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Among modified theories of gravity, the teleparallel fðTÞ gravity is an intensively discussed model in the

literature. The best way to investigate its viability is to derive observable predictions which yield evidence

or constraints for the model, when compared with actual observations. In this paper we derive the photon

sphere and the perihelion shift for weak fðTÞ perturbations of general relativity. We consistently calculate

first order teleparallel perturbations of Schwarzschild and Minkowski spacetime geometry, with which we

improve and extend existing results in the literature.
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I. INTRODUCTION

With the observation of gravitational waves of merging
black holes [1] and the first direct picture of a black hole
shadow in the center of the galaxy M87 [2], the possibilities
to observe the behavior of gravity in the strong field regime
has increased enormously. The newly obtained data is the
perfect basis to understand the viability range of general
relativity and possible modified gravity theories, suggested
as its generalization. Here we derive the influence of a
teleparallel modification of general relativity on the photon
sphere of black holes and on the perihelion shift of elliptic
orbits in spherical symmetry. This is a step to investigate
the influence of teleparallel gravity on more realistic
spinning black holes with axial symmetry.
Teleparallel theories of gravity are formulated in terms of

a tetrad of a spacetime metric and a spin connection, instead
of in terms of a spacetime metric and its Levi-Civita
connection [3]. This structure allows for the construction
of a huge variety of theories of gravity beyond general
relativity, among them the most famous model, the so-
called fðTÞ gravity [4,5]. In this theory, the Lagrangian is
given by an arbitrary function f of the torsion scalar T,
which defines the teleparallel equivalent formulation of
general relativity (TEGR). Numerous viability criteria for
fðTÞ gravity have been derived in the context of cosmology
[6–9]. However, not much work has been done in spherical
and axial symmetry, mostly due to the lack of analytic
solutions of the field equations. To solve the fðTÞ gravity
field equations in spherical symmetry in all generality for

arbitrary f is a difficult task. The main challenge is to find
the tetrad, to which one can consistently associate a

vanishing spin connection. This tetrad does not only have

to satisfy the symmetric part and antisymmetric part

(the spin-connection part) of the field equations [10] but

also must yield a torsion scalar which vanishes for the

Minkowski spacetime limit. A further subtlety is that some

solutions of the fðTÞ field equations yield a constant

torsion scalar T. In this case fðTÞ gravity is identical to

TEGR plus a cosmological constant and nothing new is

obtained. The latter feature is for example present in the

first study which tried to find spherically symmetric

solutions [11] and also in a later study which used the

Noether’s symmetry approach to find solutions [12].
There are only a few publications deriving exact sol-

utions with the correct field equations (see e.g., [13]). In

addition, some regular black hole solutions (perturbatively

and exact) have been found correctly in [14,15]. When one

considers matter, there are some works which have studied

the possibility of constructing stars or wormhole solutions

in different teleparallel theories of gravity [16–24]. Overall

the issue of finding exact spherically symmetric solutions in

fðTÞ gravity is still an open problem.
Instead of looking for full analytical solutions, an

alternative way to study the astrophysical effects of

modified theories of gravity is to employ perturbation

theory. The influence of deviations from TEGR can be

investigated, by setting fðTÞ ¼ T þ ð1=2ÞϵαTp. This

model contains TEGR (and GR) in the limit the perturba-

tion parameter ϵ or the coupling constant α goes to zero. It

is assumed that the deviation from TEGR is small, (ϵ ≪ 1),

and hence, only first order terms in ϵ are relevant in all

calculations. In this paper, we consider perturbations
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around two different background geometries: Minkowski
spacetime and Schwarzschild spacetime.
For the first case we keep the exponent p > 1=2 and

solve the spherically symmetric perturbative fðTÞ field
equations in vacuum. We find that, to first order, the
teleparallel perturbation of general relativity has no influ-
ence at all. This finding is in conflict with results found
earlier in [25]. A problem with these earlier derivations is
that the fðTÞ field equations presented in [25], Eqs. (8)
through (10), do not have Schwarzschild geometry as a
solution for fðTÞ ¼ T and vanishing matter. Moreover the
tetrad used there does not yield a torsion scalar which
vanishes in the Minkowski spacetime limit. These short-
comings made us redo the calculations, while paying
particular attention to the consistency of the perturbation
theory.
For the second case, the first order field equations are

more involved and cannot be solved for general p. To find
the astrophysical impact of the parameter p, we derive
perturbative solutions for p ¼ 2 to 10, from which we
calculate the circular particle orbits for massless particles
and the perihelion shift for nearly circular massive particle
orbits. The circular orbits of massless particles define the
photon sphere, which is interesting in particular, since it
defines the edge of the shadow of the black hole. For p ¼ 2

the perihelion shift has already been studied in the literature
and we recover the results from [26]. Comparing our
calculation with the previous one demonstrates explicitly
that the covariant formulation of teleparallel gravity works
well. We employ a vanishing spin connection and a
nondiagonal tetrad, while in [26] a nonvanishing spin
connection a diagonal tetrad was used.
The main aim of this paper is to present a careful

derivation of the first order fðTÞ field equations in the
single tetrad framework for the models mentioned above
and to derive the perturbative solutions around Minkowski
and Schwarzschild geometry. Eventually this procedure
gives insights about the phenomenological consequences of
the teleparallel corrections to general relativity. This work
prepares a more general study where we will derive the
phenomenological consequences of teleparallel perturba-
tions of Kerr geometry, with and without cosmological
constant.

The article is structured as follows: In Sec. II we give an

overview about the covariant formulation of fðTÞ gravity
and then, we find the corresponding field equations for any

spherically symmetric spacetime. Section III is devoted to

studying the weak power-law fðTÞ model for perturbations

around Minkowski and Schwarzschild geometries to find

the correct metric coefficients which solve the first order

field equations. The particle motion phenomenology for the

squared power-law fðTÞ case for the Schwarzschild back-

ground is studied in Sec. IV, deriving the deviation from

TEGR (or GR) of the photon sphere and the perihelion

shift. We conclude our main results in Sec. V.

Throughout the paper we denote haμ and ha
μ for the

tetrad and its inverse, respectively, where Latin indices refer
to tangent space indices and Greek to spacetime indices.
Our signature convention is ðþ;−;−;−Þ and we work in
units where G ¼ c ¼ 1.

II. COVARIANT FORMULATION OF f ðTÞ
GRAVITY IN SPHERICAL SYMMETRY

Throughout this paper we employ the covariant formu-
lation of teleparallel gravity [27] in the Weitzenböck gauge,
also called the pure tetrad formalism. That means we
consider a tetrad, its torsion, and a vanishing spin con-
nection. All degrees of freedom are encoded in the tetrad
which, in the end, solves the symmetric and the antisym-
metric part of the fðTÞ field equations, and yields a
vanishing torsion scalar in the Minkowski spacetime limit.
We would like to stress that this is as equivalent as
considering a nonvanishing spin connection and another
tetrad, which together solve the symmetric and antisym-
metric parts of the field equations [27–29].

A. Covariant teleparallel gravity

The fundamental variables in teleparallel theories
of gravity are the tetrad of a Lorentzian metric

g ¼ ηabθ
a ⊗ θb, which can be expressed in local coordi-

nates as

θa ¼ haμdx
μ; ea ¼ ha

μ∂μ;

θaðebÞ ¼ δab⇒ gμν ¼ ηabh
a
μh

b
ν; ð1Þ

and a flat, metric compatible spin connection that is
generated by local Lorentz matrices Λa

b

ωa
bμ ¼ ωa

bμðΛÞ ¼ Λa
c∂μðΛ−1Þcb; ηabΛ

a
cΛ

b
d ¼ ηcd;

ð2Þ

which poses torsion

Ta
μν ¼ 2ð∂ ½μh

a
ν� þ ωa

b½μh
b
ν�Þ: ð3Þ

In the Weitzenböck gauge, the spin connection is set to be
zero (ωa

bμ ¼ 0) and so, the torsion tensor reduces to

Ta
μν ¼ ∂ ½μh

a
ν�. From here on we will work in the

Weitzenböck gauge. This is equivalent to having a non-
vanishing spin connection and a tetrad which solve their
respective antisymmetric part of the field equations.
A detailed discussion about this equivalence can be found
in Refs. [27–29].
The teleparallel equivalent of general relativity is con-

structed from the action

STEGR ¼
Z

d4xjhj
�

1

2κ2
T þ Lmðg;ΨÞ

�

; ð4Þ
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where κ2 ¼ 8π, jhj ¼ detðhaμÞ ¼
ffiffiffiffiffiffi

−g
p

is the determinant

of the tetrad, Lmðg;ΨÞ is the matter Lagrangian for matter
minimally coupled to gravity via the metric generated by
the tetrads, and the so-called torsion scalar T reads as
follows:

T ¼ Ta
μνSa

μν

¼ 1

2

�

ha
σgρμhb

ν þ 2hb
ρgσμha

ν þ 1

2
ηabg

μρgνσ
�

Ta
μνT

b
ρσ:

ð5Þ

The superpotential Sa
μν is given by Sa

μν ¼ 1

2
ðKμν

a −

ha
μTλ

λν þ ha
νTλ

λμÞ in terms of the contortion tensor

Kμν
a ¼ 1

2
ðTνμ

a þ Ta
μν − Tμν

aÞ, and the appearing compo-

nents of the metric are understood as a function of the
tetrads.
The modified teleparallel theory of gravity we are

investigating is fðTÞ gravity, which is a straightforward
generalization of the action (4) as follows:

SfðTÞ ¼
Z

d4xjhj
�

1

2κ2
fðTÞ þ Lmðg;ΨÞ

�

: ð6Þ

The function f is an arbitrary function of the torsion scalar.
Variation with respect to the tetrad haμ yields the field

equations [27]

1

4
fðTÞhaμ þ fT

�

Tb
νaSb

μν þ 1

h
∂νðhSaμνÞ

�

þ fTTSa
μν∂νT

¼ 1

2
κ2Θa

μ; ð7Þ

with Θa
μ being the energy-momentum tensor of the matter

field, fT ¼ ∂f=∂T and fTT ¼ ∂2f=∂T2. They can be

rewritten purely in terms of spacetime indices by contrac-
tion with gμρ and haσ to take the form

Hσρ ¼
1

2
κ2Θσρ: ð8Þ

Their symmetric part is sourced by the energy-momentum
tensor, while their antisymmetric part is a vacuum con-
straint for the matter models we consider. The latter is equal
to the variation of the action with respect to the flat spin-
connection components [28,29],

HðσρÞ ¼
1

2
κ2ΘðσρÞ; H½σρ� ¼ 0: ð9Þ

The explicit form of these equations can be found for
example in Eqs. (26) and (30) in [30] by setting the scalar
field ϕ to zero. We do not display these here since we will
derive the spherically symmetric field equations directly
from (7).

B. Spherical symmetry in f ðTÞ gravity
In this section, the fðTÞ field equations for a spherically

symmetric spacetime will be derived. Let us first start with
the following spherically symmetric metric in standard
spherical coordinates ðt; r; θ;ϕÞ:

ds2 ¼ Adt2 − Bdr2 − r2ðdθ2 þ sin2θdϕ2Þ; ð10Þ

where A ¼ AðrÞ and B ¼ BðrÞ are positive functions which
depend on the radial coordinate. This means we consider
the outside region of possible black holes. To calculate the
field equations, we employ the following off-diagonal
tetrad [16]:

haν ¼

0

B

B

B

B

B

@

ffiffiffiffi

A
p

0 0 0

0
ffiffiffiffi

B
p

cosðϕÞ sinðθÞ r cosðϕÞ cosðθÞ −r sinðϕÞ sinðθÞ
0

ffiffiffiffi

B
p

sinðϕÞ sinðθÞ r sinðϕÞ cosðθÞ r cosðϕÞ sinðθÞ
0

ffiffiffiffi

B
p

cosðθÞ −r sinðθÞ 0

1

C

C

C

C

C

A

: ð11Þ

This tetrad together with a vanishing spin connection consistently defines a spherically symmetric teleparallel geometry.
Hence, it is consistent to derive the fðTÞ field equations (7) from this tetrad with vanishing spin connection. Equivalently
one could choose a diagonal tetrad with a nonvanishing spin connection [31], as was done in [26].
For this setup the torsion scalar becomes

T ¼ −
2ð

ffiffiffiffiffiffiffiffiffi

BðrÞ
p

− 1ÞðrA0ðrÞ − AðrÞ
ffiffiffiffiffiffiffiffiffi

BðrÞ
p

þ AðrÞÞ
r2AðrÞBðrÞ : ð12Þ

Clearly, if A → 1 and B → 1 (Minkowski limit), the torsion scalar vanishes. Calculating the field equations (7) contracted

with haσ and an anisotropic fluid energy-momentum tensor, defined by the energy density ρ ¼ Θ0
0, the radial and the lateral
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pressures −pr ¼ Θ1
1 and −pl ¼ Θ2

2 respectively, we find the nonvanishing independent spherically symmetric fðTÞ field
equations are the diagonal components Hμ

μ (no sum taken),

1

2
κ2ρ ¼ rBð

ffiffiffiffi

B
p

− 1ÞA0 þ AðrB0 þ 2B3=2 − 2BÞ
2r2AB2

fT þ ð
ffiffiffiffi

B
p

− 1Þ
rB

T 0fTT þ 1

4
f; ð13Þ

1

2
κ2pr ¼ −

rð
ffiffiffiffi

B
p

− 2ÞA0 þ 2Að
ffiffiffiffi

B
p

− 1Þ
2r2AB

fT −
1

4
f; ð14Þ

1

2
κ2pl ¼

−r2BA02 þ rAð−rA0B0 − 4B3=2A0 þ 2BðrA00 þ 3A0ÞÞ þ A2ð−2rB0 − 8B3=2 þ 4B2 þ 4BÞ
8r2A2B2

fT

þ rA0 − 2Að
ffiffiffiffi

B
p

− 1Þ
4rAðrÞBðrÞ T 0fTT −

1

4
f; ð15Þ

where primes denotes derivatives with respect to the radial
coordinate. There are only three independent equations
since Hϕ

ϕ ∼Hθ
θ. This also demonstrates that the tetrad

(11) is a so-called good tetrad, i.e., it solves the antisym-
metric field equations H½μν� ¼ 0 with vanishing spin con-
nection. We like to remark here that our choice of tetrad is
not the only good tetrad in this sense. The tetrad presented
in [10] could be chosen equally well from this point of
view. However not all of these good tetrads, in the sense of
the field equations, yield consistently a torsion scalar that
vanishes for the Minkowski spacetime limit.
A consistency check of the field equations is to set

fðTÞ ¼ T, hence fT ¼ 1 and fTT ¼ 0, and to see if for
ρ ¼ pr ¼ pl ¼ 0, Schwarzschild geometry [AðrÞ ¼
BðrÞ−1 ¼ 1–2M=r] solves the field equations, which is
the case.
The last remark leads us to the point that the equations we

derived above differ from the spherically symmetric fðTÞ
field equations in [25]. First, their field equations (8)–(10)
are not solved by Schwarzschild geometry for fðTÞ ¼ T
and ρ ¼ pr ¼ pl ¼ 0, as it is the case for our equations.
Second the off-diagonal tetrad they choose has the problem
that its torsion scalar does not vanish for the Minkowski
spacetime limit, which means that it is not the correct tetrad
to which one associates a vanishing spin connection.
We will now solve the fðTÞ field equations for a specific

power-law choice for f to first order in a perturbation
aroundMinkowski and Schwarzschild spacetime geometry.

In each instance we will compare our results and the ones
obtained in [25,26].

III. WEAK POWER LAW f ðTÞ GRAVITY

In this section we turn our focus to a power-law fðTÞ
model that reads as

fðTÞ ¼ T þ 1

2
ϵαTp; ð16Þ

where α and p are constants and ϵ ≪ 1 is a small tracking
parameter that, similarly as was done in [26], is used to
make the series expansion in a coherent way. It allows us
to easily track quantities that are considered to be small
throughout our calculations.
Since we are interested in perturbations of a

Schwarzschild background, the ansatz we employ for the
metric coefficients is

AðrÞ ¼ 1 −
2M

r
þ ϵaðrÞ; ð17Þ

BðrÞ ¼
�

1 −
2M

r

�

−1

þ ϵbðrÞ; ð18Þ

where aðrÞ and bðrÞ are functions of the radial coordinate.
If one uses the above metric coefficients in the fðTÞ power-
law spherically symmetric field equations (13)–(15) and
then expands up to first order in ϵ, the equations become

1

2
κ2ϵρ ¼ ϵ

�

α
ð−1Þpþ12p−3ðp − 1Þ

ðr2μÞp ðμ − 1Þ2p−1ðμ − 1þ pð1þ μð2þ 5μÞÞÞ − μ2ðμ2 − 2ÞbðrÞ
2r2

þ μ4b0ðrÞ
2r

�

; ð19Þ

1

2
κ2ϵpr ¼ ϵ

�

−α
ð−1Þpþ12p−3ðp − 1Þ

ðr2μÞp þ a0ðrÞ
2r

þ ðμ2 − 1ÞaðrÞ
2μ2r2

−
μ2bðrÞ
2r2

�

; ð20Þ
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1

2
κ2ϵpl ¼ ϵ

�

−α
ð−1Þpþ12p−5ðp − 1Þ

μðrμÞp ðμ − 1Þ2pðpþ 2ð2þ pÞμþ 5pμ2Þ

þ 1

4
a00ðrÞ þ ð3μ2 − 1Þa0ðrÞ

8μ2r
−
ðμ4 − 1ÞaðrÞ

8μ4r2
−
μ2ðμ2 þ 1Þb0ðrÞ

8r
þ ðμ4 − 1ÞbðrÞ

8r2

�

; ð21Þ

where μ ¼ ð1 − 2M=rÞ1=2 was introduced for simplicity and we assumed that the energy-momentum tensor is zero to zeroth
order in ϵ. The latter assumption is necessary in order to have Schwarzschild geometry as consistent zeroth order solution.
As usual in perturbation theory at this stage, the small parameter ϵ drops out of the equations and they can be solved for the
first order perturbations aðrÞ and bðrÞ. Equation. (20) is an algebraic equation for bðrÞ that can be easily solved, yielding

bðrÞ ¼ α
ð−1Þp2p−2ðp − 1Þr2ðμ − 1Þ2p

μ2ðr2μÞp þ ðμ2 − 1ÞaðrÞ
μ4

þ ra0ðrÞ
μ2

−
κ2r2

μ2
pr: ð22Þ

Inserting this result for bðrÞ in (19) and (21), while setting pr ¼ pl, we obtain one remaining partial differential equation,
which can be solved for aðrÞ,

a00 þ 2a0

r
−
α2p−3ð4ðμ − 1Þμ2 þ ð5μ3 þ 7μ2 þ 3μþ 1Þp2 − ð9μ3 þ 3μ2 þ 3μþ 1ÞpÞr−3pð− ðμ−1Þ2r

μ
Þp

ðμ − 1Þμ2 ¼ 0: ð23Þ

In order to continue solving the equations, we will separate
the study into two branches: (A) M ¼ 0, and pr ¼ pl ¼
−ρ ¼ −Λ as it was studied in Ref. [25], with the additional
constraint p > 1=2 to guarantee well-defined field equa-
tions. We redo the calculations of [25], since we find a
completely different result for the M ¼ 0. (B) M ≠ 0,
ρ ¼ pr ¼ pl ¼ 0 and p ¼ 2 to 10. For p ¼ 2we reproduce
the result from [26].

A. Minkowski background (M = 0)

If one assumes p > 1=2, perturbations around a
Minkowski background can be studied by setting M ¼ 0

(μ ¼ 1). It can immediately be seen from Eqs. (19)–(21)
that the influence of the teleparallel perturbation (e.g., the
terms proportional to α) drops out. As a consequence one
obtains the usual first order (A)dS Schwarzschild spacetime
geometries as solutions of the perturbed field equations
with a cosmological constant as first order matter source,
i.e., pr ¼ pl ¼ −ρ ¼ −Λ. The perturbation functions aðrÞ
and bðrÞ are easily determined from (19)–(21). The metric
coefficients AðrÞ and BðrÞ become

AðrÞ ¼ 1þ ϵ

�

C2 −
C1

r
−
1

3
κ2Λr2

�

; ð24Þ

BðrÞ ¼ 1þ ϵ

�

C1

r
þ 1

3
κ2Λr2

�

; ð25Þ

for all p > 1=2. Here C1 and C2 are integration constants
labeling the linearized Schwarzschild solution of general
relativity and a constant shift of the Minkowski metric
respectively. Usually they are chosen to be C1 ¼ 2M and

C2 ¼ 0. The Λ term appears due to a nonvanishing
cosmological constant we assumed as a first order matter
source.
The solutions we find are completely different to the

ones presented in [25]. The source of this discrepancy lies
in our choice of the tetrad (11), to which we associate a
vanishing spin connection. The tetrad chosen in the
previous work had the drawback that its torsion scalar,
see Eq. (9) in [25], does not vanish in the Minkowski

spacetime limit A → 1, B → 1, but gives 8=r2. In turn this
leads to an infinite action for Minkowski spacetime. As we
mentioned earlier, our tetrad avoids this complication by
having a vanishing torsion scalar for the Minkowski
spacetime limit.

B. Schwarzschild background M ≠ 0

In this section, we will focus our study on perturbations
of Schwarzschild geometry (M ≠ 0) induced by weak
power-law fðTÞ gravity

fðTÞ ¼ T þ 1

2
αϵTp; ð26Þ

exemplary for p ¼ 2 to p ¼ 4, since a solution for general
p cannot be obtained. For higher integer values of p the
solutions have a similar form, but it is not further insightful
to display the long expressions.
The general structure of the vacuum solutions, i.e.,

ρ ¼ pr ¼ pl ¼ 0, for all p is

AðrÞ ¼ 1 −
2M

r
þ ϵ

�

−
C1

r
þ C2 þ αāðrÞ

�

; ð27Þ
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BðrÞ ¼ 1

1 − 2M
r

þ ϵ

�ðC1

r
−

2C2M
r

Þ
ð1 − 2M

r
Þ2 þ αb̄ðrÞ

�

: ð28Þ

The integration constants C1 and C2 are determined in a

power series expansion in 1

r
, such that the zeroth and first

order terms in this expansion vanish. Physically this means
we use the integration constants to avoid an influence of the
teleparallel perturbation in the weak field, respectively,

large distance, limit. After the integration constants have
been found, the solutions take the form

AðrÞ ¼ 1 −
2M

r
þ ϵαâðrÞ; ð29Þ

BðrÞ ¼ 1

1 − 2M
r

þ ϵb̂ðrÞ: ð30Þ

For p ¼ 2 we reproduce the solutions found in [26]

AðrÞ ¼ 1 −
2M

r
þ ϵ

�

−
C1

r
þ C2 − α

�

M2 þ 6Mrþ r2

Mr3
−
16ð1 − 2M

r
Þ3=2

3M2
þ ð1 − 3M

r
Þ

2M2
ln

�

1 −
2M

r

���

; ð31Þ

BðrÞ ¼ 1

1 − 2M
r

þ ϵ

�ðC1

r
−

2C2M
r

Þ
ð1 − 2M

r
Þ2 − α

�

−
8ð3M2 − 7Mrþ 2r2Þ
3Mr3ð1 − 2M

r
Þ3=2 þ 25M − 23r

r3ð1 − 2M
r
Þ2 þ

ln ð1 − 2M
r
Þ

2Mrð1 − 2M
r
Þ2
��

; ð32Þ

which can be expressed conveniently in terms of the variable μ ¼ ð1 − 2M=rÞ1=2, giving

AðrÞ ¼ μ2 þ ϵ

�

−
C1

r
þ C2 − α

51 − 93μ2 − 128μ3 þ 45μ4 − 3μ6 − 12ð1 − 3μ2Þ lnðμÞ
6r2ð1 − μ2Þ2

�

; ð33Þ

BðrÞ ¼ 1

μ2
þ ϵ

�ðC1

r
− ð1 − μ2ÞC2Þ

μ4
þ α

63 − 24μþ 12μ2 þ 64μ3 − 75μ4 þ 24μ5 − 12 lnðμÞ
6r2μ4ð1 − μ2Þ

�

: ð34Þ

Determining the integration constants from the 1

r
expansions

AðrÞ ∼
�

16α

3M2
þ C2

�

−

�

16α

M
þ C1

�

1

r
þO

�

1

r2

�

; BðrÞ ∼
�

16α

3M
þ C1 − 2MC2

�

1

r
þO

�

1

r2

�

ð35Þ

yieldsC2 ¼ −16α=ð3M2Þ andC1 ¼ −16α=M. For easy comparison with previous approaches we display the solutions (33)
and (34) one more time with this choice of integration constants

AðrÞ ¼ μ2 þ ϵα
13 − 99μ2 þ 128μ3 − 45μ4 þ 3μ6 þ 12ð1 − 3μ2Þ lnðμÞ

6r2ð1 − μ2Þ2 ; ð36Þ

BðrÞ ¼ 1

μ2
− ϵα

1þ 24μ − 12μ2 − 64μ3 þ 75μ4 − 24μ5 þ 12 lnðμÞ
6r2μ4ð1 − μ2Þ : ð37Þ

The leading order terms for the torsion scalar (12) for the weak squared power-law case in a Schwarzschild background
behaves as

T ¼ −
2ðμ − 1Þ2

μr2
þ ϵα

13 − 36μþ 108μ2 − 184μ3 þ 135μ4 − 36μ5 þ 12 lnðμÞ
6r4μ3

: ð38Þ

For the specific choice of C1 and C2 we find that in theM → 0 limit AðrÞ → 1, BðrÞ → 1, and T → 0. This result coincides
with the one presented in [26].
For p ¼ 3 and p ¼ 4 we find similar solutions that can be expressed as

AðrÞ ¼ μ2 þ ϵαâðrÞ; BðrÞ ¼ 1

μ2
þ ϵαb̂ðrÞ; TðrÞ ¼ −

2ðμ − 1Þ2
μr2

þ ϵαT̂ðrÞ: ð39Þ
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(i) p ¼ 3

âðrÞ ¼ ½−280μ12 þ 945μ11 þ 1120μ10 − 8295μ9 þ 6984μ8 þ 18060μ7 − 37632μ6 þ 1260μ5 þ 86520μ4

− 62909μ3 − 10080μ2 − 7560ð7μ2 − 1Þμ logðμÞ þ 178μþ 2520�ð315r4μðμ2 − 1Þ4Þ−1; ð40aÞ

b̂ðrÞ ¼ ½3780μ11 − 19040μ10 þ 27405μ9 þ 16560μ8 − 81480μ7 þ 56448μ6 þ 44100μ5 − 77280μ4 þ 23940μ3

þ 10080μ2 − 9553μþ 7560μ logðμÞ þ 5040�ð315r4μ5ðμ2 − 1Þ3Þ−1; ð40bÞ

T̂ðrÞ ¼ ½7ðμ − 1Þð6300μ10 − 30380μ9 þ 44905μ8 þ 8545μ7 − 88055μ6 þ 74233μ5 þ 12493μ4 − 49667μ3

þ 27193μ2 − 10607μ − 2520Þ þ 7560μ logðμÞ�ð315r6μ4ðμ2 − 1Þ2Þ−1: ð40cÞ

(ii) p ¼ 4

âðrÞ ¼ −4½−6435μ18 þ 36960μ17 − 32175μ16 − 221760μ15 þ 552552μ14 þ 145600μ13 − 1963962μ12

þ 1693120μ11 þ 2642640μ10 − 5436288μ9 þ 330330μ8 þ 7495488μ7 − 6846840μ6 − 4804800μ5

þ 3912986μ4 þ 2882880μ3 þ 55139μ2 þ 720720ð11μ2 − 1Þμ2 logðμÞ − 480480μ

þ 45045�ð15015r6μ2ðμ2 − 1Þ6Þ−1; ð41aÞ

b̂ðrÞ ¼ −4½120120μ17 − 842985μ16 þ 1940400μ15 − 60060μ14 − 7141680μ13 þ 10198188μ12 þ 3443440μ11

− 20810790μ10 þ 13590720μ9 þ 12222210μ8 − 20612592μ7 þ 4504500μ6 þ 8888880μ5 − 6666660μ4

þ 720720μ3 þ 1451534μ2 − 720720μ2 logðμÞ − 1081080μþ 135135�ð15015r6μ6ðμ2 − 1Þ5Þ−1; ð41bÞ

T̂ðrÞ ¼ 2½1441440μ2 logðμÞ − 2ðμ − 1Þð210210μ16 − 1443585μ15 þ 3379695μ14 − 1004685μ13 − 9227445μ12

þ 15024783μ11 − 270497μ10 − 21081287μ9 þ 18275173μ8 þ 4731643μ7 − 15880949μ6 þ 7362271μ5

þ 2197111μ4 − 3388469μ3 þ 1656571μ2 þ 225225μ − 45045Þ�ð15015r8μ5ðμ2 − 1Þ4Þ−1: ð41cÞ

For the other higher values of p the calculation follows the
same scheme and their solutions are similar to the above
ones. Since they are lengthy and not insightful, we will not
present them explicitly.

IV. PARTICLE MOTION PHENOMENOLOGY

To relate the influence of a teleparallel modification of
general relativity to observables, we study the motion of
test particles in the background solution defined by the
metric coefficients (31) and (32). We explicitly derive the
photon sphere around the black hole and the perihelion
shift of nearly circular orbits. Nowadays the photon sphere
is of particular interest since it defines the edge of the
shadow of a black hole while the perihelion shift was
already derived in [26], but on the basis of an erroneous
solution, as we discussed above.

A. Geodesic equation and effective potential

The worldline qðτÞ of test particles in a curved spacetime
is determined by the Euler-Lagrange (EL) equations

d

dτ

�

∂L

∂ _qμ

�

−
∂L

∂qμ
¼ 0; ð42Þ

of the Lagrangian

2L ¼ gμν _q
μ _qν

¼
�

1 −
2M

r
þ ϵaðrÞ

�

_t2 −

�

1

1 − 2M
r

þ ϵbðrÞ
�

_r2

− r2 _θ2 − r2 sin2 θ _ϕ2; ð43Þ

where qμðτÞ ¼ ðtðτÞ; xðτÞ; θðτÞ;ϕðτÞÞ, and _qμ denotes the
derivative of qμ with respect to the affine parameter τ. The
perturbation functions aðrÞ and bðrÞ under consideration
can be read off in (31) and (32).
To solve the EL equations we employ the usual scheme

for spherically symmetric spacetimes: we restrict ourselves
to motion in the equatorial plane and set θ ¼ π=2, and we
derive the usual conserved quantities the energy k and
angular momentum h
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k ¼ ∂L

∂_t
¼

�

1 −
2M

r
þ ϵaðrÞ

�

_t; ð44Þ

h ¼ ∂L

∂ _ϕ
¼ r2 _ϕ: ð45Þ

We obtain the effective potential to first order in ϵ from the
constancy of the Lagrangian, expressed in terms of the
conserved quantities

�

1 − ϵ
aðrÞ
1 − 2M

r

�

k2

1 − 2M
r

−

�

1

1 − 2M
r

þ ϵbðrÞ
�

_r2 −
h2

r2

þOðϵ2Þ ¼ σ; ð46Þ

where σ ¼ 0 for massless particles and σ ¼ 1 for massive
particles. For further calculations we rearrange Eq. (46) as

0 ¼ 1

2
_r2 −

1

2
k2 þ 1

2

h2

r2

�

1 −
2M

r

�

þ 1

2
σ

�

1 −
2M

r

�

þ ϵ

2

�

k2
�

aðrÞ
1 − 2M

r

þ bðrÞ
�

1 −
2M

r

��

− bðrÞ h
2

r2

�

1 −
2M

r

�

2

− σbðrÞ
�

1 −
2M

r

�

2
�

; ð47Þ

so we can read off the effective potential to first order in ϵ

VðrÞ ¼ −
1

2
k2 þ 1

2

�

1 −
2M

r

��

h2

r2
þ σ

�

þ ϵ

2
½k2

�

aðrÞ
1 − 2M

r

þ bðrÞ
�

1 −
2M

r

��

− bðrÞ
�

σ þ h2

r2

��

1 −
2M

r

�

2
�

ð48Þ

from

1

2
_r2 þ VðrÞ ¼ 0: ð49Þ

For the analysis of the perihelion shift, it is necessary to
reparametrize rðτÞ as rðϕÞ, which amounts to the equation

1

2

_r2

_ϕ2
þ 1

_ϕ2
VðrÞ ¼ 1

2

�

dr

dϕ

�

2

þ r4

h2
VðrÞ ¼ 0: ð50Þ

B. Photon sphere and perihelion shift

For circular orbits (e.g., r ¼ const; _r ¼ 0) the effective
potential and its derivative have to vanish. We perturb the
radial coordinate of the circular orbit rc ¼ r0 þ ϵr1, the
angular momentum h ¼ h0 þ ϵh1, and the energy k ¼ k0 þ
ϵk1 and solve both equations V ¼ 0 and V 0 ¼ 0 order by
order. For circular photon orbits, σ ¼ 0, solving the zeroth
order equations yields

r0 ¼ 3M; h0� ¼ �3
ffiffiffi

3
p

k0M ð51Þ

and the first order perturbation gives, for the different
values of p, the following numerical values:

ðp ¼ 2Þ r1 ≈ 14133.8000 × 10−6
α

M
;

ðp ¼ 3Þ r1 ≈ −1362.5400 × 10−6
α

M3
; ð52Þ

ðp ¼ 4Þ r1 ≈ 121.3220 × 10−6
α

M5
;

ðp ¼ 5Þ r1 ≈ −10.2582 × 10−6
α

M7
; ð53Þ

ðp ¼ 6Þ r1 ≈ 8.3757 × 10−6
α

M9
;

ðp ¼ 7Þ r1 ≈ −0.6670 × 10−6
α

M11
; ð54Þ

ðp ¼ 8Þ r1 ≈ 0.0521 × 10−6
α

M13
;

ðp ¼ 9Þ r1 ≈ −0.0040 × 10−6
α

M15
; ð55Þ

ðp ¼ 10Þ r1 ≈ 0.0003 × 10−6
α

M17
: ð56Þ

We clearly see that for positive α and even p the
teleparallel perturbation of general relativity yields a larger
photon sphere around a spherically symmetric black hole
and thus predicts a larger black hole shadow. For odd p a
smaller shadow is predicted. Moreover it is evident that the
larger p the smaller the first order influence of the tele-
parallel perturbation. The relation between the photon
sphere and teleparallel perturbations of general relativity
is investigated here for the first time.
For circular timelike orbits, σ ¼ 1, it is also possible to

solve the equations V ¼ 0 and V 0 ¼ 0. However the
appearing expressions are not very insightful. The impor-
tant observation is that teleparallely perturbed general
relativity, not surprisingly, allows for circular orbits, which
will be the starting point for the derivation of the perihelion
shift now. We consider a perturbation around a circular
orbit rc and plug the ansatz rðϕÞ ¼ rc þ rϕðϕÞ into (50)

and obtain

�

drϕ

dϕ

�

2

¼ −2
ðrc þ rϕÞ4

h2
Vðrc þ rϕÞ: ð57Þ

Assuming that the ratio rϕ=rc is small, the right-hand side

can be expanded into powers of this parameter to second
order

�

drϕ

dϕ

�

2

¼ −
r4c

h2
V 00ðrcÞr2ϕ þO

�

r3ϕ

r3
0

�

; ð58Þ
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where we used that for circular orbits VðrcÞ ¼ 0 and
V 0ðrcÞ ¼ 0, as discussed above. The solution rϕ thus

oscillates with the wave number K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4c
h2
V 00ðrcÞ

q

and

the perihelion shift is given by

Δϕ ¼ 2π

�

1

K
− 1

�

¼ 2π

�

h

r2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V00ðrcÞ
p − 1

�

: ð59Þ

To derive the explicit expression for the perihelion shift for
massive objects we consider the potential V with σ ¼ 1, see
(48), its first derivative V 0 and its second derivative V 00. We
evaluate the equations VðrcÞ ¼ 0 and V 0ðrcÞ ¼ 0 with
h ¼ h0 þ ϵh1 and k ¼ k0 þ ϵk1. The zeroth order of these
equations determines h0ðrcÞ and k0ðrcÞ as

h0� ¼ �
ffiffiffiffiffi

M
p

rc

rc − 3M
; k0� ¼ � 2M − rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rcðrc − 3MÞ
p : ð60Þ

The first order determines h1ðrcÞ and k1ðrcÞ. Depending on
the choice of the sign of h0 we obtain two different
solutions for h1 (the sign of k0 is irrelevant here)

h1� ¼∓
r2cð2MaðrcÞ − rcðrc − 2MÞa0ðrcÞÞ

4
ffiffiffiffiffi

M
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rc − 3M
p

3
: ð61Þ

The sign labeling h1� refers to the sign chosen of the zeroth
order h0�, which was chosen to calculate h1�. There is no
need to derive k1 explicitly, since it does not enter the
perihelion shift equation. Having obtained the constants of
motion for the circular orbit we can derive the perihelion
shift by plugging the values into V 00ðr; k0; h0; h1Þ to obtain
V 00ðrcÞ alone. Due to the different solutions for the
constants of motion there exist two options to derive the
perihelion shift

Δϕðh0þ; h1þÞ; Δϕðh0−; h1−Þ; ð62Þ

which are related to each other through

Δϕðh0−; h1−Þ ¼ −4π − Δϕðh0þ; h1þÞ: ð63Þ

Expanding the perihelion shift into a power series in the

variable q ¼ M
rc
yields

Δϕðh0þ; h1þÞ ¼ 6πqþ 27πq2 þOðq3Þ þ ϵπΔ̂ϕp þOðϵ2Þ:
ð64Þ

Δ̂ϕp is the leading order teleparallel perturbation of the

usual GR result. For the different values of p it is given by

Δ̂ϕp¼2 ¼
8q2

r2c
; Δ̂ϕp¼3 ¼ −

48q4

r4c
;

Δ̂ϕp¼4 ¼
192q6

r6c
; Δ̂ϕp¼5 ¼ −

640q8

r8c
;

Δ̂ϕp¼6 ¼
1920q10

r10c
Δ̂ϕp¼7 ¼ −

5376q12

r12c
;

Δ̂ϕp¼8 ¼
14336q14

r14c
; Δ̂ϕp¼9 ¼ −

36864q16

r16c
;

Δ̂ϕp¼10 ¼
92160q18

r18c
: ð65Þ

The qualitative behavior of the perihelion shift is always the
same, only the numerical values differ. As for the photon
sphere, the higher p, the smaller the influence of the
teleparallel perturbation and corrections to the perihelion
shift appear only in higher orders in q.
Since the influence of the teleparallel perturbation

decreases with higher power in p the most strict bound
on α is obtained for p ¼ 2 and is the one obtained in [26].
We expect to be able to find stronger bounds from the

upcoming study on teleparallel perturbations of rotating
black holes.

V. CONCLUSION

In this paper we presented the first order influence of a
teleparallel power-law fðTÞ gravity perturbation of general
relativity, in spherical symmetry. The central results of this
article are as follows:

(i) To first order, a power-law perturbation of the type
fðTÞ ¼ T þ α

2
Tp yields no teleparallel correction to

Minkowski spacetime for p > 1=2.
(ii) The explicit derivation of the first order teleparallel

fðTÞ ¼ T þ α
2
Tp corrections to Schwarzschild

geometry forp ¼ 2 top ¼ 10, displayed in Eqs. (33)
and (34) for p ¼ 2 and in (40) and (41) for p ¼ 3

and p ¼ 4, respectively. The perturbed solutions for
higher power-law parameter p have the same struc-
ture but they are lengthy and for this reason, we do
not present them.

The latter allowed us to calculate the teleparallel modifica-
tions of the photon sphere and the perihelion shift: two
observables which are experimentally accessible and can be
used to check the viability of fðTÞ models. For both
observableswe find that the largerp, the smaller the influence
of the teleparallel modification. Thus, the p ¼ 2 model is
most constraint from the perihelion shift of mercury, which is

jαjmax ¼ 2.20 × 1020 km2 according to [26]. We expect to
find further, stronger constraints, for the different models by
studying rotating black holes and their phenomenology.
The results we presented improve and extend existing

results on first order power-law fðTÞ models, which were
presented in [25,26]. In the first article the tetrad chosen
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was not compatible with a vanishing spin connection and
the field equations were incorrect. During our derivations,
we paid particular attention to present all necessary steps in
the perturbation theory, so that our results are easily
reproducible.
An important opportunity that our presented approach

here offers is to investigate the connection between the
vanishing of the first order contributions of teleparallel
corrections around Minkowski spacetime and the nonvan-
ishing of the corrections around Schwarzschild geometry,
with the degrees of freedom of fðTÞ gravity; the latter being
debated in the literature [32–34]. Here we considered static
perturbations; in the future, nonstatic spherically and axially
symmetric gravitational waves from weak power-law fðTÞ
gravity will be investigated and complement the gravita-
tional wave analysis of fðTÞ gravity aroundMinkowski and
FLRW geometry [32,35,36] and also at the astrophysical
level with compact binary coalescences [37].
This paper is a first step towards a complete phenom-

enological catalog of observables, which shall be derived in

weak power-law fðTÞ-gravity to systematically check its
consistency with observations. The next step in this
program is to consider axially symmetric perturbations
around Kerr spacetime, to derive the change in the photon
regions, which will have an imprint on the predictions of
the shape of the black hole’s shadow.
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