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Abstract
Lead halide perovskites show remarkable per-
formance when used in photovoltaic and opto-
electronic devices. However, the peculiarities
of light-matter interactions in these materials
in general are far from being fully explored ex-
perimentally and theoretically. Here we specif-
ically address the energy level order of optical
transitions and demonstrate photon echos in a
methylammonium lead triiodide single crystal,
thereby determining the optical coherence times
T2 for excitons and biexcitons at cryogenic tem-
perature to be 0.79 ps and 0.67 ps, respectively.
Most importantly, we have developed an exper-
imental photon-echo polarimetry method that
not only identifies the contributions from exci-
ton and biexciton complexes, but also allows
accurate determination of the biexciton binding
energy of 2.4 meV, even though the period of
quantum beats between excitons and biexcitons
is much longer than the coherence times of the
resonances. Our experimental and theoretical
analysis methods contribute to the understand-
ing of the complex mechanism of quasiparticle
interactions at moderate pump density and show
that even in high-quality perovskite crystals and
at very low temperatures, inhomogeneous broad-

ening of excitonic transitions due to local crystal
potential fluctuations is a source of optical de-
phasing.

Introduction
Recently, the exceptional characteristics of lead
halide perovskite materials essential for pho-
tovoltaics,1–3 optoelectronics applications,4–6
lasers7–9 and X-ray and gamma detectors10 have
attracted the attention of a wide audience. Low
temperature, solution and vacuum processable
structures based on perovskite semiconductors
are an attractive enrichment to conventional
inorganic semiconductors. Owing to the im-
pressive development of nanocrystal, film and
crystal growth techniques,11–15 device perfor-
mance has also reached a remarkable level. In
photovoltaics, in only a few years, the power con-
version efficiency (PCE) has rapidly increased
from an initial value of 3.8% to almost 25%
on laboratory-scale.16 Moreover, the first light-
emitting electrochemical cells have been devel-
oped, and light-emitting diodes (LEDs) already
exhibit internal quantum efficiencies exceeding
20% and tuneable light emission spectra.17 On
the other hand, the knowledge currently avail-
able about the excited states of electrons and

1

ar
X

iv
:2

11
2.

08
91

5v
1 

 [
co

nd
-m

at
.o

th
er

] 
 1

6 
D

ec
 2

02
1

artur.trifonov@tu-dortmund.de


excitons, their properties and particularly in-
teractions is far from sufficient, and certainly
let alone complete. First steps in this direction
have been taken mainly in low-dimensional sys-
tems.11,18–21 Their complex and controversially
discussed exciton fine-structure promises the dis-
covery of fascinating physics11,22–25 and efficient
light sources.
The exact picture of the excitonic structure

of bulk hybrid lead-halide perovskites that un-
derlies properties of low-dimensional systems
is unclear. In methylammonium lead triiodide
(CH3NH3PbI3/ MAPbI3) and other hybrid per-
ovskites, despite 25 years of research history,26
consensus on the exact value of the exciton bind-
ing energy, εB = 10 . . . 15 meV, was found only
recently.24 Also properties of MAPbI3 crystals
and properties of carriers in them have been
studied: carrier recombination rates and spin
dephasing rates,27 accelerated relaxation of car-
riers due to a decrease in their Coulomb screen-
ing18 and effective dielectric constant,28–30 the
influence of the huge temperature expansion
coefficient on various mechanical and optical
processes,31 the influence of dynamic processes
in the crystal lattice on optical properties,32
a low rate of surface carrier recombination,33
phonon bottleneck phenomena at high optical
excitation powers.34
Information on structure of energy transi-

tions and coherent optical properties of hy-
brid lead-halide perovskites is barely known for
bulk crystals and mostly based on studies of
nanoplatelets35 and thin films.36–40 Exciton fine
structure splitting of ∼ 200 µeV has been mea-
sured in MAPbBr3 bulk crystal.41 It was shown
that organic-inorganic perovskites have interest-
ing features associated with the organic cations.
The organic cation has rotational degrees of
freedom and a dipole moment. Its random ori-
entation and long range correlations of orien-
tation lead to long-range potential fluctuations
unlike in alloys or other conventional disordered
systems.42 At high temperatures, this disorder
is dynamic. At low temperatures, such disor-
der is associated with the frozen random fluc-
tuations.37,38 The coexistence of domains with
different crystallographic phases in a wide tem-
perature range also leads to fluctuations in the

band gap.43,44 These properties give rise to an
inhomogeneous broadening even in high-quality
crystals.
Coherent optical spectroscopy methods allow

one to overcome inhomogeneous broadening.
For example, time-integrated four-wave mixing
(TIFWM) gives εB = 13 meV in MAPbI3 36 hid-
den by inhomogeneous broadening, which is in
good agreement with the conclusions of the re-
view article.24 Using TIFWM and coherent mul-
tidimensional spectroscopy, subbandgap defect-
bound exciton states were discovered .36,39 In
Ref.37 the TIFWM showed a weak interaction
between excitons, as well as a long dephasing
time of carriers. Carrier diffusion in MAPbI3
thin films was studied using four-wave mixing
(FWM).40
In this work we use a variety of techniques

of time- and spectrally-resolved FWM spec-
troscopy to study a bulk MAPbI3 single crystal
at low temperature T = 2 K which shows photon
echoes (PE) from excitons. Moreover, we have
developed a transient photon echo polarimetry
technique that allows us to unambiguously iden-
tify the biexciton resonance. The technique is
based on the study of PE polarization oscil-
lations induced by exciton-biexciton quantum
beats. This approach enables us to determine
the biexciton binding energy, εXX, even if the
quantum beats period exceeds the optical coher-
ence times in the system under study and no
complete amplitude oscillation can be observed.
The PE polarimetry allows us to identify the
exciton resonance with the optical coherence
time TX

2 = 0.79 ps, the biexciton resonance with
the coherence time TXX

2 = 0.67 ps and evaluate
εXX = 2.4 meV in the MAPbI3 crystal.

Experimental results
Degenerate transient FWM is a powerful experi-
mental technique to gain insight into the nature
and characteristics of optical excitations in semi-
conductors. Figure 1(a) shows schematically
the experimental geometry while Figures 1(b,c)
show the photo of the studied MAPbI3 crystal
and its crystallographic structure. The system
under study is resonantly excited by a sequence
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Figure 1: (a) Schematics of photon echo experi-
ment and heterodyne detection. (b) Photo of the
studied MAPbI4 crystal on a mm-scale paper.
(c) Crystallographic structure of the MAPbI3
(taken from45).

of two optical pulses with wavevectors k1 and
k2 delayed by the time τ12 with respect to each
other. The third order susceptibility χ(3) gives
rise to a coherent response of the system in the
phase matched direction 2k2 − k1. Note, χ(3)

has maxima around resonance frequencies as
well as susceptibilities of other orders χ(1), χ(2),
etc.46 In our experiment this response is mea-
sured using heterodyne detection47–49 where the
recorded signal, IPD, is given by the interference
between the measured light and a strong refer-
ence beam on the photodiode. By changing the
reference pulse arrival time, τref , we measure the
dynamics of the FWM signals.
Figure 2(a) shows the spectral dependence

of the FWM signal measured by scanning the
wavelength of the spectrally narrow (∼ 0.3 meV
width) laser pulses with a duration of about
2.8 ps hitting the sample simultaneously (τ12 =
τref = 0). The spectrum shows a broad peak
with full width at half maximum (FWHM) of
8 meV and maximum at 1.639 eV. These values
are in good agreement with results of previous
studies of excitons in MAPbI3.24,35,37 All other
experimental results presented below were ob-
tained using a ∼ 11 meV spectrally broad laser
(pulse duration 170 fs) with the spectrum cover-
ing the whole band shown in Figure 2(a). The

central photon energy of the pulses was tuned
to 1.638 eV. These 170 fs short optical pulses im-
prove the temporal resolution of the experiment,
while the 2.8 ps pulses provide better spectral
resolution.
An important degree of freedom in our exper-

iments is the polarization configuration. Here-
after, we use the two- or three-letter notation
like HH and HHH for the polarization config-
uration, in which the first two letters describe
the polarization of the first and second pulses.
H and V correspond to horizontal and verti-
cal linear polarizations, respectively. D and A
are linear polarizations in the basis rotated by
45◦ with respect to H and V. σ+ and σ− mark
circular polarizations. The third letter corre-
sponds to the detection polarization given by
the polarization of the reference beam.
Figure 2(b) shows the dependence of the FWM

signal on τ12 and τref in the HHH polarization
configuration. The vertical line at τref = 0 is an
artefact signal arising from the cross-correlation
of the scattered first pulse with the reference
pulse. It shows that our time resolution and
accuracy of the used technique is limited by
the laser pulse temporal width. The FWM
signal shifts with increasing τ12 marked with
the arrow and the dashed line corresponding
to τref = 2τ12. As one can see, the maximum
of the signal follows the dashed line proving
that the observed signal is a PE signal. The
cross-section of the FWM signal by the dashed
line is a transient PE amplitude, which decay
with an optical coherence time T2 (≈ 0.79 ps as
discussed below). Figure 2(c) shows a horizon-
tal cross-section of Figure 2(b) for τ12 = 1.5 ps
demonstrating the typical PE pulse time profile.
Here, the maximum of the PE pulse is slightly
shifted from the expected position (3 ps) to-
wards smaller τref since it is distorted by the
short coherence time T2 that is comparable with
the PE pulse duration. The dashed line in Fig-
ure 2(c) shows the PE pulse time profile decon-
voluted from the measured signal by taking into
account the impact of the short T2 and the du-
ration of the reference pulse (see details in Sect
3.2 of SI ). The FWHM of the deconvoluted
dependence corresponds to the macroscopical
polarization decay time T ∗2 = 0.88± 0.12 ps of

3
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Figure 2: (a) FWM spectrum of MAPbI3 crystal measured at T = 2 K. (b) The heterodyne signal
(colour) as a function of τ12 and τref . Red dashed line tracks τref = 2τ12. 170 fs laser pulses tuned
to 1.638 eV covering the whole FMW spectrum shown in panel (a) are used. (c) Experimental τref
dependence of the heterodyne signal for τ12 = 1.5 ps (green) and its fit by Gaussians (black). Blue
dashed line is the PE pulse deconvoluted from the measured signal by taking into account the impact
of short coherence time and the duration of the reference pulse. (d) Schematics of exciton energy
levels, where |G〉 is the ground state of unexcited crystal,

∣∣∣X↑〉 and
∣∣∣X↓〉 are the exciton states with

spin up and spin down, respectively. (e) Schematics of negatively charged exciton (trion or donor
bound exciton) energy levels, where

∣∣∣e↑〉 and
∣∣∣e↓〉 are ground states with resident electron spin up

and spin down,
∣∣∣h↑〉 and

∣∣∣h↓〉 are the trion states with hole spin up and spin down. Arrows in (d)
and (e) show allowed optical transitions in circular polarizations σ+ and σ−. Modeled two-leaves (f)
and four-leaves (g) polar rosettes corresponding to the exciton and trion (or donor bound exciton)
level schemes in (d) and (e), respectively.
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an ensemble with inhomogeneous broadening
Γinh = 8 ln (2)~/T ∗2 = 4.1 ± 0.6 meV, which
is larger than the homogeneous broadening
Γhom = 2~/T2 = 1.67 meV. Our result directly
shows that at low temperature, the inhomo-
geneous broadening exceeds the homogeneous
broadening induced by scattering on character-
istic phonons, impurities or resident carriers
remarkable for MAPbI3 crystals. To the best of
our knowledge, this is the first direct experimen-
tal observation of a photon echo in lead halide
perovskite bulk crystals. In previous FWM stud-
ies of lead halide perovskite thin films,35,38 the
PE presence was only assumed.
As a next step we identify the origin of the

exciton complexes contributing the PE signal.
The recently developed photon echo polarimetry
is a powerful technique to distinguish different
exciton complexes50 (free excitons, donor-bound
excitons, charged excitons), which is a highly
non-trivial problem in optical spectroscopy. In
this technique, the PE amplitude (FWM sig-
nal at τref = 2τ12) is measured as a function of
the angle ϕ between the linear polarizations
of the two excitation pulses. We label this
experimental protocol by the notation HRH,
where R marks the linear polarization that is
rotated. The PE arising from the hypotheti-
cal V-type level scheme shown in Figure 2(d)
typical for excitons gives rise to a | cosϕ| de-
pendence as shown in Figure 2(f), which we
call two-leaves polar rosette in the following. In
contrast, the negatively charged exciton (trion)
or donor bound exciton has the level structure
shown in Figure 2(e) giving rise to a | cos 2ϕ|
dependence shown in Figure 2(g), which we call
four-leaves polar rosette in the following.
In the studied MAPbI3 crystal we found dif-

ferent types of rosettes at different τ12 values.
To study this effect in detail, we measure polar
rosettes continuosly as a function of τref = 2τ12.
In this way, we expand the polarimetry tech-
nique by a further degree of freedom and arrive
at two-dimensional data sets as visualized by
the color map in Figure 3(a). As one can see,
the four-leaves (peaks) behaviour is replaced
by the two-leaves (peaks) exciton behaviour
for τref > 1 ps. Figures 3(c,d) shows vertical
cross-sections of Figure 3(a). For τref = 0.1 ps

the experimental polar rosette (red line in Fig-
ure 3(c)) resembles the theoretical four-leaves
polar rosette (blue line), while for τref = 2.7 ps
an excitonic two-leaves polar rosette is observed,
see Figure 3(d). Based on the latest results of
studying the resident carriers spin dynamics in
lead halide perovskites51,52 , one can assume
the presence of trion or donor bound exciton
transitions spectrally close to the free exciton
resonance. However, we show below that this
behaviour is a signature of a exciton-biexciton
system with a diamond-like level scheme shown
in Figure 3(e). Here, the spin up

∣∣∣X↑〉 and spin
down

∣∣∣X↓〉 exciton states are the initial states
for optical excitation of the biexciton state |XX〉.
The arrows denote the allowed optical transi-
tions in the circular polarization basis, ε is the
exciton energy, and εXX is the biexciton binding
energy, which is equal to the energy splitting
of the exciton and biexciton in optical spectra.
This system can be excited into a superposition
exciton-biexciton state by the short optical pulse
if FWHM of the laser pulses exceeds εXX.
We have performed a theoretical analysis for

exciton-biexciton system to predict its behaviour
in transient PE polarimetry (see details in Sects.
I and II of SI). The analytical expressions (Eqs.
(S22,S23) in SI) for transient PE in the HHH
and HVH polarization configurations

PXX
HHH ∼ [4 exp

(
−2τref

TX2

)
+ exp

(
− 2τref

TXX2

)
(1)

− 4 cos
(
ωQBτref

2

)
exp

(
− τref

TXX2
− τref

TX2

)
] 1

2 .

PXX
HVH ∼ exp

(
− τref

TXX2

)
(2)

predict no oscillations in the HVH and damped
oscillations in HHH polarization configuration.
Here, TX

2 and TXX
2 are the exciton and biexci-

ton coherence times, ωQB = εXX/~ is the quan-
tum beat frequency. Figure 4(a) shows the
experimental transient PE in the HHH (blue
line) and HVH (green line) polarization con-
figurations which are horizontal cross-sections
of Figure 3(a) at ϕ = 0 and π/2, respectively.
As one can see, the transient PE amplitude in
HHH configuration does not experience oscil-
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Figure 3: Experimental (a) and calculated (b) PE amplitude dependence on τref = 2τ12 and ϕ. (c,d)
Polar rosettes measured (red) and calculated (blue) at τref = 0.1 ps and 2.7 ps. They are vertical
cross-sections of the data in panels (a) and (b). Calculations are made in the biexciton model. (e)
Diamond-like schematics of the exciton-biexciton energy levels, where |G〉 is the ground state of
the crystal,

∣∣∣X↑〉 and
∣∣∣X↓〉 are the excitons with opposite spin projections, |XX〉 is the biexciton.

Arrows show the allowed optical transitions in the circular polarizations.

lations with measurable amplitude in our ex-
periment. The reason for this is the short co-
herence times of excitons and biexcitons. This
assumption is confirmed by the simple estimate
of the biexciton binding energy from analogy
with hydrogen, for which the binding energy of
the H2 molecule is about 1/3 of the H atom
binding energy (4.7 eV/13.6 eV).53,54 In Fig-
ure 4(a) the dashed lines are modeling results
using Eqs. (1),(2) with TX2 = 0.79 ± 0.03 ps
and TXX2 = 0.67 ± 0.03 ps. These values were
obtained from best fit of the HHH experimental
data in Figure 4(a) with Eq. (1) and Figure 6(f)
with Eq. (5) (see details in Sect. 3.1 of SI). The
noticeable non-exponential decay of the experi-
mental HVH signal is most probably associated
with the inhomogeneity of εXX and TXX2 due
to crystal heterogeneity, which is not accounted
in our model. The obtained exciton and biex-
citon coherence times are by almost 1.5 times
shorter than the assumed quantum beat period
TQB = h/εXX = 3h/εB = 1.1 ps.
The transient PE polar rosettes in the HRH

configuration without decay is described by (Eq.
(S20) in SI)

PXX
HRH =

√
8 cos2 (ϕ) sin2 (ωQBτref/4) + cos2 (2ϕ).

(3)
The second term on the right side yields a
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Figure 4: (a) Transient PE measured in HHH
(blue) and HVH (green) polarization configu-
rations that are horizontal cross-section of Fig-
ure 3(a) at ϕ = 0 and π/2, respectively. The
transient PE calculated for the exciton-biexciton
system in HHH (red dashed) and HVH (orange
dashed) polarization configurations that are hor-
izontal cross-sections of Figure 3(b) at ϕ = 0
and π/2, respectively. (b) PE polarization con-
trast ρσ+V

2 as functions of τ12 and τref . Red and
blue dashed lines highlight the τref = τ12 and
τref = 2τ12 dependences, respectively.
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four-leaves polar rosette, while the first term of
greater amplitude corresponds to the two-leaves
polar rosette. It oscillates in time giving rise to
the transient conversion between the four-leave
polar rosette for ωQBτref/4 = πn, and the two-
leave polar rosette for ωQBτref/4 = π/2 + πn,
where n ≥ 0 is an integer number. Because
linearly polarized light at an angle ϕ can be
represented as a superposition of circularly po-
larized components e−iϕσ+ + eiϕσ−, the angle
ϕ defines the phase between different quantum
paths55 allowing them to interfere constructively
(ϕ = 0) or destructively (ϕ = π/2). A full
analytical expression taking into account the
decays of the exciton and biexciton coherences
is given by Eq. (S21) in the SI. Figure 3(b)
shows the PE amplitude dependence on ϕ and
τref calculated in this model, using the experi-
mentally obtained values of TX2 = 0.79 ps and
TXX2 = 0.67 ps. The corresponding theoretical
polar rosettes for τref = 0.1 ps and τref = 2.7 ps
are shown in Figures 3 (c,d) by the blue curves.
Thus, the experimentally observed change of the
polar rosettes shape shown in Figures 3(a,c,d) is
well explained by the exciton-biexciton quantum
beats. Trion modeling performed in supplement
cannot explain polar plots in Figure 3 (for de-
tails see Figures S10(l,p) in SI).
The exciton-biexciton quantum beats man-

ifest themselves in the discussed PE experi-
ment with linearly polarized pulses as ampli-
tude oscillations in the HHH polarization con-
figuration. Because of the very short coher-
ence times, the experimental data presented
above do not allow us to prove the presence
of quantum beats and to estimate the biex-
citon binding energy from the PE amplitude
beats (Eqs. (1)-(3)). However, the PE is charac-
terised also by the polarization state which is de-
scribed by the polarization contrasts (Stokes pa-
rameters) ρi = [|PLi|2 − |PMi |2]/[|PLi|2 + |PMi|2],
where the Li and Mi are pairs H/V, D/A and
σ+/σ− of detection polarizations for i = 1, 2
and 3. A detailed study of the PE polarization
state dynamics with correctly chosen polariza-
tion configuration of the incident pulses can
provide additional information.56–60 As we show
below, the PE in the polarization configura-
tion with circular and linear polarization of the

incident pulses experiences polarization state
beats that are independent on the PE ampli-
tude decay. Figure 4(b) shows the experimental
τ12 and τref dependence of the most informa-
tive (explained below) FWM polarization con-
trast ρσ+V

2 = (|Pσ+VD|2 − |Pσ+VA|2)/(|Pσ+VD|2 +
|Pσ+VA|2). Here, the polarization contrast val-
ues obtained with using a small FWM signal
amplitude comparable with the noise level are
set to zero (dark blue color). As one can see,
the τref position of the central minimum of the
FWM polarizations contrast oscillation (green
area between two yellow areas) is parallel to the
τref = τ12 (red dashed line) dependence. This
behaviour points to the effect of quantum beats
and excludes the possibility of interference of
polarizations of two independent systems (e.g.
exciton and trion) for which one can expect the
dependence τref = 2τ12 (blue dashed line).61 Sec-
tion 4 of the SI provides additional arguments
for this conclusion.

Transient FWM polarimetry
of biexcitons
We developed a transient polarimetry PE tech-
nique that allows us to reveal the biexciton op-
tical resonance independently and measure its
binding energy. The technique is based on the
detailed analysis of the transient polarization
state of the PE that is modulated by excton
biexciton quantum beats. We analyze the tem-
poral behaviour and orientation of the polar
rosettes in the σ±RH polarization configuration
with circularly polarized first pulse .
To explain the technique’s principle, we simu-

late the dynamics of the polarization state of the
PE excited with a circularly polarized first pulse
and a linearly polarized second pulse, namely
for the σ+H configuration. Figure 5(a) shows
these dynamics on the Poincaré sphere modeled
in the exciton-biexciton model without damping
(see details in Sect. 2 of SI). Here, the quan-
tum beats period corresponds to one rotation of
the PE polarization state around the red circle.
The starting and ending points (green dot) cor-
respond to the σ+ polarization of the first pulse.
The precession direction and the trajectory ori-
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entation on the sphere is controlled by the H
polarization of the second pulse (see details in
Sect. 2.3 of SI). Figure 5(b) shows the dynamics
of the corresponding polarization contrasts ρσ+H

i ,
where the superscript marks the polarizations of
incoming pulses. Note, here one quantum beat
period corresponds to τref/TQB = 2 because
τref/τ12 = 2 (maxima of the PE pulse). The
dynamics of the PE elliptical polarization state
in the range 0.3 . τref/(TQB) . 1.7 shows prac-
tically no change in ρσ+H

1 and ρσ+H
3 , while ρσ+H

2
rises almost linearly from about −1 to 1. The
latter dependence highlights ρ2 as the most in-
formative polarization contrast parameter. One
can describe the σ+H PE polarization dynamics
as rotation of the orientation of the main axis
of the elliptically polarized PE from A to D
through the H state. In experiment, the main
axis orientation can be measured as maximum
of φ dependence, where φ is the angle of linear
polarization of the detection. This experiment
corresponds to the Pσ+HR dependence, where
the symbol R marks the rotation of orientation
of the linearly polarized detection.
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Figure 5: Time evolution of the PE polariza-
tion state for τref = 2τ12 in σ+H polarization
configuration modeled in the exciton-biexciton
model without damping and shown in terms of
the trajectory on the Poincaré sphere (a) and in
terms of the polarization contrast parameters
(b). The light red curves on ρ1ρ2, ρ1ρ3 and ρ2ρ3
planes in (a) are projections of the trajectory.

The general equation describing the PE am-
plitude for the case of a σ± polarized first pulse,
linearly polarized second pulse and linearly po-

larized detection is given by

PXX
σ±ϕφ ∼ [3− 2 cos

(
ωQBτref

2

)
− (4)

−2 sin
(

2ϕ+ 2φ∓ ωQBτref

4

)
sin

(
ωQBτref

4

)
] 1

2 .

Here ϕ is the angle of linear polarization of the
second pulse, and φ is the angle of linear po-
larization of the detection. As one can see in
Eq. (4) the angles ϕ and φ are equivalent. The
ϕ dependence for φ = 0 corresponds to the polar
rosettes σ±RH. Here, the rotation of the second
pulse polarization gives rise to rotation of the
whole trajectory on the Poincaré sphere about
the ρ3 axis detected in H polarization (see de-
tails in Sect. 2.3 of SI). Thus, the σ±RH and
σ±HR dependencies for the exciton-biexciton
system are equal, which we have confirmed ex-
perimentally, see Figure S3 in SI.
In many cases, it is experimentally easier to

vary the polarization of the second pulse than
the detection polarization. Thereby the study
of the polar rosettes behaviour in the σ±RH
polarization configuration is advantageous. Fig-
ures 6(a,b) shows such experimental depen-
dences demonstrating a different behaviour for
the σ+ and σ− polarizations of the first pulse.
In contrast to the case of linearly polarized first
pulse shown in Figures 3(a), these dependences
have two peaks (leaves) because of circular po-
larization of the first pulse. The τref position of
peaks shifts with a constant rate in the range
0.5 ps. τref . 2.5 ps. In Figure 6(a,b), the shift
is highlighted by a white dashed line marking
the maximum of the signal amplitude. The shift
corresponds to a rotation of the polar rosettes
orientation. Figure 6(e) shows examples of polar
rosettes σ+RH at τref = 0.8 ps and 3.5 ps. Their
orientation is marked by the dashed lines, while
the orientation angle, θ, is counted from the H
axis.
To quantify the rotational behaviour of the

σ±RH rosettes we analyse the experimental data
in Figures 6(a,b) using the fit function |cos(ϕ−
θ)| for each τref value. The circles and squares in
Figure 6(f) show the τref oscillatory behaviour
of θ for the σ+RH and σ−RH configurations,
respectively. The time evolution is opposite for
σ+ and σ− polarized first pulse and the angle
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Figure 6: Experimental (a,b) and calculated in the exciton-biexciton model (c,d) transient polar
rosettes in σ+RH and σ−RH polarization configurations. (e) σ+RH polar rosettes measured at
τref = 0.5 ps (blue) and τref = 3.5 ps (orange). (f) τref dependence of σ+RH and σ−RH polar rosettes
orientation angle θ obtained from experiment analysis (symbols) and their fitting with Eq. (5) (lines)
with TX

2 = 0.79 ps, TXX
2 = 0.67 ps and TQB = 2π/ωQB = 1.7 ps.
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of initial orientation θ(τref = 0) ≈ ∓π/4 (A
and D polarizations). Our calculations of the
PE dependences on ϕ and τref in σ+RH and
σ−RH polarization configurations for other level
schemes (see details in Sects. 3 and 4 of the SI)
show that the opposite behaviour for σ+ and
σ− polarized first pulse and the corresponding
θ(0) = ∓π/4 is a unique property of the exciton-
biexciton system. Our additional modeling (see
Fig. S11 in the SI ) shows that fine structure
splitting of the exciton discussed in Ref.41 has
unnoticeable influence while it is much smaller
of εXX and exciton homogeneous broadening
ΓX = 2~/TX

2 .
The modeling of the ϕ and τref dependence

of the PE amplitude for the σ±RH polarization
configurations taking into account the exciton
and biexciton decays gives the following analyt-
ical expression (Eq. (S32) in SI) for the time
evolution of θ

θσ±RH = ±1
2 arctan

 sin
(
ωQBτref

2

)
cos

(
ωQBτref

2

)
− exp

(
τref
T∆

)
,

(5)
where 1/T∆ = 1/TXX

2 − 1/TX
2 . The best fit

of the experimental data in Figure 6(f) by
Eq. (5) (lines) and of the HHH decay in Fig-
ure 4(a) by Eq. (1) gives TX

2 = 0.79 ± 0.03 ps,
TXX

2 = 0.67± 0.03 ps and εXX = 2.4± 0.2 meV
(TQB ≈ 1.7 ps). Note, for the fits we introduced
a small shift of all dependencies by θ0 ≈ 0.1 rad
to take into account systematic errors associ-
ated with the finite pulse duration, as well as
imperfections of the detection polarization and
circular polarization of first pulse (see details in
Sect. 3.1 of SI). We also excluded from the fit
the first two experimental points shown by the
grey symbols in Figure 6(f) because of the same
reason.

Discussion and conclusions
Figures 6(b,d) show the modeling in the exciton-
biexciton model. The excellent agreement of all
experimental data and the modeling allows us
to conclude that the excitons and biexcitons are
responsible for the PE signals in a bulk MAPbI3
crystal. We evaluate their coherence time and

the biexciton binding energy. To the best of our
knowledge, our work is the first direct demon-
stration of biexcitons and measurement of their
binding energy in MAPbI3 crystals. The ob-
tained εXX value of 2.4 meV is close to the rough
estimate using the hydrogen molecule analogy,
and the ratio εXX/εB ≈ 0.2 is in good agreement
with results of study of the biexcitons in the con-
ventional bulk semiconductors.62 Note that free
biexciton can be observed not in all bulk semi-
conductors.62,63 Probably, the localization of ex-
citons, which is manifested in noticable ihomoge-
neous broadenig of optical transitions, simplifies
the biexciton formation. Thereby the biexcitons
are only weakly bound since the binding energy
is comparble with homogeneous linewidth of
biexciton-exciton optical transition.
The developed transient PE polarimetry tech-

nique is a powerful tool for biexciton identifica-
tion and εXX measurement. It has several im-
portant advantages. First, the technique allows
one to overcome the inhomogeneous broadening
of the optical transitions in the system under
study. Second, the PE polarization state mea-
surements are free of the impact of the PE am-
plitude decay. Here, special interest is attracted
by the case when the coherence times are shorter
than the beat period. The oscillations of the
σ±RH polar rosettes orientation decay with rate
the 1/T∆ = 1/TXX

2 − 1/TX
2 (see Eq. (5)), i.e.

with the difference of coherence decay rates of
biexciton and exciton. The oscillations of the
PE amplitude decay with a rate equal to the
sum of the decay rates 1/TΣ = 1/TXX

2 + 1/TX
2

(see Eq. (1)). For equal coherence decay rates
(TX

2 = TXX
2 ) the oscillations of the polar rosettes

orientation have no decay, which limits the tech-
nique only by the dynamic range of the PE
amplitude measurements. In the spectral do-
main the properties of the technique looks more
intriguing. TX

2 and TXX
2 give the homogeneous

linewidth ΓX(XX) = 2~/TX(XX)
2 of the exciton

and biexciton resonances split by εXX. Accord-
ing to the above discussion the potential of the
suggested technique to measure εXX is limited
by 2εXX > ΓXX − ΓX. If ΓXX = ΓX then exci-
ton and biexciton lines can be always resolved
by this technique. In the system under study
ΓXX = 1.97±0.02 meV and ΓX = 1.67±0.02 meV
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which gives the limit for the smallest measure-
able εXX as 0.15 meV. This property makes the
technique very helpful for studying new mate-
rials, e.g. with a strong inhomogeneous broad-
ening, as well as short coherence times of the
exciton complexes. For example, at high temper-
atures or in systems with a high concentration
of defects, the coherence times are governed
by scattering processes and are expected to be
equal.

Methods
MAPbI3 crystals. MAPbI3 single crystals
were low temperature solution grown in a re-
active inverse temperature crystallization (ITC)
process.64 As compared to the pure inverse
temperature crystallization instead the pure
γ-butyrolactone (GBL) precursor solvent, an
alcohol-GBL mixture was used. The polarity
of the mixed precursor changes, which leads to
the lower solubility of the dissociated perovskite
MAPbI3, and thus to an optimization of the
nucleation rate. Accordingly, the crystallization
takes place at lower temperatures compared to
the conventional ITC method. Black MAPbI3
single crystals were obtained at a temperature of
85◦C instead of about 110◦C. At room temper-
ature a tetragonal phase with lattice constant
a = 0.893 nm and c = 1.25 nm was determined
with X-ray diffraction (XRD) technique.64 The
size of the crystal is about 2× 2× 2 mm3. The
crystal shape is noncuboid, but the crystal struc-
ture exhibits arisotype cubic symmetry. The
front facet was X-ray characterized to point to-
wards the a-axis.64
Experimental details. The sample was

cooled down in a liquid helium bath cryostat to
a temperature of 2 K. A piezo-mechanical trans-
lator (attocube) allows us moving the sample to
find surface areas with a mirror like reflection
(typical size of 300 µm). All optical pulses are
generated by a Ti:Sapphire laser. They have
either ≈ 2.8 ps or ≈ 170 fs duration and a
repetition rate of 75.75 MHz. The time delays
between the pulses are changed using mechan-
ical delay lines. The experimental geometry is
illustrated in Figure 2(a). The laser pulses were

focused to a spot of about 200 µm diameter
using an 0.5 m spherical metallic mirror. The
power of the first beam is 1 mW, the power of
the second beam is 0.8 mW. The incidence an-
gles of the pulses are close to normal and equal
to ≈ 1/50 rad and ≈ 2/50 rad (corresponding
to the in-plane wavevectors k1 and k2). The PE
pulses were measured in reflectance geometry in
the direction ≈ 3/50 rad, which corresponds to
the PE wavevector 2k2−k1. Optical heterodyne
detection was used to perform time-resolved PE
experiments and to enhance the detected sig-
nals.47–49 By mixing with a strong reference
pulse (0.5 mW) and scanning the time delay
between the first pulse and the reference pulse,
τref , one can measure the temporal profile of the
photon echo pulse. The simultaneous scan of
τ12 and τref = 2τ12 allows one to measure the de-
cay of the PE amplitude. Here we use the two-
or three-letter notations like HH or HHH for
the polarization configuration, in which the first
two letters correspond to the polarizations of
the first and second pulses. H and V correspond
to linear horizontal and vertical polarizations. D
and A form the linear basis rotated by 45◦ with
respect to H and V. σ+ and σ− mark circular
polarizations. The third letter corresponds to
the detection polarization given by the polar-
ization of the reference beam. Polar rosettes
were measured using motorized stages rotating
half-wave plates.
Supplementary Information The detailed

description of the theoretical model; results of
analytical calculations for exciton-biexciton sys-
tem; documentation of fitting procedure; addi-
tional modelling results.
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Supplementary information

1 Modeling of photon echo

For a better understanding of the transient polarization properties of the photon echo, we use

a perturbative model that allows us to calculate the photon echo amplitude of various exciton

complexes as a function of time and the polarizations of all involved pulses. In this Section, we

describe the modeling procedure in detail.

1.1 General modeling procedure

Figure S1 shows the temporal arrangement of the optical pulses for a photon echo experiment. Two

pulses impinge on the sample with a temporal delay of τ12 giving rise to the photon echo at time

2τ12 after the first pulse. Our modeling procedure aims to calculate the amplitude of the photon

echo pulse (as defined in Figure S1) and, in particular, how it depends on the polarizations of the

two incident pulses and τ12. For simplicity, we neglect the temporal shape and finite width tp of the

pulses. In this way we also do not account for the finite temporal overlap between the pulses for

small values of τ12 < tp.

0 τ12 2τ12
Time

Si
gn

al Amplitude
1st 2nd Photon echo

Figure S1: Temporal arrangement of the optical pulses for a photon echo experiment.

The photon echo signal is the result of a macroscopic polarization P of the sample, which is given

by the expectation value of the dipole operator d

P = Tr (dρ) , (S1)
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with the density matrix of the system ρ. The density matrix behaves in time according to

i~
d
dtρ = [H, ρ] , (S2)

with the Hamilton operator H, which itself can be written as the sum

H = H0 + V. (S3)

Here, H0 is the Hamilton operator of the unperturbed system, whereas V accounts for the light-

matter interaction. All operators are represented by N×N matrices in the eigenbasis of the system,

determined by H0 with eigenvalues ε1, . . . εN . To model the photon echo signal, we have to evaluate

how ρ changes under the action of the first and second pulses and how it evolves freely between the

pulses. In particular, we arrive at an expression for the photon echo signal by pursuing the following

steps:

1. Let ρb1 be the initial state of the crystal before arrival of the first laser pulse. We assume short

pulse durations tp and all optical frequencies to be much higher than the eigenfrequencies of

the system. Therefore, we can neglect the effect of H0 during the action of the laser pulses

and calculate the density matrix after the action of the first pulse ρa1 in second order as

ρa1 ≈ ρb1 + i

~

[
ρb1 + i

~
[
ρb1,V1

]
tp,V1

]
tp. (S4)

We set tp ≡ 1 in the following.

2. Between the pulses, we neglect the action of V on the system. The free evolution of the system

can then be obtained by solving the equation

i~
d
dtρ = [H0, ρ] . (S5)

Since H0 is diagonal, the entries of the density matrix before the second pulse, after time

τ12 = τref/2 can be written in a closed form as

ρb2ij = ρa1ij exp
{
i
τ12

~
[1,H0]ij

}
, i, j = 1, . . . , N, (S6)
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with the matrix of ones 1 (1ij = 1 ∀i, j).

3. The action of the second pulse is similar to the action of the first pulse in equation (S4)

ρa2 ≈ ρb2 + i

~

[
ρb2 + i

~
[
ρb2,V2

]
,V2

]
. (S7)

4. Another application of equation (S6) gives the density matrix at the temporal position of the

photon echo 2τ12

ρPEij = ρa2ij exp
{
i
τ12

~
[1,H0]ij

}
. (S8)

5. Finally, we have to extract the components of the density matrix that fulfil the phase matching

condition ⇀kPE = 2⇀k2 − ⇀k1.

6. Optionally, we can expand the model to account for decay of the non-diagonal components of the

density matrix, i.e. the optical coherences. For that purpose, we introduce phenomenological

decoherence times T2,ij via

dρ
dt = i

~
[ρ, H ] + Γρ, (Γρ)ij = −

ρij

T2,ij
, i 6= j. (S9)

Where Γ is the operator that describes the decoherence of the system.

To automate the modeling procedure described in this Section, we used the Python library SymPy,

which resembles other computer algebra systems like Mathematica. The source code is available on

reasonable request.

1.2 Exciton-biexciton model

As an example for the procedure described above, we consider the exciton-biexciton system with a

diamond-like level scheme, see Figure S2(a). The Hamilton operator reads as

H0 =



0 0 0 0

0 ε 0 0

0 0 ε 0

0 0 0 2ε− εXX


, (S10)
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with the exciton transition energy ε and the biexciton binding energy εXX.

Taking into account the dipole selection rules as indicated by the arrows in Figure S2(a), the

matrix Vi corresponding to the interaction of the system with the first/second pulse is given by

Vi = d



0 E∗+,i E∗−,i 0

E+,i 0 0 E∗−,i

E−,i 0 0 E∗+,i

0 E−,i E+,i 0


, (S11)

with the right- (left-)handed component of the i-th pulse’s electric field E+,i (E−,i). For simplicity,

we assumed a constant, real dipole matrix element d for all transitions. An arbitrary polarization

can be expressed in terms of E+,i and E−,i. For that, we introduce the following definitions

E+,i = E0,i cos δi exp (+iϕi) exp (iki)

E−,i = E0,i sin δi exp (−iϕi) exp (iki) .
(S12)

In the most general case of elliptically polarized light, δi measures the ellipticity and ϕi the angle

between the main principle axis of the ellipse and the x-axis (horizontal polarization). In the

following, we consider the polarization configuration σ+RH, for which δ1 = 0, ϕ1 = 0 and δ2 = π/4.

The angle ϕ2 ≡ ϕ remains a variable of the calculation. Before the action of first pulse, the system

is completely in the ground state, hence

ρb1 =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


. (S13)
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Following the steps described above, we calculate the density matrix ρPE

ρPE = −iE0,1E
2
0,2e
−i(2k2−k1)



0 e−i2ϕ 1 0

0 0 0 −e−i
εXX
2~ τref

0 0 0 0

0 0 0 0


+ adjoint. (S14)

According to equation (S1), the density matrix (S14) causes right- and left-handed components P±

of the photon echo signal. These are

P+ ∼ ρPE12 + ρPE34 ∼ e−i2ϕ

P− ∼ ρPE13 + ρPE24 ∼ 1− e−i
εXX
2~ τref .

(S15)

The final signal in the σ+RH configuration can be obtained by projection on the horizontal axis

PXX
σ+RH ∼ |P+ + P−| , (S16)

which is the special case of the projection on some arbitrary detection axis tilted by an angle φ to

the x-axis

P ∼
∣∣∣P+e

−iφ + P−e
+iφ
∣∣∣ . (S17)

Inserting the expressions (S15) into (S16) delivers

PXX
σ+RH ∼

√
4 cos2 (ϕ)− 2cos

(
τrefεXX

2~

)
− 2 cos

(
2ϕ− τrefεXX

2~

)
+ 1. (S18)

Here, it becomes clear that the signal from a biexciton shows oscillations in the amplitude (second,

red underlined term) and also a rotation of the polar rosettes as a function of time (third, blue).

Both are manifestations of quantum beats between the exciton and biexciton states. The function

(S18) is visualized in Figure S2(b).

In the same manner as for the configuration σ+RH, we model the signal from the exciton-biexciton
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system in the configurations σ−RH and HRH, Figures S2(c) and S2(d).

PXX
σ−RH ∼

√
4 cos2 (ϕ)− 2cos

(
τrefεXX

2~

)
− 2 cos

(
2ϕ+τrefεXX2~

)
+ 1 (S19)

PXX
HRH ∼

√
8cos2 (ϕ)︸ ︷︷ ︸
Two-leaves

sin2
(
εXX
4~ τref

)
+ cos2 (2ϕ)︸ ︷︷ ︸

Four-leaves

(S20)

The expressions for σ+ and σ− excitation only differ by the sign of the third term, marked in red.

Consequently, the rotational behaviour of the signal changes sign upon reversal of helicity of the

first pulse (compare Figures S2(b) and S2(c)), which is a characteristic property of the biexciton

diamond-scheme. In the HRH configuration, the signal is made up of an oscillating part with

two-leaves behaviour (i.e. two maxima in the range ϕ ∈ [−π, π]) and a temporally constant part

with four-leaves behaviour (i.e. four maxima in the range ϕ ∈ [−π, π]).
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Figure S2: Comparison between experiment and the results of the exciton-biexciton model as presented in this Section. The results are
arranged in a table. The labels on top of each column indicate the polarization configuration. In the upper row, we show the results for the
exciton-biexciton system with the level-scheme as displayed in (a). The lower row shows the experimental colormaps in the three different
polarization configurations.
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2 Analytical expressions for exciton-biexciton system

In this Section we collect further analytical expressions that were calculated for the exciton-

biexciton model. Here we also took into account the decoherence time of the exciton and biexciton

polarizations. In this way, we obtain expressions for the photon echo that serve as fitting functions

to our experimental data. This enables us to formulate a fitting procedure for estimation of the

biexciton binding energy and the decoherence times of exciton and biexciton (Section 3.1).

2.1 Photon echo amplitude in HRH polarization configuration

Following step 6 on page 15, we expand equation (S20) to account for decoherence of the exciton

and biexciton states (decoherence times are denoted as TX
2 and TXX

2 , respectively)

PXX
HRH ∼

√√√√4 cos4 (ϕ) e−
2τref
TX + e

− 2τref
TXX − 4 cos2 (ϕ) cos

(
εXX
2~ τref

)
e
−τref

(
1
TX

+ 1
TXX

)
. (S21)

Two special cases of this equation are the configurations HHH (ϕ = 0) and HVH (ϕ = π/2)

PXX
HHH ∼

√
4e
− 2τref

TX
2 + e

− 2τref
TXX

2 − 4 cos
(
εXX
2~ τref

)
e
− τref
TXX

2
− τref
TX

2 (S22)

PXX
HVH ∼ e

− τref
TXX

2 . (S23)

2.2 Photon echo amplitude in σ±RH polarization configuration

Following step 6 on page 15, we expand equation (S18) to account for decoherence of the exciton

and biexciton states (decoherence times are denoted as TX
2 and TXX

2 , respectively)

PXX
σ±RH ∼

√√√√
4 cos2 (ϕ) e

−2 τref
TX

2 + e
− 2τref
TXX

2 − 2
[
cos

(
εXX
2~ τref

)
+ cos

(
2ϕ∓ εXX

2~ τref
)]
e
−τref

(
1
TX

2
+ 1
TXX

2

)
. (S24)

2.3 Comparison of σ±HR and σ±RH

In this Section, we discuss the role of the polarization of the second pulse on the dynamics on

the Poincaré sphere. For that purpose, it is illuminating to calculate the photon echo signal as a
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function of the polarization angle of the second pulse ϕ and the detection angle φ

PXX
σ+ϕφ ∼

√
4 cos2 (ϕ+ φ)− 2cos

(
τrefεXX

2~

)
− 2 cos

(
2ϕ+ 2φ− τrefεXX

2~

)
+ 1. (S25)

Here it becomes clear, that the polarization of the second pulse and the detection angle are completely

exchangeable. For example, the configurations σ+RH and σ+HR result in the same signal, as we

observe in experiment (Figure S3).

To understand the effect of the second pulse’s polarization on the dynamics on the Poincaré sphere,

we show in Figure S4 the trajectories for different polarizations of the second pulse. Here, we can

see that rotation of the second pulse leads to a rotation of the trajectory about the ρ3 axis. Indeed,

we can write the analytical expression for the Stokes vector as a function of the second pulse’s linear

polarization ϕ as 
ρσ

+
1 (ϕ)

ρσ
+

2 (ϕ)

ρσ
+

3 (ϕ)

 =


cos(2ϕ) sin(2ϕ) 0

− sin(2ϕ) cos(2ϕ) 0

0 0 1


︸ ︷︷ ︸

Rotation by 2ϕ about ρ3 axis


ρσ

+H
1

ρσ
+H

2

ρσ
+H

3

 , (S26)

where

ρσ
+H

1 =
2 cos

(
εXXτref

2~

)
− 2

2 cos
(
εXXτref

2~

)
− 3

, (S27)

ρσ
+H

2 =
−2 sin

(
εXXτref

2~

)
2 cos

(
εXXτref

2~

)
− 3

, (S28)

and ρσ+H
3 =

1− 2 cos
(
εXXτref

2~

)
2 cos

(
εXXτref

2~

)
− 3

(S29)

are the Stokes parameters in the configuration σ+H (ϕ = 0).
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Figure S3: Experimental comparison between the configurations σ+RH and σ+HR. The data sets
are not distinguishable, which is in agreement with the prediction of equation (S25).
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22



3 Description of fitting procedure

In this Section we describe in detail how we obtained values for the biexciton binding energy,

decoherence times of exciton and biexciton, and the (in)homogeneous linewidth of the studied

ensemble from fits to our experimental data.

3.1 Fitting procedure for evaluation of biexciton binding energy and

decoherence times of exciton and biexciton
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Figure S5: a) Definition of the angle θ as the angle between the H-axis and the main axis of a
two-leave polar rosette. b) Visualization of equation (S34) for different sets of values {TX

2 , TXX
2 ,

εXX}.

As mentioned earlier, quantum beats between exciton and biexciton can be observed in the

polarization configuration σ+RH. In contrast to the polarization configuration HRH, the quantum

beats not only modulate the amplitude of the photon echo signal, but also the orientation of

polar rosettes (a direct manifestation of polarizations beats). As will be become clear below, the

polarization beating offers us the possibility to extract the biexciton binding energy with high

significance although the decoherence times of exciton and biexciton are too short to observe

amplitude beats.

To quantify the rotation of the rosettes, we introduced in the main text the parameter θ that

measures the angle between the principle axis of the rosette and the H-axis (see definition in

Figure S5(a)). For a fixed value of τref > 0, θ is equal to the angle ϕ ∈ [−π/2, π/2] that maximizes

the signal PXX
σ±RH. To find an analytical expression for θ as function of τref, we set the derivative of
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equation (S24) equal to zero:

d
dϕP

XX
σ±RH = 0 (S30)

⇔ 0 = sin
(

2ϕ∓ εXX
2~ τref

)
e
−τref

(
1
TX

+ 1
TXX

)
− sin (2ϕ) e−2 τref

TX (S31)

⇔ ϕ = ±1
2 arctan

 sin
(
εXXτref

2~

)
cos

(
εXXτref

2~

)
− e

τref

(
1

TXX
− 1
TX

)
 ≡ θσ±(τref), (S32)

where the index σ± in the definition of the function θ(τref) distinguishes between the polarization

configurations σ+RH and σ−RH. Figure S5(b) visualizes θσ+(τref) for three different sets of values

for TX
2 , TXX

2 , and εXX.

A remarkable property of equation (S32) is that the temporal decay constant in the nominator of

the argument of the arctangent is given by the difference T−1
∆ between the decay rates of biexciton

and exciton
1
T∆
≡ 1
TXX

2
− 1
TX

2
> 0. (S33)

Therefore, the envelope of the function (S32) decays proportionally to exp(−τref/T∆), which is

exemplarily highlighted in Figure S5(b) by the dashed line for the orange curve. This property is the

main reason why the study of polarization beats, rather than amplitude quantum beats enables us

to obtain the biexciton binding energy with high significance. In contrast, the amplitude quantum

beats, for example measurable in the configuration HHH (see equation (S22)), decay with a rate

given by the sum of the decay rates of exciton and biexciton. Since the sample gives rise to short

decoherence times, it is not possible to observe amplitude quantum beats.

Equation S32 predicts that the function θ(τref) is mirrored on the τref-axis upon change of helicity

of the first pulse’s polarization, i.e. θσ−(τref) = −θσ+(τref). Consequently, the sum of both curves

vanishes. However, in experiment we observe an offset of roughly 5° of the sum of both curves, which

is shown in Figure S6(b). The blue line corresponds to a fit to a constant function. To account for

this discrepancy between model and experiment, we phenomenologically expand the model S32 by

an offset θ±0

θσ±(τref) = ±1
2 arctan

 sin
(
εXXτref

2~

)
cos

(
εXXτref

2~

)
− e

τref

(
1

TXX
− 1
TX

)
+ θ±0 . (S34)
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Figure S6: Experimental data for θ(τref) in the configurations σ+RH and σ−RH and corresponding
fits to equation (S34).

Furthermore, the comparison of the experimental data for θσ± = θ(τref) in Figure S6(a) with the

modeled curves in Figure S5(b) reveals that the model does not adequately describe the experiment

in the range τref < 0.8 ps. In particular, the first two data points (colorized in gray) deviate from

the linear trend of the modeled functions. This effect can be caused by two contributions. First, our

model neglects the temporal overlap of the optical pulses that takes place in the range τref < 0.8 ps

(see figure 1(c) in the main text). Second, our model assumes perfect circular polarization of the first

pulse. However, in our experimental scheme, the circular polarization that is created by a quarter

wave plate could be altered by the subsequent reflection on two silver mirrors. In Figure S7 we

numerically calculated θ(τref) for an elliptical polarized first pulse. The behaviour for small values of

τref resembles the experimental observations. However, for elliptically polarized light there exists

no closed solution for θ(τref), which makes fitting computationally expensive and impractical using

standard fitting tools. Hence, we adhere to the simlified function (S34) to fit our data and, for

simplicity, do not include the first two data points in Figure S6(b).

To obtain a value for εXX, we combine the data for θσ+(τref) and θσ−(τref) by fitting (θσ+ − θσ−)/2

for τref > 0.8 ps to equation (S34). Additionally, the fit gives us a value for the difference of decay

rates T−1
∆ and the difference between the offsets θ+

0 − θ−0 . All fitting parameters are summarized in

table S1.

Next, we use the experimental curve of the photon echo decay in the configuration HHH to

extract the exciton decoherence time T2 (Figure S7(b)). Here, we want to take into account the
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Figure S7: (a) Comparison of modeled functions θ(τref) for two different values of ellipticity δ1
of the first pulse. (b) Experimental and modeled decay of the PE amplitude in the polarization
configurations HHH and HVH.

Table S1: Summary of the parameters obtained from fit of the model (S34) to experimental data
for θ(τref) in the combined data of the polarization configurations σ+RH and σ−RH. The data and
corresponding fits are shown in Figure S6.

εXX (meV) T−1
∆ (THz) θ+

0 (deg) θ−0 (deg)
2.4± 0.2 0.23± 0.04 −9± 1 14± 1

obtained values for εXX and T−1
∆ and leave only TX

2 as free fitting parameter. Therefore, we write

the function (S22) in terms of T−1
∆ , εXX and TX

2 :

PXX
HHH ∼

√
4e
− 2τref

TX
2 + e

− 2τref
TXX

2 − 4 cos
(
εXX
2~ τref

)
e
− τref
TXX

2
− τref
TX

2 (S35)

(S33)= e
− τref
TX

2

√
4 + e

−2 τref
T∆ − 4 cos

(
εXX
2~ τref

)
e
− τref
T∆ (S36)

The fit gives

TX
2 = (0.79± 0.03) ps (S37)

and is visualized in Figure S7(b). Using the definition of the T−1
∆ , we can calculate TXX

2

TXX
2 =

(
1
T∆

+ 1
TX

2

)−1

= (0.67± 0.03) ps. (S38)

According to our model, the photon echo signal decays in the HVH configuration proportional to

exp (−τref/TXX
2 ) (see equation (S23)). The comparison between the experimental decay and the model

using the obtained value for TXX
2 is shown in Figure S7(b). Here we can see that the assumption of
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an exponential decay of the biexciton coherence is not supported by the experiment. Rather, the

signal decays in a Gaussian manner, i.e. proportional to exp (−τ2
ref/σ2

XX) with a temporal width σXX.

This effect could be related to an inhomogeneity of the decoherence time TXX
2 .

3.2 Extraction of homogeneous and inhomogeneous linewidths

The homogeneous spectral broadening of exciton and biexciton ΓX
hom and ΓXX

hom are determined by

the decoherence times TX
2 and TXX

2 that we extracted in the previous Section. Therefore, we assume

that the spectral lineshape corresponding to the temporal signal exp(-τref/T2) is given by the real

part of its Fourier transform 1/T2

1/T 2
2 +ω2 , which is a Lorentzian function with FWHM 2/T2. Expressed in

energetic widths, this relationship leads us to

ΓX
hom = 2~

TX
2

(S37)= (1.67± 0.06) meV, ΓXX
hom = 2~

TXX
2

(S38)= (1.97± 0.08) meV. (S39)
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Figure S8: (a) Dependence of the heterodyne signal on τref for a fixed value of τ12 = 1.5 ps. (b)
Four-Wave-Mixing spectrum, measured using spectrally narrow laser pulses.

Next, we want to quantify the inhomogeneous broadening that gives rise to the PE effect. Therefore,

we analyze the time-resolved measurements of the PE signal in Figure S8(a). For this measurement,

the temporal gap between first and second pulse is τ12 = 1.5 ps. The signal at τref = 0 ps arises from

the cross correlation of scattered light from the first pulse and the reference. This signal serves as a

reference to measure the temporal width of the laser pulses. In particular, we extract the temporal

width of the laser pulses by a fit of the data in the range τref < 1 ps to a Gaussian function of the
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form

g(τref) = A exp
{
−(τref − τ0)2

2σ2

}
= A exp

{
−4ln(2) (τref − τ0)2

f 2

}
, (S40)

Here, the amplitude A, and the temporal shift τ0 are fitting parameters. In the last step, we

substituted the standard deviation σ by the full width at half maximum (FWHM) f = 2
√

2ln(2)σ ≈

2.355 · σ, which is more commonly used for the discussion of spectral or temporal widths. The fit

delivers the following width of the cross correlation

fCC = (0.35± 0.12) ps. (S41)

Since the cross correlation of two Gaussians with variances σ2
1 and σ2

2 is itself also a Gaussian with

variance σ2
1 + σ2

2, the temporal width fL of the laser pulses (related to its elctric field) is

fL = fCC√
2

= (0.25± 0.08) ps, (S42)

which corresponds to an intensity width of roughly 0.18 ps. To extract the inhomogeneous linewidth,

we analyze the temporal width of the PE shown above. A fit of the data for τref > 1 ps gives

a temporal width of (0.92± 0.12) ps. Taking into account that the measured signal is the cross

correlation of the pure PE signal and the reference pulse, we arrive at a temporal width of

T ∗2 = (0.88± 0.12) ps, (S43)

which corresponds to the inhomogeneous linewidth

Γinh = 8 ln(2)~
T ∗2

= (4.1± 0.6) meV. (S44)

As a final step, we want to estimate the overall spectral width associated with the exciton ensemble.

This enables us to compare the results from time-domain with the spectral measurements that we

present in Figure S8(b). The overall spectrum is given by the convolution between the homogeneous

line (Lorentzian) and the inhomogeneous line (Gaussian), which results in a Voigt lineshape. Given

the width of the Lorentzian and Gaussian line (ΓX
hom and Γinh), the FWHM of the resulting Voigt
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line ΓV is approximately determined by65

ΓV = 0.5346 · ΓX
hom +

√
0.2166 · (ΓX

hom)2 + Γ2
inh = (5.1± 0.8) meV. (S45)

This value is by (2.9± 0.8) meV smaller than the FWHM 8 meV that we observe in the spectral mea-

surement, Figure S8(b). This deviation is reasonable taking into account two possible contributions.

First, we supposed that the transformation between energy- and time-domain is fully determined by

the Fourier transform. This assumption may be oversimplified for non-ideal, i.e. non-bandwidth-

limited, laser pulses. Second, we assumed that the laser spectrum for the time-domain measurements

is significantly broader than the inhomogeneous broadening. In this ideal case, the whole ensemble

is excited equally. However, in our experiment the width of the amplitude spectrum of the laser ΓL

is limited by

ΓL = 8 ln(2)~
fL

(S42)
≈ 15 meV (intensity width ≈11 meV), (S46)

and is therefore not essentially broader than the excited ensemble, compare Figure S8(b).

As additional information, we measured the reflectivity spectrum of the MAPbI3 sample, shown

together with the FWM spectrum in figure S8(b). The reflectivity spectrum may contain contribu-

tions from the real and imaginary part of the linear optical response, which explains the dispersive

lineshape. Nevertheless, we can see that, both, spectral position of the resonance and the spectral

width of FWM and reflectivity spectrum coincide. Note that the analysis of reflectivity spectra of

bulk materials is a nontrivial task and polariton effects as well as surface effects should be taken into

account. We emphasize that our transient four-wave mixing technique provides richer information

as linear spectroscopic methods. In particular, it is possible to separate the contribution from

homogeneous and inhomogeneous broadening of optical transitions as is discussed above.
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4 Additional modeling results

In this paper, the comparison between the outcome of our theoretical model (as presented in

Section 1.1) with experimental observations for various polarization configurations allowed us to

unambiguously identify the presence of biexcitons in the studied MAPbI3 sample. We have shown

that the measurement of polar rosettes as a function of the delay time between first and second

pulse places stringent constraints on an excitonic model that gives rise to quantum beats.

As an outlook, we use in the following our model to predict the behaviour of other exciton systems

in similar experiments. First, we discuss the polarization interference between excitons and trions in

Section 4.1. Here we point out how time-resolved FWM can distinguish between quantum beats and

polarization interference. Second, we show the results of the application of our model to a variety of

excitonic systems that exhibit any kind of energy splitting giving rise to quantum beats. Here, we

present our measurement protocol as an illuminating tool to characterize systems that are not well

understood in terms of their energy level structure and polarization selection rules.

4.1 Exciton-trion polarization interference

In Figures 2(c) and 2(d) of the main text, we showed that the studied sample gives rise to different

types of polar rosettes depending on the delay between first and second pulse. One resembles

the rosette of an exciton (see Figure 1(e)), the other that of a trion (see Figure 1(f)). A natural

solution for this observation is the independent excitation of noninteracting excitons and trions,

giving rise to polarization interference (PI). However, the transient four-wave-mixing technique

allows to distinguish unambiguously between quantum beats (QB) and polarization interference by

measurement of the FWM signal as a function of τ12 and τref, as was pointed out first by Koch et

al.61 To visualize the different behavior of QB and PI within this experimental protocol, we modelled

in Figures S9(b) and (c) the PE signal in the HHH polarization configuration from biexciton and

exciton/trion, respectively. Figure S9(a) shows the corresponding experimental data for comparison.

For the models, we assumed a biexciton binding energy of εXX = 2.4 meV and a splitting ∆ε between

exciton and trion transition of the same magnitude. To see several oscillation cycles in the theoretical

colormaps within the temporal width of the photon echo, we assumed a smaller inhomogeneous

broadening of roughly 2 meV than in experiment (4.1 meV).
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The crucial difference between QB and PI is the functional course of the oscillation extrema in

the τ12-τref-map. For the QB, the extrema run parallel to the line τref = τ12 (red line), whereas for

PI, they follow τref = 2τ12 (blue line). This property represents a simple way to decide whether

our PE signal arises from biexciton or exciton/trion. However, on the basis of the data shown in

Figure S9(a), we cannot distinguish between QB and PI since the involved decoherence times are to

short to observe any oscillations of the PE amplitude.

The same argument as for the extrema of the PE amplitude holds for the extrema of any polarization

contrast that exhibits oscillations due to QB or PI. Hence, we modelled in Figures S9(d) and (e) the

polarization contrast ρσ+V
2 from biexciton and exciton/trion. Figure S9(d) shows the corresponding

experimental data for comparison. Note, independent of the inhomogeneous broadening, in theory

we can observe the polarization contrast for any positive values of τ12 and τref due to an unlimited

dynamic range. Again, in the case of QB (Figure S9(d)), the extrema run parallel to τref = τ12,

for PI (Figure S9(e)) parallel to τref = 2τ12. Because of the different damping behaviour of the

polarization contrast (as discussed in Section 3.1), the experimental data for ρσ+V
2 allows us to

observe oscillations in the τ12-τref-map, Figure S9(d). We can clearly identify that the extrema of

the observed oscillations run parallel to τref = τ12, which rules out the possibility of polarization

interference.
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Figure S9: (a) Heterodyne signal as a function of τ12 and τref, measured in the polarization configuration HHH. (b)/(c) Modeled data within
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4.2 Modeling for other excitonic complexes

The outcome of the modeling procedure described in Section 1.1 is fully determined by the Hamilto-

nian H and the operator V describing the interaction with light. The combination of both operators

can be visualized in terms of level schemes as depicted in the left columns of Figures S2, S10,

and S11. We applied our modeling procedure to a variety of such level schemes that exhibit an

energy splitting ∆ε and thus give rise to quantum beats. We calculated the behaviour of such level

schemes in the polarization configurations σ+RH, σ−RH, and HRH, which is summarized in the

Figures S10 and S11. Here we can find, that the resulting pictures dramatically change for different

schemes. These considerations let us expect that our experimental method presents a simple and

efficient tool for a better understanding of unknown systems in terms of energy level arrangements

and polarization selection rules.
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Figure S10: Modeling of expected behaviour of different level schemes in polarimetry experiments. The results are arranged in a table. The
labels on top of each column indicate the polarization configuration. The left column shows the schematics of the considered level scheme for
each row. Note that we use the labels ε and ∆ε independently for each system.
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Figure S11: Modeling of expected behaviour of different level schemes in polarimetry experiments. The results are arranged in a table. The
labels on top of each column indicate the polarization configuration. The left column shows the schematics of the considered level scheme for
each row. Note that we use the labels ε and ∆ε independently for each system.
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