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Photon echo measurements in liquids: Numerical calculations 
with model systems 

Minhaeng Cho and Graham R. Fleming 
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Illinois 60637 

(Received 17 August 1992; accepted 28 October 1992) 

Two- and three-pulse photon echo signals are calculated for various model systems. The use 

of an experimental solvation correlation function as the solvent fluctuation correlation 

function leads to two conclusions. First, inertial solvent motion plays a major role in the 

electronic dephasing process. Second, simple models such as Markovian or exponential 

models for the solvent fluctuation correlation function may not provide an adequate description 

of the echo signal. The real and imaginary parts of the echo response, which may be 

measured via heterodyne detected stimulated photon echoes, are compared with conventional 

photon echo signals. 

I. INTRODUCTION 

The dynamical aspects of the solvent response are crit­

ical in understanding a wide range of condensed phase 

phenomena such as electron transfer, l chemical reactions,2 

and spectroscopic line shapes.3 An important probe of the 

interaction of solvents and solutes is the absorption spec­

trum of a chromophore. The absorption spectrum is broad­

ened by various mechanisms, for example, pure dephasing, 

inhomogeneous broadening, and lifetime broadening. It is 

often the case that the largest contribution to the spectral 

width arises from the inhomogeneous distribution of the 

local environments of the solute molecules. For example, 

in the case of crystals or glassy materials an impurity chro­

mophore is located in a structured and virtually time­

invariant environment. On the other hand, in solution, the 

local structure of the solvent around the chromophore is, 

in general, fluctuating, and is not well characterized com­

pared to the solid system. Transitions between different 

inherent structures take place on a wide range of time 

scales.4 

When the chromophore interacts with an external op­

tical field the first interaction produces an electronically 

coherent state. The electronic phase of this state is deter­

mined by the quantity liJeg(t) representing the time­

dependent electronic transition frequency between the elec­

tronic ground and excited states. The optical transition 

frequency of the ith chromophore can be written in the 

form 

(1) 

where <liJeg) is the average optical transition frequency for 

all the chromophores, ei represents a static contribution 
determined by the local environment of the ith chro­

mophore, and f..liJj(t) is a fluctuating term induced by the 

dynamical aspects of the surrounding media. Here it is 

assumed that the time scale associated with changes in ef is 

very long compared with that of f..liJj(t). Furthermore, it is 

usually assumed that the fluctuating term is common for 

all chromophores, thus, f..liJ(t) =f..liJj(t). This assumption 

justifies the use of the term homogeneous dephasing. The 

phase of the electronically coherent states created by the 

interaction with the external field is determined by not only 

the fluctuations term f..liJ(t) around <liJeg) but also by ej. 

Since f..liJ(t) is defined as the fluctuating frequency around 

the average value <liJeg), the average off..liJ(t) is zero. In 

calculations of the absorption spectrum as well as various 

nonlinear spectroscopic measurements, the correlation 

function of the solvent fluctuation f..liJ(t) plays a key role. 

As we shall show later, the mean-square amplitude of the 

solvent fluctuations <f..liJ2) (times a solvent correlation 

time-see Sec. III) determines the magnitUde of the ho­

mogeneous contribution to the line broadening. Assuming 

that the solvent modes are strongly coupled to the elec­

tronic excitation of a chromophore, Harris et al. 5 devel­

oped a simplified model describing the dephasing phenom­

ena. In this model, the mean-square amplitude of the 

solvent fluctuation can be related to both the displacements 

and the frequencies of the solvent modes. 

One of the critical questions relating to the validity of 

Eq. (1) is whether a time-scale separation between the 

inhomogeneous and homogeneous contributions associated 

with ei and f..liJ(t), respectively, really exists. Such a time­

scale separation clearly exists in the case of crystals or 

glassy materials. However, it is not clear that this assump­

tion is valid for liquid systems, since a broad distribution of 

time scales for the molecular motions exists with no clear 

cut division into two parts. In order to make a comparison 

between the two time scales, the width of the inhomoge­

neous distribution of e should be compared with the aver­

age time scale of the dynamical solvent motions. Recently, 

Shemetulskis and Loring6 calculated the absorption spec­

trum for a model system consisting of a dipolar solute in a 

dipolar solvent based on an inhomogeneous approxima­

tion. They found in their simulated system that the inho­

mogeneous contribution to the line broadening was the 

dominant mechanism. 

As discussed earlier, linear spectroscopic techniques 

cannot be used to selectively measure the dynamical con­

tributions of the solvent. In order to overcome this diffi­

culty, photon echo measurements have been widely used to 

obtain information on the dynamical aspects of the solvent 
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without contamination from the inhomogeneous contribu­

tion.7
,8 For a two-pulse photon echo measurement, the first 

pulse with wave vector kl' creates an electronically coher­

ent state. The following pulse with wave vector k2 switches 

the phase of the coherent state by 1T with respect to that of 

the first optical coherent state.8 Now, the rephasing process 

creates coherent echo fields produced by the macroscopic 

third-order material polarizations in the directions 2k2-kl 

and kl with frequencies of 2lU2 -lUI and lUI' respectively, 

although the echo field whose wave vector 2k2-kl is usu­

ally considered to be the photon echo field. During this 

critical rephasing process, the inhomogeneous contribution 

is eliminated and the echo field is centered at time t= to 

from the second pulse, where the two pulses are separated 

by a time to. Formally, the electronic phases of the two 

electronic coherence states of the ith chromophore should 

be averaged over the ensemble, 

2 

=Secho(tO,t) I f de fee) exp[ ±ie(to-t)] I ' (2a) 

2 

=Secho(tO,t) I f de fee) exp[ ±ie(to+t)] I ' (2b) 

where t denotes the time after the second pulse. Combina­

tions of signs in Eq. (2) are specified by the four Liouville 

pathways described by Yan and Mukame1.9 Here feE) rep­

resents the distribution of the inhomogeneity factor E. Secho 

is the echo signal without the inhomogeneous contribution. 

When the distribution fee) is broad and t and to have 

opposite signs as in Eq. (2a), the integration shown above 

is sharply peaked at t=to, since both t and to are defined 

positive. This is the case when the signal from Eq. (2b) 

disappears. The echo signal is thus observed when the time 

from the second pulse is equal to the delay time between 

the two pulses. The decrease of the photon echo signal 

intensity with respect to to is purely induced by the homo­

geneous contribution. 

The final two interactions with the field are coincident, 

in the two pulse echo and thus the signal does not contain 

contributions from the shift in energy of the excited state 

resulting from solvent relaxation (Le., the Stokes shift or 

spectral diffusion). By introducing an additional control­

lable time interval for the three-pulse photon echo mea­

surement, the dynamical evolution of the population state 

can also be studied by varying the delay time between the 

second and third pulses. The wave vector of the three-pulse 

photon echo field is given as k3+k2-kl' when k i denotes 

the wave vector of the ith pulse. When the echo fields are 

directly measured, the two-pulse and three-pulse stimu­

lated photon echo signals are proportional to the square of 

the material field.9 By contrast, the accumulated and 

heterodyne-detected photon echo signals give the real part 

and both the real and imaginary parts of the echo field, 
respectively. to 

In the case of a small inhomogeneous contribution to 

the linewidth the rotating wave approximation leads to the 

generation of two coherent fields with wave vectors 

k3-k2+kl and k3+k2-kl.
11 As the width of the inhomo­

geneous distribution increases the signal along k3+k2-kl 
becomes dominant and represents the echo signal. ll

(a),l1(d) 

Shank and co-workers measured both two-pulsel2 and 

three-pulse13 photon echo signals of Nile Blue in various 

polar liquids. They analyzed the observed signals under the 

assumption that the solvent fluctuations obey Gaussian dy­

namics. For fixed delay times between the first and third 

pulses, the echo signals show the same decay patterns, 

leading to the interpretation that the homogeneous dephas­

ing constants range from 20 to 80 fs in various polar liq­

uids. These authors found that a truncated exponential for 

the solvent fluctuation correlation function gave a satisfac­

tory description of their experimental observations. 

Wiersma and co-workers 14 carried out two-pulse photon 

echo measurements for resorufin in DMSO solution and 

used the exponential model (also called the stochastic 

model or the Kubo line-broadening function) to fit their 

data. We shall also use an exponential model to numeri­

cally calculate the echo signals and discuss the validity and 

limitations of this model by comparing these results with 

the echo signals calculated by using the solvent fluctuation 

correlation function measured by the time-dependent fluo­

rescence Stokes shift technique. 

In the present paper, we calculate various photon echo 

signals numerically, using the cumulant expansion expres­

sions for the nonlinear response function developed by 

Mukamel and co-workers. 15
,16 Our goal is to clarify the 

role of solvent dynamics in the form of the various types of 

echo signals. In particular, we wish to investigate the im­
portance of inertial contributions6

(b),17,18 to the solvent dy­

namics and the connections between echo measurements 

and other ultrafast studies of solvation such as fluorescence 

Stokes shift measurements. 19 We also discuss the addi­

tional information which can be obtained from echo mea­

surements, particularly when both the real and imaginary 

parts of the signal are obtained. The theoretical aspects of 

the nonlinear response functions and echo signals are sum­

marized in Sec. II. Four different model systems of the 

solvent fluctuation correlation function are discussed (Sec. 

III). The first model system corresponds to the Markovian 

limit, in which the solvent correlation time is very short 

compared with the dynamical time scale of the system. The 

second model considers an exponential function with a 

moderate time constant for the solvent fluctuation correla­

tion function. In the third model, we use the experimen­

tally obtained solvation correlation function by Rosenthal 

et af. 18 for the solvent fluctuation correlation function, 

since this includes various types of the solvent motions 

with a wide range of timescales. Finally, a Gaussian ap­

proximation to the solvation correlation function is used to 

investigate the role of inertial behavior. We calculate re­

sponse functions associated with the photon echo signals in 

Sec. IV and discuss the results in Sec. V. 

II. THEORETICAL 

The third-order polarization obtained by expanding 

the density operator up to the third order with respect to 
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the external field E(t) can be calculated by using eight 

nonlinear response functions representing the eight Liou­

ville pathways.16 Mukamell5 has developed a theoretical 

description for the response functions using cumulant ex­

pansion techniques. Assuming that the solvent fluctuations 

obey Gaussian statistics makes it possible to truncate the 

cumulant expansions at the second-order terms. 

Femtosecond photon echo signals are described by the 

nonlinear response functions that control all four-wave 

mixing spectroscopies.9
,10 Although four contributions and 

their complex conjugate are necessary to fully describe all 

four-wave mixing spectroscopies, in the limit of large in­

homogeneity two out of four pathways become vanishingly 

small. These two response functions correspond to the 

cases where the electronic phase, determined by the inho­

mogeneity factor c, is given by exp[ ±ic(tl-t)] [see Eq. 

(2)]. In the large inhomogeneous broadening limit, the 

relevant response functions for the echo generation are 
given by9 

RI (t3,t2,tl ) =exp[ -g*(t3) -g*(ti) +g(t2) -g(t2+ t3) 

-g*(tl +t2) +g*(tl +t2+t3)], (3a) 

R 2(t3h,tl) =exp[ -g(t3) -g*(tl) +g*(t2) -g*(t2+t3) 

-g*(tl +t2) +g*(tl +t2+ t3)]' (3b) 

where 

and 

M(t) 
(Acu(O)Acu(t) ) 

(Acu2
) 

(5) 

To obtain the above expressions, classical approximations 

were introduced to the time-ordered exponential and en­

ergy gap operator by replacing the usual exponential func­

tion and time-dependent energy gap (not an operator), 
respectively. 15 

We define 0" as the zero-frequency Laplace transform 

of M(t): 

0"= fo'" dtM(t). (6) 

The line-shape function g(t) carries all the dynamical in­

formation determining both spectral diffusion and decay of 

the photon echo signals. These two contributions corre­

spond to the first and second terms in Eq. (4), respectively. 

A is the magnitude of the energy shift of the excited state 

resulting from the solvation process (Stokes shift). The 

decay of the correlation function M(t) directly influences 

the time-dependent properties of the nonlinear response 

functions. Here, it is assumed that the solvent fluctuations 

obey Gaussian statistics so that the second-order cumulant 

expansion is exact. 

For simplicity, we define the response function 

R (t3,t2,tl ) as 

PE 

SPE 

APE 

HSPE 

A Incident Pulse A Echo Field 

FIG. 1. Pulse sequences for the various photon echo techniques. PE, 
two-pulse photon echo; SPE, stimulated photon echo; APE, accumulated 

photon echo; HSPE, heterodyne-detected stimulated photon echo. r is the 

delay time between the first and second pulses which is roughly equal to 

the electronic coherence duration time. cfo and X are optical phases be­
tween the first and second pulses and between the third and the local 

oscillator fields, respectively; 1/l=cfo-x. 

(7) 

Given the response functions calculated from M (t), we 

can summarize the various types of photon echo signals as 

functions of R(t3h,tl): 

SPE(T) = IR(T,O,T) 1
2

, 

SSPE( T,T') = IR( T,T',T) 1
2

, 

SHSPE( T,T',.", = 0) =SAPE( T,T') =Re[R( T,T',T)], 

(8a) 

(8b) 

(8c) 

SHSPE( T,T',"'=1T/2) = -Im[R( T,T',T)], (8d) 

where PE, SPE, APE, and HSPE denote photon echo, 

stimulated photon echo, accumulated photon echo, and 

heterodyne-detected stimulated photon echo, respec­

tively.1O Detailed theoretical descriptions of these photon 

echoes were given in Refs. 9 and 10. Pulse sequences and 

delay times between pulses are indicated in Fig. 1. The 

phase difference'" (=l/>-X) in the heterodyne-detected 

stimulated photon echo (HSPE) experiments is the optical 

phase difference between the third pulse and the local os­

cillator fields. T and T' are the duration periods of the 

electronic coherence states and the population states, re­

spectively. Measuring a T-dependent decay of the echo sig­

nals provides information on the optical dephasing process 

induced by the dynamical fluctuations of the solvent. On 

the other hand, a T' -dependent measurement can be used 

to understand the solvation dynamics, as demonstrated by 

the numerical calculations of Bosma et al. 20 Vibrational 

quantum beats can also be observed in the T' -dependent 

signal, since the second-order interaction with the chro­

mophore creates vibrational coherences in both the ground 

and excited states. Since vibrational dephasing processes 
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M. Cho and G. R. Fleming: Photon echo measurements in liquids 2851 

can be studied by other spectroscopic techniques, in this 

paper we focus on the role of the solvent in the optical 

dephasing process. 

III. MODEL SYSTEMS 

As seen in Eq. (4), knowledge of M (t), the magnitude 

of the Stokes shift, and the magnitude of the solvent fluc­

tuations is sufficient to calculate the various echo signals. 

In case of the Markovian limit, the correlation function 

M(t) is a 8 function, M(t) =a- 18(t). In this limit the 

line-shape function g(t) is 

A (l:iai) 
gB(t) =i-+-- t. (9) 

a a 

This is a Bloch approximation, wherein the inverse of the 

dephasing constant determining the homogeneous width of 

the Lorentzian absorption and fluorescence spectra is given 
by (l:iw 2)/a. 

The second model we use is an exponential model for 

M(t), M(t) =exp( -tlrc)' The solvent nuclear relaxation 

is characterized by a correlation time Tc' The correspond­

ing get) is then 

gE(t) =iATc[ l-exp( -tlrc)] 

+ (l:iw2)~[exp( -tlrc) +tlrc-l], (lOa) 

where SUbscript "E' denotes an exponential correlation 

function. The exponential model has been used to simulate 

an overdamped solvation correlation function. 14,20 If no 

spectral diffusion is assumed, the well-known Kubo line­

shape function21 is obtained. In the long time limit (T>Tc), 

the line-shape function approaches an asymptotic limit, 

A (l:iw2
) 

gE(t>Tc) =iATc+ (l:iW2
)T !=i -+-- t. (10b) 

a a 

This limiting behavior can also be observed when the cor­

relation time constant Tc approaches zero. The second 
equality is obtained from the fact that the zero-frequency 

Laplace transform of the exponential model shows that a is 

equal to T;I. The long-time behavior of the exponential 

model approaches the Markovian description as expected 
[compare Eqs. (9) and (lOb)]. Thus the decay pattern in 

this asympotic limit is identical to that of the Markovian 

limit. 

We now turn to the next model system. The time­

dependent fluorescence Stokes shift (TDFSS) correlation 

function is defined by 

set) 
vet) -v( 00) 

v(O) -v( 00 } , 
(11) 

where v(O), v( 00), and vet) are the initial, final, and time­

dependent fluorescence frequencies. In the linear-response 

approximation, the time-dependent Stokes shift is equal to 

the normalized autocorrelation function of the fluctuations 

in solvation energy difference l:iw(t), 

set) =C(t) 
(l:iw (0) l:iw(t) ) 

(6.oi) 
(12) 

where l:iw(t) is propagating on the ground-state potential­

energy surface. The angular bracket denotes an average 

over the equilibrium nuclear degrees of freedom in the 

ground state. The third model we have used for M(t) is the 

experimentally determined Set) obtained by Rosenthal 

et al. 18 for the dye LDS-750 dissolved in acetonitrile. The 

correlation function obtained by Rosenthal et al. contains 

features we expect to be quite general. The decay includes 

both inertial behavior of the solvent molecules and slower 

components resulting from the collective motions. It 
should be noted that to calculate the echo signals we as­

sume (i) a linear-response approximation for the solvation 

dynamics and that (ii) l:iw(t) is propagating on the ground 

state. Several molecular-dynamics simulations have ad­

dressed the reliability of the linear response approximation. 
It appears to be quite good in most cases. 17,22-24 For large 

polyatomic solute molecules, this approximation is ex­

pected to be goOd. 18 As for the second approximation, 
Shemetulskis and Loring6

(b) carried out molecular­

dynamics simulation studies with a semiclassical expres­

sion for the two-pUlse photon echo signal, in which the 

effective Hamiltonian is given by the arithmetic average of 

the ground and excited state Hamiltonians. They found 

that the discrepancy between echo signals calculated by 

using both the effective and ground state Hamiltonians was 

very small. This observation suggests that both the"ampli­

tude of the solvent fluctuations and the solvent fluctuation 

correlation function are not sensitive functions of the elec­

tric properties of the solute molecule. Fried et al. 25 also 

calculated response functions by using several Brownian 

oscillators to represent the solvation correlation function, 

where the ensemble average was taken over the ground 

state nuclear degrees of freedom. Replacing M(t) with 

S (t), we obtain the line-shape function g(t) : 

Because of the complexity of S (t), the line-shape function 

cannot be written analytically in this case. 

Molecular-dynamics simulation studies of 
acetonitrile22

(b) and CH3CI,17 and recent Stokes shift ex­

periments 18 on acetonitrile solution, have shown that the 

initial decay is governed by the inertial behavior of the 

solvent molecules. The inertial portion of the decay can be 
well approximated by a Gaussian function,17-19 which can 

be obtained by a short-time expansion of the correlation 

function M (t). As a final approximation we used a Gauss­

ian function obtained from fitting S(t). Thus, M(t) 

=exp( -r/ri) and 

(14) 

The time at half height, i.e., M(t) = !, is Tg ~ln 2. 
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FIG. 2. Model solvent fluctuation correlation functions defined in Eq. 
(3). (a) Two exponential models whose time correlation functions are 

200 (solid line) and 10 fs (dashed line). (b) Solvation correlation func­

tion measured experimentally for LDS-750 in acetonitrile (Ref. 19). The 

dashed curve is a Gaussian fit with 7"g=62 fs. 

IV. NUMERICAL CALCULATIONS AND DISCUSSION 

In this section, we present echo signals calculated with 

the various model systems discussed in Sec. III. The pa­

rameters are chosen to represent polar liquids. In all cal­

culations (except those in Sec. IV E) we use a value for the 

mean square of the solvent fluctuation (l1ui) of 600 pS-2, 

and ignore contributions from intramolecular vibrational 

coherences which would be observed as quantum beats in 

the echo signals. 12 As would be expected from the discus­

sion in Sec. II, the decay of the echo is strongly dependent 

on the magnitude of the mean square of the fluctuations 

(l1ui). It will also become evident that the echo decay is 

strongly dependent on the decay characteristics of MCt). 

Although the mean-square amplitude of the solvent fluc­

tuation is related to the magnitude of the Stokes shift, A., 
through the fluctuation-dissipation theorem,9 we consider 

the two quantities as independent parameters in Sec. IV. E. 

In Figs. 2(a) and 2(b), the model MCt)'s are shown. 

The dashed and solid curves in Fig. 2(a) are exponential 

functions whose decay time constants Tc are 10 and 200 fs, 

respectively. Thus, the former can be assumed to correc 

4 
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3 
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Iii 
§, 2 

Ci5 
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FIG. 3. Echo signal in the Markovian limit. The two-pulse echo signal is 

calculated using the exponential model with a correlation time of 10 fs . 

. _Two-pulse echo signal (solid curve) and real part of the response function 

(dashed curve) with respect to 7". Inset: logarithmic plots of the same 

functions with respect to 7". 

spond to the Markovian limit (Bloch approximation) 

while latter is the case when M(t) is decaying exponen­

tially. The experimentally measured solvation correlation 

function Sct) of LDS-750 in acetonitrile is drawn in Fig. 

2(b) as a solid line. The Gaussian fit to the initial decay of 

Sct) is shown as the dashed curve in the same figure. It has 

a decay constant Tg of 62 fs, that is to say, the standard 

deviation for this Gaussian M (t) is 44 fs. 

A. Markovian limit (Bloch approximation) with no 
spectral diffusion 

When the decay time constant of MCt) is 10 fs, we may 

assume that the fluctuations are in the Markovian limit 

(impact limit) as the time scale of the system is long com­

pared to 10 fs (fast modulation limit). The dashed curve 

in Fig. 3 corresponds to the response function 

R B( T,T' =O,T). The two-pulse photon echo signal 

I R B ( T, T' = 0, T) 12 is shown as the solid line in Fig. 3. When 

T' =0, from Eqs. (8a) and (9), 

R B( T,T' =O,T) =2 exp( -2rT) 

and 

(15) 

with 

r= (l1ui)Tc. 

In our model system, r=6 pS-1 (r- I =167 fs). In the 

Markovian limit, there is no T' dependence of R 1 and R 2, 

and also RI =R2. Since we assume no spectral diffusion, 

i.e., ,1.=0, the imaginary part of the response function is 

zero. From the experimental signal, we can obtain the de­

cay rate constant r by plotting 10g[IRB(T,T'=0,T) 12] or 

10g[RB( T,T' =O,T)] with respect to T [see the inset in 

Fig. 3]. 

J. Chern. Phys., Vol. 98, No.4, 15 February 1993 
 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.32.208.2 On: Wed, 13 Nov 2013 21:09:15



M. Cho and G. R. Fleming: Photon echo measurements in liquids 2853 

B. Exponential M{t) with no spectral diffusion (Kubo 
model, Stochastic model, overdamped Brownian 
oscillator model, Ornstein-Uhlenbeck process) 

This is the case when the correlation function is decay­

ing exponentially with modest decay constant (intermedi­

ate modulation limit). In our model, the decay time con­

stant Tcis 200 fs. RE(T,T' =O,T) and IRE( T,T' =O,T) 1
2
, and 

10g[RE(T,T'=0,T)] and log[IRE(T,T'=O,T) 12] are shown 

in Figs. 4(a) and its inset, respectively. As can be seen in 

Fig. 4(b), the echo signal is clearly nonexponential over 

300 fs. In this case it is unlikely that the asymptotic expo­

nential behavior of the echo signal would be observable. 

The two response functions Rl and R2 are indentical, but a 

T' dependence is manifest as shown in Fig. 4(b). For T'S 

fixed at 0, 100, and 200 fs, 1 R E( T, T " T) 12 is calculated to 

see the decay of the three-pulse echo signal with respect to 

T'. 

c. Using the solvation correlation function S{t) for 
M{t) without Stokes shift (zero .,t) 

Using the solvation correlation function measured ex­

perimentally (see Sec. III), we calculated 1 RS(T,T',T) 12. 
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The Gaussian approximation for MCt) shown in Fig. 2(b) 

was also used in calculating IRG(T,T',T) 12. For a two-pulse 

.p}!.o!on . echo, we _ compare IRs(~,--T'=0,T)12 _ and 
1 RG(T,T'=O,T) 12 in Fig. 5(a). The echo signal with a 
Gaussian approximation to MU) is qualitatively very sim­

ilar to the exact case, but decays more rapidly than 

IRs(T,T'=O"T) 12. The flat region up to 30 fs results from 
the inertial behavior of the solvent molecules. The differ­

ence between the Gaussian approximation and the exact 

calculation is obvious in the logarithmic plots of the inset 

in Fig. 5(a). Nonexponential behavior is also clear in both 

the exact and Gaussian approximation two-pulse echo sig­
nals. The difference in the two signals results mainly from 

the small deviation of the Gaussian curve and S (t) within 

the first 100 fs [see Fig. 2(b)]. 
Three-pulse echo signals with respect to T' are shown 

in Fig. 5(b) for T=2, 10, and 20 fs. For small values of T, 

the change of the T' -dependent signal is small. This can be 

understood by putting a small number for t1 and t3 in Eqs. 
(3a) and (3b). If T becomes very large, the change is also 

small because gCt= co) =0. The decays in Fig. 5(b) all 

clearly show bimodal character, but this does not include 
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the excited state lifetime which is usually long on this time 

scale. 

D. When the solvation correlation function [5(t)] is 
used for M(t) with a finite Stokes shift 
(nonzero A) 

Up to this point we have considered model systems 

without spectral diffusion, i.e., A=O. Using S(t) for M(t) 

FIG. 7. Three-pulse photon echo signals (stimulated photon echo sig­
nals) with (,6.(;)2) =600 pS-l and .1.=50 pS-I. 

and assuming A = 50 ps -1 (1667 cm -1), we calculate re­

sponse functions including spectral diffusion. If the spec­

tral diffusion is ignored, the imaginary part of the response 

function vanishes and the lineshape function g(t) is purely 

real. For the model system with spectral diffusion, both the 

real and imaginary parts of R( r,r',r) are shown in Figs. 

6(a) and 6(b), respectively. Experimental measurements 

of both real and imaginary parts of R are only possible 

using the heterodyne-detected stimulated photon echo 
technique (see Ref. 10). 

The real and imaginary parts of the response function 

with respect to 1" for constant values of 1'=0,50, and 100 

fs are shown in Figs. 6 ( c) and 6 ( d). The real part of R at 

1" =0 is the same as the case studied in Sec. IV C with 

A=O. Therefore, the spectral diffusion process cannot be 

observed in a two-pulse photon echo measurement. The 

imaginary part of R initially increases before decaying. In 

Fig. 7 we show IR(r,r',r) 12. The two-pulse echo signal is 

obtained at 1" = O. 

E. Using M(t)=5(t) with various A'S and (Aw2},S 

In the preceding sections, the solvent fluctuation am­

plitude (l1oi) was assumed to be 600 pS-2. In order to 

separately study the influences of spectral diffusion and 

electronic dephasing processes on the photon echo signals, 
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we ignore the relationship between A and (!lui) mediated 

by the fluctuation-dissipation theorem. 9 In Fig. 8 we show 
echo signals with A = 50 ps -1 and (!lal) = 600, 400, and 

200 pS-2. Both real and imaginary parts of the response 

function for r' =0 show a very weak dependence on (!lui) 

in the initial 75 and 50 fs, respectively. By contrast, the 

conventional two-pulse photon echo signal shown in Fig. 

8(c) is very sensitive to the magnitude of the solvent fluc­

tuation. 

A second series of calculations varied A from 10 to 50 
pS-l with a constant (!lal) =600 pS-2. The results are 

shown in Fig. 9. As the spectral diffusion amplitude in­

creases, the decay rate of the real part of the response 

function increases. Likewise, the rise time of the imaginary 

response function in Fig. 9(b) decreases as A increases. On 

the other hand, as Fig. 9 (c) shows the conventional two­

or three-pulse echo signals when r is varied do not depend 

on the spectral diffusion parameter. The insensitivity of the 

conventional echo signals to A when measured with respect 

to r arises because the real and imaginary parts are com­

plementary and contribute the same magnitude to 

IR(r,O,r) 12 [see Fig. 9(d)]. 

v. DISCUSSION 

The calculations described earlier enable us to make a 

number of comments on the physical basis of photon echo 

signals in solutions. The dynamical aspects of the solvent 

are represented by the time-dependent behavior of the cor­

relation function M(t). The complexity of the solvation 

process observed in experiments18 and molecular-dynamics 
(MD) simulation studies17

,22-24 shows that simple models, 

such as the Bloch equation, the exponential model, and the 

Gaussian model, provide inadequate descriptions of the 

dynamical content of echo signals. The dominant role of 

solvent inertial motion emerges clearly from the compari­

son of calculations using the experimental solvation corre­

lation functions and a simple Gaussian approximation. Re­

cently, Shemetulskis and Loring also found a major role 

for inertia in their molecular dynamics simulations of two­
pulse echo signals.6

(b) The small difference between the 

echo signal calculated using the full S (t) function and the 

Gaussian approximation in Fig. 5 suggests that photon 

echo measurements preferentially detect the fastest solvent 

fluctuations. 

The inertial behavior of the solvent molecules in sol­

vation dynamics is well-characterized by a Gaussian decay 

at short times. To understand the inertial effect on the echo 

signal, we expand the correlation function M(t) as M(t) 

~l-?h"i+' .... From Eq. (8a) the two-pulse photon 

echo signal is then approximated as 

(16) 

for short time. In Fig. 10, we compare the aforementioned 

short-time expression with the two-pulse echo signal. Al­

though the echo signals up to 30 fs are very similar, the 

short-time expression decays too quickly after this. The 

limitation of Eq. (16) is clear. The long-time decay (30--

100 fs for the particular value of (!lal) =600 pS-1) in the 
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with the same parameters as in (a). (c) Two-pulse photon echo signals 

with respect to T with ..1.=50 pS-l for (Ad) =600 (solid curve), 400 
(dashed curve), and 200 pS-2 (dashed-dotted curve). 

echo signals represents the contribution from the interme­

diate part (100 fs-l ps) of the solvent fluctuation correla­

tion function. 
The applicability of the Markov approximation has 

been discussed numerous times in the context of liquid­

phase dynamics. The Markovian limit arises when the cor­

relation function of the fluctuation decays sufficiently rap­

idly. More specifically, the decay constant should be much 
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smaller than the inverse of the root-mean square fluctua­

tion, i.e., «fl{Ji» 112 <7"; 1 in the case of the exponential 

model (see Sec. IV C). The physical meaning of this con­

dition is that the width of the frequency distribution of the 

solvent fluctuation is much broader than «fl{Ji» 112. For 

example, the exponential model system can be character­

ized by a Lorentzian spectral density whose width is 7"; I. 
The width of the spectral density for the model system 
whose 7"c is 10 fs, is 100 pS-l which is much larger than 
«fluh) 112=24 ps-t, when (flW2) =600 pS-2. Thus, the 

Markovian limit, also called the white noise limit, is valid 

only when the root mean square of the solvent fluctuation 

amplitude is much smaller than the spectral distribution of 

the solvent fluctuations. Since there is no apparent relation 

between the bath fluctuation amplitude and the correlation 

time constant, it is necessary to compare these two quan­

tities to decide if the system is in Markovian limit. 

When 7"c is 200 fs, the width of this exponential model 
system is 5 pS-I. Clearly, this is smaller than «flu/» 112. 

Therefore, the echo signal is now nonexponential or non­

Markovian (intermediate modulation regime). Although 

the asymptotic limit of the echo signal should be exponen-
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FIG. 10. The two-pulse photon echo signal calculated with the short-time 

expression given in Eq. (16) is shown as the dashed curve. The solid 

curve is identical to the two-pulse photon echo shown in Fig. S(a). 
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tial if T»T co the echo signal intensity may well be too weak 

in this time region to be detected. Since the two-pulse pho­

ton echo signal is simply given by 

SPEC T) =exp{ -2 Re[ 4g( T) -g(2T) n, (17) 

the signal at short times can be approximated as (for this 

exponential model system) 

SpE(n~~O) =exp { - (Acu
2

) [~~ - ~+o(~)]}. (18) 

The major difficulty with the exponential model is that 

both the inertial contribution and the slower part of the 

response (i.e., the bimodal character) are missing in the 

solvent fluctuation correlation function. The T' -dependent 

signals in Fig. 4(b) show that as the fixed value of T in­

creases the signal is simply shifted to shorter times. Shank 

et al. observed this behavior in three-pulse photon echo 

measurements. 13 For fixed delay times between the first 

and third pulses, they observed a series of decays with the 

same decay pattern (see Fig. I in Ref. 13). 

The inertial character of the solvent response is in­

cluded in the Gaussian approximation to M(t). In this 

case, the solvent dynamics are not in the Markovian limit, 

since the width of the spectral density of the solvent fluc­

tuations is approximately Tg1=16 ps-t, which is compa­

rable to (Acu2»)112=24 ps-l. Nonexponential decay in 

the echo signal is also apparent. 

Our numerical calculations emphasized the impor­

tance of the solvent fluctuation amplitude. It would be very 

interesting to obtain the amplitude of the solvent fluctua­

tion for different combinations of solvent and solute mol­

ecules. Moreover, it will be interesting to test the assump­
tion of M(t) =S(t) obtained from the time-dependent 

fluorescence Stokes shift or molecular-dynamics simula­

tions. When spectral diffusion is included in the model the 
imaginary part of the response function becomes nonzero. 

This situation is likely to apply to all polar molecules in 

polar solvents. In this case the additional information con­

tent present in the heterodyne-detected echo signals be­

comes apparent, and should allow a more complete de­

scription of the dynamical aspects of the solvent system. 

Oscillatory behavior can be observed both in the 

heterodyne-detected echo signals and in the two- or three­

pulse photon echo signals. The oscillation frequency is de­

termined mostly by the magnitude of the Stokes shift A. 
The T' -dependent measurement for a fixed value of T is 

governed by the spectral diffusion process as can be seen in 
Figs. 6(a), 6(b), and 7. As is well known, because the final 

interactions are coincident, the two-pulse echo signal is 

independent of spectral diffusion. This is also the case for 
stimulated photon echoes measured with respect to T not 

T'. 
The spectral diffusion in the photon echo measure­

ments during T' occurs on either the excited or the ground 

potential-energy surfaces. On the other hand, the spectral 

diffusion during the electronic coherence states occurs nei­

ther on the excited nor on the ground potential-energy 

surfaces. Two approximations have been employed in sim­

ulations, that the electronic coherences propagate on either 

the ground or excited states25 or on the arithmetic mean of 

the ground- and excited-state potential-energy surfaces.6
(b) 

The heterodyne detected echo measurement allows the ad­

ditional possibility of probing spectral diffusion during T, 

i.e., when the system is in an electronic coherence as shown 

in Figs. 8 and 9. This should allow tests of the various 

classical approximations to this quantum mechanical sys­

tem. 

A fluorescence Stokes shift can be understood as an 

energy dissipation (depopulation) process from the solute 

to the bath through the solvation process, since the diago­

nal density matrix of the electronic excited state is being 

probed. The decay of the off-diagonal density-matrix ele­

ments observed in the echo measurement during an elec­

tronic coherence period (here it is during T) contains in­

formation on the phase relaxation through depopulation 

and pure homogeneous dephasing. Here, we broaden the 

term depopulation process to include the intrinsic lifetime 

contribution of the excited state as well as spectral diffu­

sion. As seen in Figs. 8 and 9, the spectral diffusion con­

tribution during an electronic coherence is directly related 

to the initial decay and rise of the real and imaginary parts 

of the HSPE signal measured during T, while the conven­

tional T-dependent echo signal is only sensitive to the pure 

homogeneous and lifetime contributions. In other words, 

the insensitivity of the conventional echo signals to the 

spectral diffusion during the electronic coherence state re­

veals that information on the spectral diffusion contribu­

tion to the electronic coherence propagation could be lost. 

To illustrate this, we summarize the various contributions 

to the echo response functions during each period as in the 

following. 

(i) The first electronic coherence state (t 1): pure elec­

tronic dephasing process, lifetime broadening of the excited 

state of the chromophore, and spectral diffusion process on 

the quantum-mechanical mixed potential surface. 

(ii) The excited and ground population states (t2): 

lifetime broadening of the excited state of the chromophore 

for the excited population state and spectral diffusion on 

the excited and the ground potential surfaces, respectively. 

During the propagation of the excited population state, 
structural reorganization of the surrounding solvent sys­

tem occurs. 

(iii) The second electronic coherence state (t3): pure 

electronic dephasing process, lifetime broadening of the 

excited state of the chromophore, and spectral diffusion 

process on the quantum mechanical mixed potential sur­

face (during or after structural reorganization of the sol­

vent if the propagation of the population state was on the 

excited potential surface). Now, the conventional echo sig­

nal [which measures the echo intensity rather than the 

echo field during the electronic coherence period (t 1 and 

t3 )] measures the pure electronic dephasing and lifetime 

broadening contributions without the spectral diffusion 

contribution which could be different from the spectral 

diffusion during the population state (t2)' The absence of 

spectral diffusion from the T-dependent conventional three­

pulse echo signal is clearly demonstrated in Fig. 9 ( c ). On 

the other hand, as Fig. 9(d) shows HSPE measurements 
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do reveal the result of spectral diffusion during the coher­

ence periods. This is because the HSPE signal contains the 

phase information of the echo field, while the conventional 

echo signal includes only the amplitude of the echo field. 

The ability to control the period between the third and 

fourth pulses in the HSPE experiment (see Fig. 1) pro­

vides an opportunity to probe the time-dependent (Tr 

dependent) echo intensity after the third interaction with 

the external field. If the large inhomogeneous broadening 

limit is applicable, the echo field should be peaked at t=T 

from the third pulse when the delay time between the first 

and second pulses is T. To our knowledge, this is the only 

experimental technique that makes it possible to probe the 

third time period (t3)' In addition, the fluctuation ampli­

tude (!l.u}) can be measured without any contribution 

from the inhomogeneity. 

Many different techniques have been used to investi­

gate liquid-state dynamics. Generally, the data have been 

analyzed according to phenomenological models making it 

difficult to compare the dynamical character of one liquid 

with another, or to assess the consistency and information 

content of the various different experiments.26 At this point 

it may be appropriate to discuss Brownian oscillator mod­

els for the solvation fluctuation correlation function. The 

Brownian oscillator model is useful for describing the sol­

vent dynamics with a few characteristic parameters, i.e., 

frequency of the oscillators and damping constants.27 With 

the Markovian approximation for the friction kernel (i.e., 

the memory kernel is a 0 function), Fried et al. calculated 

nonlinear response functions by using several Brownian 

oscillators to mimic the water fluctuation correlation func­

tion.25 The disadvantage of simulating the time-dependent 

behavior of the solvent fluctuation with stochastic model is 

that potentially useful information on the solvent-solute 

interactions can be lost if the solvent dynamics are not 

described in terms of microscopic quantities, such as inter­

molecular potential and pair correlation functions, liquid 

structures, etc. 

We suggest that it would be useful to describe the liq­

uid dynamics with a characteristic spectral density which 

will allow connections between different experimental ob­

servations to be made in a unified way. The spectral density 

basically represents the distribution of the dynamical time 

scales in the liquid. For example, the role of low-frequency 

fluctuations in providing inhomogeneity on a particular 

time scale can be clarified and systematically investigated. 

Recently, an attempt along these lines was carried out by 

Cho et al., 19 in which the short-time behavior observed in 

both the optical Kerr effect and time-resolved fluorescence 

Stokes shift measurements on acetonitrile were analyzed by 

a model spectral density. Buchner et al. have made a very 

similar suggestion as a result of their work on instanta­

neous normal modes in liquids.28 

Many challenges exist in the implementation of this 

program. The projection of the spectral density onto spe­

cific observations must be addressed. In the case of aceto­

nitrile we assumed19 that the same spectrum is responsible 

for both optical Kerr effect and solvation correlation func­

tion signals. Although this worked well in this case it is 

unlikely to do so in general. For example, in water we 

might expect the librational modes to playa much stronger 

role in the solvation process than the Kerr response. The 

time scale on which inherent structures4 persist in the liq­

uid is also critical. For water the simulations of Ohmine 
et al. 4

(b),4(c) suggest a time scale in the tens of picoseconds, 

although this time may be much shorter in less structured 

liquids. Finally, the transition from inertial to diffusive mo­

tion must be included, although the unexpected impor­

tance of the inertial contribution to many experimental 

signals makes this less important than was expected for 

interpretation of ultrafast spectroscopic studies. 
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