NEQB,ideal
l1,l1

NEQB,ideal
l2,l2

. (16)

In analogy with the conventional DQE, it can be shown that a diagonal element DQEB

l,l of this matrix
gives the task-specific DQE, i.e. the squared ideal-linear-observer detectability d ′

l (u)
2/d ′

ideal(u)
2 relative to an

ideal energy-resolving detector, for detecting basis material l. Here, the ideal-observer detectability of a
multi-channel image should be interpreted as the highest detectability that can be obtained in any image as a
weighted sum of the images, where the weight factors are allowed to vary with spatial frequency (Yveborg
et al 2015b). The generalized NEQ matrix thus encodes the performance of an energy-resolving PCD for
both detection and quantification tasks. How this framework can be applied to studying PCD performance is
described by Persson et al (2020).
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Figure 17. Simulated squared ideal-linear-observer detectability d ′2 relative to an ideal energy-resolving detector, for realistic
models of CdTe-based and silicon-based detectors. The curves show the squared detectability for Gaussian features in an iodine
basis image resulting from 2-basis (iodine/water) (a)–(c) and 3-basis (iodine/bone/water) (d)–(f) decompositions, with a
200 mm thick water object. Three tube voltages were used: 80 kVp (a), (d), 120 kVp (b), (e), and 140 kVp (c), (f). The detector
models and anti-scatter grid employed are the same as in figure 16, and the simulation model is described in Persson et al (2020).
The feature size is given as full width at half maximum (FWHM) at the isocenter plane. The smaller pixel size of the CdTe-based
detector is reflected in the high detectability for small features, whereas the superior energy resolution of the silicon-based
detector gives leads to high detectability for large features. For comparison, the detectability is also plotted for the CdTe detector
with pixels aggregated in 2× 2 blocks, forming 0.45× 0.45 mm2 macro-pixels. For small features, the plotted detectability should
be interpreted as an upper performance limit allowed by the detector, and not as anticipated system performance, since the
detectability in a real system is also affected by the size of the x-ray source. Effectively, there will be no features smaller than the
smallest available focal spot size, currently 0.4 mm × 0.5 mm (Yanagawa et al 2018), and this spot size is only available at a limited
tube current. The vertical lines in the figure show the resolution limits in isocenter for focal spot sizes of 0.4–0.7 mm (IEC 60336)
corresponding to typical minimum spot sizes for state-of-the-art scanners, assuming a bimodal focal spot shape (da Silva et al
2019).

6.4. Quantitative image accuracy
CNR, CLRB, and DQE are metrics related to the image noise level. In addition to these noise metrics, the
systematic error, or bias, in the average value in regions of the image is also an important performance
measure, for example when evaluating the conspicuity of artifacts or the accuracy of quantitative image
measurements. For the latter case, a relevant metric is the mean-squared error, which combines the bias with
the noise variance as (Kay 1993)

MSE(I) =
(

E [I]− ITrue
)2

+Var [I] (17)

where E[·] and Var[·] denote expected value and variance, respectively, and ITrue is the true value of the
random image value I.

Although the standard deviation of image noise in a reconstructed image is typically several Hounsfield
units, the averaging that takes place when measuring the mean CT number in a region of interest suppresses
noise so that even a small systematic error can dominate the MSE. Similarly, when making quantitative
measurements in a basis image, it is more important to reduce bias if the measurement region of interest is
large, whereas for small regions it may be favorable to reduce noise at the expense of bias by reducing the
number of basis materials (Bornefalk and Persson 2014).

One source of error is the log-normalization step transforming counts into attenuation line integrals.
Since this operation is non-linear, it introduces an error that becomes larger as the dose decreases (Zhang
et al 2018). Other sources of error are inaccuracies in the model used for material decomposition. In order to
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make quantitative material composition measurements that are limited by quantum noise rather than
systematic errors, it is necessary to have a detailed model of the x-ray source, the detector response, and
scattered photons from the object (Bornefalk et al 2015). Estimating the distribution of object scatter from
energy-resolved measurements is a non-trivial problem since the energy spectra of scattered and primary
photons overlap in general. However, energy-resolved measurements can be helpful for scatter correction
and/or measurements of the scatter distribution (Sossin et al 2016, 2017).

Despite the fact that more research is needed to address these challenges, measurements of K-edge
contrast agents such as gold or iodine in basis images generated with prototype spectral CT systems have been
shown to correlate well with the actual concentrations of these elements (Si-Mohamed et al 2017b, 2018).

7. Summary and outlook

After many years of technological advancements, PCDs are now on the verge of being adopted in clinical
x-ray computed tomography. During the last decade in particular, there has been substantial research activity
in the field of photon-counting CT, both in hardware development and in terms of improved understanding
of how the resulting image quality is impacted by the detector performance. As outlined in the above
sections, there is now a profound understanding of how detector design parameters (e.g. the choice of
detector material and pixel size) or how choices in the signal processing chain (e.g. shaping time and
threshold locations) affect the detector properties such as quantum efficiency, spatial and energy resolution,
and pileup response. Likewise, there has been considerable progress towards understanding how these
detector properties impact the resulting image quality, as outlined in section 6.

The challenge posed by pileup at high count rates, which was previously the main obstacle for the
adoption of PCDs in clinical CT, has been largely overcome with the latest generation of detectors. In
addition, there has been considerable progress in techniques for minimizing the detrimental effects of charge
sharing, fluorescence, Compton scatter, and incomplete charge collection. Consequently, there are now
several photon-counting CT prototypes available and used for imaging human volunteers. A first-generation
photon-counting CT performs on par with conventional energy-integrating CT for unenhanced density
imaging with normal dose (Symons et al 2016), so there is evidently room for improvement with better
detectors in the future. The adoption of PCDs for CT also enables new imaging techniques that are still in the
research stage, such as combining photon-counting CT with dual-energy acquisition (Faby et al 2015, Tao
et al 2019a) or with phase-contrast imaging (Epple et al 2015).

Looking ahead, continued improvements in detector technology coupled with more accurate physics
modeling and data-processing methods are expected to bring the technology closer to its full potential,
leading to substantial improvements in image quality in terms of contrast and spatial resolution at lower
dose, to quantitatively reliable images, and to improved material discrimination capabilities. This is
anticipated to improve diagnostic performance in a diversity of application areas such as cardiovascular,
neurological, thoracic, oncologic, and pediatric imaging, just to name a few. We can expect the coming
decade to be even more productive than the last one for the field of photon-counting CT.

Acknowledgments

This project has received funding from MedTechLabs and from the European Union’s Horizon 2020 research
and innovation program under grant agreement No. 830294 and under the Marie Sklodowska-Curie Grant
Agreement No. 795747. Open access funding was provided by KTH Royal Institute of Technology. The
authors would like to thank Hans Bornefalk for discussions and Fredrik Grönberg for assistance with the
heart images. MD, MP, and MS have financial interests in Prismatic Sensors AB. MP was a visiting researcher
with General Electric Company in 2019–2020, funded by the EU Research Executive Agency.

ORCID iD

Mats Persson https://orcid.org/0000-0002-5092-8822

References

Acciavatti R J and Maidment A D A 2010 A comparative analysis of OTF, NPS and DQE in energy integrating and photon counting
digital x-ray detectors Med. Phys. 37 6480–95

Alessio A M and MacDonald L R 2013 Quantitative material characterization from multi-energy photon counting CT Med. Phys.
40 031108

Alvarez R E 2010 Near optimal energy selective x-ray imaging system performance with simple detectors Med. Phys. 37 822–41

29

https://orcid.org/0000-0002-5092-8822
https://orcid.org/0000-0002-5092-8822
https://doi.org/10.1118/1.3505014
https://doi.org/10.1118/1.3505014
https://doi.org/10.1118/1.4790692
https://doi.org/10.1118/1.4790692
https://doi.org/10.1118/1.3284538
https://doi.org/10.1118/1.3284538


Phys. Med. Biol. 66 (2021) 03TR01 M Danielsson et al

Alvarez R E 2011 Estimator for photon counting energy selective x-ray imaging with multibin pulse height analysis Med. Phys.
38 2324–34

Alvarez R E 2013 Dimensionality and noise in energy selective x-ray imaging Med. Phys. 40 111909
Alvarez R E 2016 Efficient, non-iterative estimator for imaging contrast agents with spectral x-ray detectors IEEE Trans. Med. Imaging

35 1138–46
Alvarez R E and Macovski A 1976 Energy-selective reconstructions in x-ray computerised tomography Phys. Med. Biol. 21 733–44
Åslund M, Cederström B, Lundqvist M and Danielsson M 2007 Physical characterization of a scanning photon counting digital

mammography system based on Si-strip detectors Med. Phys. 34 1918–25
Atak H and Shikhaliev P M 2015 Dual energy CT with photon counting and dual source systems: comparative evaluation Phys. Med.

Biol. 60 8949–75
Atak H and Shikhaliev P M 2016 Photon counting x-ray imaging with K-edge filtered x-rays: a simulation study Med. Phys. 43 1385–400
Baek J, Pineda A R and Pelc N J 2013 To bin or not to bin? the effect of CT system limiting resolution on noise and detectability Phys.

Med. Biol. 58 1433
Bale D S and Szeles C 2008 Nature of polarization in wide-bandgap semiconductor detectors under high-flux irradiation: application to

semi-insulating Cd1−xZnxTe Phys. Rev. B 77 035205
Ballabriga R et al 2016 Review of hybrid pixel detector readout ASICs for spectroscopic x-ray imaging J. Instrum. 11 P01007
Ballabriga R, Campbell M, Heijne E, Llopart X and Tlustos L 2007 The medipix3 prototype, a pixel readout chip working in single

photon counting mode with improved spectrometric performance IEEE Trans. Nucl. Sci. 54 1824–9
Barber R F, Sidky E Y, Schmidt T G and Pan X 2016 An algorithm for constrained one-step inversion of spectral CT data Phys. Med. Biol.

61 3784–3818
Barber W C et al 2013 High flux energy-resolved photon-counting x-ray imaging arrays with CdTe and CdZnTe for clinical CT 3rd Int.

Conf. Advancements Nuclear Instrumentation, Measurement Methods and Their Applications (ANIMMA) (New York: IEEE)
(https://doi.org/10.1109/ANIMMA.2013.6728030)

Barber W, Wessel J, Nygard E and Iwanczyk J 2015 Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT
applications Nucl. Instrum. Methods A 784 531–7

Barrett H H, Eskin J and Barber H 1995 Charge transport in arrays of semiconductor gamma-ray detectors Phys. Rev. Lett. 75 156
Barrett H H and Myers K J 2003 Foundations of Image Science (Hoboken, NJ: Wiley)
Bartlett D J, Koo C W, Bartholmai B J, Rajendran K, Weaver J M, Halaweish A F, Leng S, McCollough C H and Fletcher J G 2019

High-resolution chest computed tomography imaging of the lungs: impact of 1024 matrix reconstruction and photon-counting
detector computed tomography Invest. Radiol. 54 129–37

Benjaminov O, Perlow E, Romman Z, Levinson R, Bashara B, Cohen M and Zelikovsky A 2008 Novel, energy-discriminating photon
counting CT system (EDCT): first clinical evaluation—CT angiography: Carotid artery stenosis Radiological Society of North
America 2008 Scientific Assembly and Annual Meeting, Chicago IL (SSA21-05)

Berenguer R, Pastor-Juan M d R, Canales-Vázquez J, Castro-García M, Villas M V, Mansilla Legorburo F and Sabater S 2018 Radiomics
of CT features may be nonreproducible and redundant: influence of CT acquisition parameters Radiology 288 407–15

Bolotnikov A, Camarda G, Wright G and James R 2005 Factors limiting the performance of CdZnTe detectors IEEE Trans. Nucl. Sci. 52
589–98

Bolotnikov A, Cook W, Harrison F, Wong A S, Schindler S and Eichelberger A 1999 Charge loss between contacts of CdZnTe pixel
detectors Nucl. Instrum. Methods A 432 326–31

Bornefalk H 2012a Synthetic hounsfield units from spectral CT data Phys. Med. Biol. 57 N83–N87
Bornefalk H 2012b XCOM intrinsic dimensionality for low-Z elements at diagnostic energies Med. Phys. 39 654–7
Bornefalk H and Danielsson M 2010 Photon-counting spectral computed tomography using silicon strip detectors: a feasibility study

Phys. Med. Biol. 55 1999–2022
Bornefalk H and Persson M 2014 Theoretical comparison of the iodine quantification accuracy of two spectral CT technologies IEEE

Trans. Med. Imaging 33 556–65
Bornefalk H, Persson M and Danielsson M 2015 Allowable forward model misspecification for accurate basis decomposition in a silicon

detector based spectral CT IEEE Trans. Med. Imaging 34 788–95
Boucher Y 2013 Analysis of cadmium zinc telluride detector performance and characteristics for applications in gamma-ray imaging

spectrometers PhD Thesis University of Michigan, Ann Arbor, MI
Boussel L, Coulon P, Thran A, Roessl E, Martens G, Sigovan M and Douek P 2014 Photon counting spectral CT component analysis of

coronary artery atherosclerotic plaque samples Br. J. Radiol. 87 20130798
Brambilla A, Ouvrier-Buffet P, Gonon G, Rinkel J, Moulin V, Boudou C and Verger L 2013 Fast CdTe and CdZnTe semiconductor

detector arrays for spectroscopic x-ray imaging IEEE Trans. Nucl. Sci. 60 408–15
Cammin J, Kappler S G, Weidinger T and Taguchi K 2016 Evaluation of models of spectral distortions in photon-counting detectors for

computed tomography J. Med. Imaging 3 023503
Cammin J, Xu J, Barber W C, Iwanczyk J S, Hartsough N E and Taguchi K 2014 A cascaded model of spectral distortions due to spectral

response effects and pulse pileup effects in a photon-counting x-ray detector for CT Med. Phys. 41 041905
Carloni F, Corberi A, Marseguerra M and Porceddu C 1970 The asymptotic method of dead-time correction in Poissonian distribution

Nucl. Instrum. Methods 78 70–6
Charpak G 1997 Electronic imaging of ionizing radiation with limited avalanches in gases Rev. Mod. Phys. 65 591
Chen H, Danielsson M and Xu C 2016 Size-dependent scanning parameters (kVp and mAs) for photon-counting spectral CT system in

pediatric imaging: simulation study Phys. Med. Biol. 61 4105–26
Chen H, Xu C, Persson M and Danielsson M 2015 Optimization of beam quality for photon-counting spectral computed tomography in

head imaging: simulation study J. Med. Imaging 2 043504
Chen Z and Li L 2019 Robust multimaterial decomposition of spectral CT using convolutional neural networks Opt. Eng. 58 013104
Clark D P and Badea C T 2020 Fast spectral x-ray CT reconstruction with data-adaptive, convolutional regularization Proc. SPIE

11312 113120A
Cormode D P et al 2017 Multicolor spectral photon-counting computed tomography: in vivo dual contrast imaging with a high count

rate scanner Sci. Rep. 7 4784
Cranley K, Gilmore B J, Fogarty G W A, Desponds L and Sutton D 1997 IPEM Report 78: Catalogue of Diagnostic X-ray Spectra and

Other Data, electronic version (York: Institute of Physics and Engineering in Medicine)
Cunningham I 2000 Applied linear-systems theory Handbook of Medical Imaging vol 1 Physics and Psychophysics eds R L Van Metter, J

Beutel and H L Kundel (Bellingham, WA: SPIE) pp 79–160

30

https://doi.org/10.1118/1.3570658
https://doi.org/10.1118/1.3570658
https://doi.org/10.1118/1.4824057
https://doi.org/10.1118/1.4824057
https://doi.org/10.1109/TMI.2015.2510869
https://doi.org/10.1109/TMI.2015.2510869
https://doi.org/10.1088/0031-9155/21/5/002
https://doi.org/10.1088/0031-9155/21/5/002
https://doi.org/10.1118/1.2731032
https://doi.org/10.1118/1.2731032
https://doi.org/10.1088/0031-9155/60/23/8949
https://doi.org/10.1088/0031-9155/60/23/8949
https://doi.org/10.1118/1.4941742
https://doi.org/10.1118/1.4941742
https://doi.org/10.1088/0031-9155/58/5/1433
https://doi.org/10.1088/0031-9155/58/5/1433
https://doi.org/10.1103/PhysRevB.77.035205
https://doi.org/10.1103/PhysRevB.77.035205
https://doi.org/10.1088/1748-0221/11/01/P01007
https://doi.org/10.1088/1748-0221/11/01/P01007
https://doi.org/10.1109/TNS.2007.906163
https://doi.org/10.1109/TNS.2007.906163
https://doi.org/10.1088/0031-9155/61/10/3784
https://doi.org/10.1088/0031-9155/61/10/3784
https://doi.org/10.1109/ANIMMA.2013.6728030
https://doi.org/10.1016/j.nima.2014.10.079
https://doi.org/10.1016/j.nima.2014.10.079
https://doi.org/10.1103/PhysRevLett.75.156
https://doi.org/10.1103/PhysRevLett.75.156
https://doi.org/10.1097/RLI.0000000000000524
https://doi.org/10.1097/RLI.0000000000000524
https://doi.org/10.1148/radiol.2018172361
https://doi.org/10.1148/radiol.2018172361
https://doi.org/10.1109/TNS.2005.851419
https://doi.org/10.1109/TNS.2005.851419
https://doi.org/10.1016/S0168-9002(99)00388-5
https://doi.org/10.1016/S0168-9002(99)00388-5
https://doi.org/10.1088/0031-9155/57/7/N83
https://doi.org/10.1088/0031-9155/57/7/N83
https://doi.org/10.1118/1.3675399
https://doi.org/10.1118/1.3675399
https://doi.org/10.1088/0031-9155/55/7/014
https://doi.org/10.1088/0031-9155/55/7/014
https://doi.org/10.1109/TMI.2013.2290198
https://doi.org/10.1109/TMI.2013.2290198
https://doi.org/10.1109/TMI.2014.2361680
https://doi.org/10.1109/TMI.2014.2361680
https://doi.org/10.1259/bjr.20130798
https://doi.org/10.1259/bjr.20130798
https://doi.org/10.1109/TNS.2012.2226910
https://doi.org/10.1109/TNS.2012.2226910
https://doi.org/10.1117/1.JMI.3.2.023503
https://doi.org/10.1117/1.JMI.3.2.023503
https://doi.org/10.1118/1.4866890
https://doi.org/10.1118/1.4866890
https://doi.org/10.1016/0029-554X(70)90428-3
https://doi.org/10.1016/0029-554X(70)90428-3
https://doi.org/10.1103/RevModPhys.65.591
https://doi.org/10.1103/RevModPhys.65.591
https://doi.org/10.1088/0031-9155/61/11/4105
https://doi.org/10.1088/0031-9155/61/11/4105
https://doi.org/10.1117/1.JMI.2.4.043504
https://doi.org/10.1117/1.JMI.2.4.043504
https://doi.org/10.1117/1.OE.58.1.013104
https://doi.org/10.1117/1.OE.58.1.013104
https://doi.org/10.1117/12.2549615
https://doi.org/10.1117/12.2549615
https://doi.org/10.1038/s41598-017-04659-9
https://doi.org/10.1038/s41598-017-04659-9


Phys. Med. Biol. 66 (2021) 03TR01 M Danielsson et al

Curtis T E and Roeder R K 2017 Effects of calibration methods on quantitative material decomposition in photon-counting spectral
computed tomography using a maximum a posteriori estimator Med. Phys. 44 5187–97

da Silva J, Grönberg F, Cederström B, Persson M, Sjölin M, Alagic Z, Bujila R and Danielsson M 2019 Resolution characterization of a
silicon-based, photon-counting computed tomography prototype capable of patient scanning J. Med. Imaging 6 043502

Dangelmaier J et al 2018 Experimental feasibility of spectral photon-counting computed tomography with two contrast agents for the
detection of endoleaks following endovascular aortic repair Eur. Radiol. 28 3318–25

Du Y, LeBlanc J, Possin G E, Yanoff B D and Bogdanovich S 2002 Temporal response of CZT detectors under intense irradiation 2002
IEEE Nucl. Sci. Symp. Conf. Rec (New York: IEEE) pp 480–4

Duan X, Wang J, Leng S, Schmidt B, Allmendinger T, Grant K, Flohr T and McCollough C H 2013 Electronic noise in CT detectors:
Impact on image noise and artifacts AJR Am. J. Roentgenol. 201W626–W632

Dubousset J, Charpak G, Skalli W, Kalifa G and Lazennec J Y 2007 Syst̀eme EOS : la radiographie dose efficiency la t̂ete aux pieds face et
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