
PHYSICAL REVIEW A VOLUME 31, NUMBER 3 MARCH 1985

Photon statistics in the three-photon hyper-Raman process
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An exact solution of the master equation for the three-photon hyper-Raman process is obtained

by a matrix method. Several cases of the photon statistics are considered and the appearance of
photon-antibunching effect and the violation of the classical Cauchy inequality are discussed.

I. INTRODUCTION

The photon statistics of various nonlinear optical pro-
cesses has been a subject of increasing interest in recent
years. In particular, photon statistics for the usual Ra-
man process has been analyzed theoretically by Simaan in
detail. ' The similar hyper-Raman (HR) process has also
been studied already by Simaan, who formulated the
master equation of the process giving the solution by the
Laplace transform method.

In this paper we consider again the HR process and
give the solution of the master equation by a new matrix
method similar to that used by Zubairy for multiphoton
absorption processes. Our results complete the previous
work by giving rather complete explicit numerical results
in a number of cases of interest.

In the interaction picture, the equation of motion for
the density operator p of the coupled atoms-field system is
given by the Liouville equation

We are interested in the field subsystem only so we define
the reduced density matrix for it:

Pf (t) =tr„P(t) = g ( W
I
P(t) (4)

It is assumed that at time t =0, when the interaction is
switched on, the radiation field and the ensemble of atoms
are decoupled, and so

p(0)=pf(0) Qp;(0),

II. MASTER EQUATION FOR THE FIELD

We consider a coupled system of a large number of
identical two-level atoms and two single modes of the ra-
diation field inside a cavity of volume V. We assume the
atoms make transitions from the ground state 1 to the
upper state 2 by absorbing two photons of frequency coj
from the pumping mode I and simultaneously emitting
one photon of frequency co, in the Stokes mode s. The
thermal populations of the two atomic levels involved in
the HR transitions are assumed to be maintained constant
during the interaction with the radiation field. The in-
teraction Hamiltonian for this process is expressed in the
second-quantization formalism by

where p;(0) is the thermal equilibrium density matrix for
the ith atom. By the well-known density matrix time-
perturbation techniques, and invoking the irreversible
and Markov approximations, we obtain finally the follow-
ing equation of motion for the reduced density operator

pf in the interaction picture:

pf = P[p i (a at a1 aiata, pf —2a, alatpf a, a~ a~

+pfa, a~ at a, a~at )

+p2(pfas atala al al 2a al at pfa alai

M;„,=g g cz;c&;E~'+'(r; )Et'+'(r; )E,' '(r; )+H.c. ,

where

Ek+'(r) =i (2vrficok)' uk(r)ak

=[Ek

+ a, a~a~a, a~ a~ pf )],

where

P=8m Picots, g(Q)
l q l g l

u((r;)
l l u, (r;)

l

(6)

is the positive-frequency part for the radiation electric-
field operator in the k mode, the ak, ak being the associat-
ed creation-destruction photon operators, and ut, (r) and
its complex conjugated, normalized spatial-mode func-
tions. The c&;, c&;, etc. , are atomic creation-destruction
operators for the corresponding states of the ith atom,
and g is the effective dipole-matrix element for the transi-
tions.

and g(Q) is the line function for the HR transitions cal-
culated at resonance, i.e., 0=2cot —co, . Equation (6) is
the master equation for the field in which p&,p2 denotes
the populations of the atomic levels, and P, whose dimen-
sion is (time) ' is obviously related with the rate at which
changes take place in the statistical properties of the field.
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III. MASTER EQUATION IN THE POCK SPACE:
SHORT- TIME SOLUTIONS

Equation (6) is the master equation for the HR process
in operator form. Taking the diagonal matrix elements in
the Fock space of photon-number states

~
n, m ) for the

two modes in both sides of this equation, we obtain

„P„(t)= J—
Ip, [n (n —1)(m +1)P„d

—( n +1)(n +2)mP„+z ~,]

Jp&(n+1) (n+2}mp&~p rn

Jp&n(n-1) (m+1)pn-p, n+g

Jp& (n+1) (n+2) m P&,~

-Jp,~{A-~)(~+» P„~

+pz [(n + 1)(n +2)mP„~ (n-2. ,m«l)

—n (n —1)(m + l)P„z ~+~]I,
(7)

FIG. 1. Transition rates between photon-number states for
the three-photon HR process.

where J=2P and P„=(n, m
i pf ~

n, m ) are the diago-
nal elements of the field density matrix in the photon-
number representation, and measure the joint probability
that n photons in the pumping mode and m photons in
the Stokes mode are simultaneously present at time t.
Equation (7) governs the temporal evolution of the statis-
tical properties of the photon field. The significance of
Eq. (7) can be made more intuitive in terms of "transition
rates" in the space of photon-number states (n, m) of the
field, as shown in Fig. 1: the direct HR transitions
(n, m)~(n —2, m +1) proceed at a rate Jp, n (n
—1)(m+1)P„,~ while the inverse HR transitions
( n, m) +(n +2,m ——1) do so at a rate Jpz(n + 1)(n
+2)mP„. These last transitions depend upon the popu-
lation of the upper state pz, and disappear if pz ——0, in
which case the master equation for the diagonal matrix
elements reduces to the form

P„~(t) = Jn (n ——1)(m + 1)P„

+J(n + 1)(n +2)mP„+z ~

The first-order moments t,n (t) ) = g„nP„~(t) and

(m(t)) = g„mP„(t) are the average values of the
number of photons in either mode. Taking the time
derivative of these expressions and substituting Eq. (7)
into them, we find

d
dt

(n ) = —2J [p ~ (n (n —1)(m + 1) )

which expresses the obvious fact that for each two pho-
tons absorbed in the pumping mode, only one photon in
the Stokes mode is emitted. We can rearrange easily Eq.
(9b) into the equivalent form

d
dt

(m ) =J[p& (n (n —1)) + (n (n —1)m )(p& —pz)

—2((2n +1)m )pz] .

The rate at which Stokes photons are created can be ex-
pressed as the sum of three contributions. The first term
corresponds to the spontaneous effect (when (m) =0).
The second term is the stimulated emission term, and it
requires the condition p»pz to be positive. The last
term is one of negative gain, as it should be, owing to the
presence of inverse HR transitions, in which one photon is
annihilated in the Stokes mode while two photons are
created in the input mode; this term takes over if p2 ——0.
At initial time the pumping and Stokes modes are sup-
posed to be statistically independent, i.e., P„~(0)
=Q„(0)R (0). It is also assumed that the upper-state
population is negligible, p2 ——0, and we can write the ini-
tial rate of the process as

(m) =Jg„'"(no) ((mo)+1), (12)

where we have introduced the second-order coherence de-

gree g„=(n(n —1))l(n) . The gain or rate of emis-
sion of Stokes photons, defined by

—pz((n + l)(n +2)m )], (9a)

dt
(m ) =J[p& (n (n —1)(m +1))

—p ((nz+ 1 )(n +2)m ) ] . (9b)

dt
((n )+2(m ) ) =0, (10)

By summing the last two equations we obtain the conser-
vative law

thus depends on the initial statistical properties of the in-
cident light: it is proportional to the square of the intensi-

ty (nonlinear effect) and to the degree of second-order
coherence. The gain is, therefore, larger in the case of
thermal incident radiation (g„' '=2) than it would be in
the case of coherent incident radiation (g„' '= 1). This re-
sult agrees with the common view that light fluctuations
lead to an increase in the rate at which nonlinear processes
take place.
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(m')
dt t=O

=J(n, &'g„',"(2(m, )'g"'

+5(m, )+1), (13a)

4J(& )3 (3) + ( )2 (2)
)

The time derivative of second-order moments (n2) and
(m ) and correlation function (nm ) are easily obtained
by a procedure similar to that used for the first-order mo-
ments, and we obtain for the initial values of the deriva-
tives,

where the right-hand side (rhs) has been expressed in
terms of first-order moments and second- and third-order
coherence degrees. These are useful intermediate results
for calculating the initial time rate for the common sta-
tistical functions of the photon fields, and so, to analyze
the short-time behavior of these functions up to the linear
terms in time. A rather lengthy but straightforward cal-
culation leads us to the values of the initial rates for the
second-order coherence degrees,

) J((m )+1)(4g( ) ( ) 2g( )

t=O

X(&mp &+1), (13b)
(14a)

„' &nm) =J&np&'[&np&g.",'(&mp&+1)
t=Q

2( )2 (2) (2)
mO g g

"g'" =2J((n, )'/(m, ) )g„"'(2—g„",'),
~=0

(14b)

—4(m() )g„",'], (13c)
and the correlation degree, defined by g, =(nm)/
(n)(m),

d
d gc ——J((np)/(mp))[(2(mp) —(np) —2(m()) —(np)(mp))g( '+(np)((mp)+1)g'3' —2(m )2 ' ' ' ']

L

(14c)

Equations (14) can be used to predict the behavior in time
of the statistical functions of the field at the beginning of
the process. We note that the second-order coherence de-

gree of the Stokes mode does not change in first approxi-
mation if it is initially chaotic, i.e., (d/dt), pg =0 if
g' '=2. Also, we note that the change in second-order

coherence degree of the pumping mode depends only on
its own initial statistical properties, but not on the statisti-
cal coherence properties of the Stokes mode. It is worth
noting that for completely coherent pumping light Eq.
(14a) reduces to (d/dt), pg„' '= —2J((mp)+1), i.e., the
initial time rate of g„' ' always takes negative values and
does not depend on the initial intensity of the input radia-
tion. An important case is the one in which there are no
photons in the Stokes mode at time t =0; then Eqs. (14b)
and (14c) break down ((mp) =0 (m()) =0, etc.). To
overcome this difficulty we must go back to the definition
formulas,

g"'=((m') —(m ) )/(m )', g, = (nm ) /(n ) (m ),
and develop the functions in numerator and denominator
up to third order in time. We limit ourselves to the
second order in t, in which case we can readily determine
the limiting values of the functions g' ' and g, at time
t =0. Straightforward calculations give

g','=(2g„, )/(g„, ) ((mp & =0),

g,,=(g„',')/(g,', ') (( o) =0),

(15a)

so that for coherent pumping light the second-order
coherence degree of the Stokes mode takes the value 2 at
time zero, while the correlation degree takes the value 1

(see Fig. 4).

IV. EXACT ANALYTICAL SOLUTION
OF THE MASTER EQUATION

We start with the assumption pz ——0, i.e., we disregard
upward transitions in Fig. 1, and take the master equation
in the simplified form of Eq. (8). We write n+2m =I
and use the dimensionless time variable r= Jt =2Pt. We
then get

where we have denoted Pz
b (I)=(I —2m)(I —2m —1)(m +1). For the distinct
values of I and m, these equations can be grouped in
"chains" as pictured in Fig. 2. The chains can be labeled
with the index I and the number of links for any I is fi-
nite; it is clear that I =2a or I =2++ 1 for some integer
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FIG. 2. Rectangular photon-number representation for the
two-mode field {n, m). Lattice points represent photon-number
states and HR transitions appear as probability flux along the
chains I, n +2m =I.

tinguish two cases.
(i) Nondegenerate chains (I&10,15,24, . . . ). In this

case, the eigenvalues are simple and the general solution is
of the form

M' 'AJ(I) = bj(I)—AJ(I) .

Solving this matrix equation, we obtain

(19)

P~'(r) = g CJ.(I)AJ~(I) exp[ b—j(I)r]
j=0

(m =0, 1, . . . , a), (18)

where AJ(I), j =0, 1, . . . , a are eigenvectors, correspond-
ing to the eigenvalues AJ —— bj(I—), respectively, and C~(I)
are constants which depend on the initial conditions. The
eigenvectors are solutions of the matrix equation

a &0. In this way, index m runs, for a given value of I,
between 0 and a(I)= [(I/2)], where the square brackets
denote the entire part; the number of links in chain I is
therefore a(I)+1. We can write, then, Eq. (16) in the
form of independent differential matrix systems,

1 if m=j
AJ (I)= 0 ifm &j

bk (I)

1 bk+)(I) bj(I)—j.f Pl QJ

(20)

p (+)
0 —ho(I) 0

P a

bo(I)

0

—bi(I)
e

0

I

or in abbreviated matrix form,

p(&)

p p p(i)

4

b. , (I) —b.(I) P.'"

with j =0, 1, . . . , a and m =0, 1, . . . , a.
(ii) Degenerate chains (I = 10, 15,24, 25, 29, . . . ). We

must take into account the existence of one degenerate
eigenvalue with multiplicity 2, in the diagonal of M' ',
i.e., bg(I)=bq(I) for some integers g &h. To these multi-
ple eigenvalues there correspond two fundamental solu-
tions which can be written in the following matrix form:

p (I) ~(I)p(I) (17) P'~ 2
——R exp[ bI() r] +S r—exp[ (bI) ]r, — (21)

Each value of I is associated with a particular chain and a
corresponding matrix system; we notice in turn several
facts.

(1) By summing rows in the two members of Eq. (17)
we get g P' '=0, i.e., g P' '(r)= g P' '(0)
= const; this is a probability conservation law for each
chain I.

(2) The matrix M' ' for each system is triangular, so its
eigenvalues are the diagonal elements, A, = b~ (I). —
Hence, the differential system [Eq. (17)] is easily solved
analytically by the standard matrix method. It is worth
noting that the last eigenvalue in M' ' is always 0; in fact,

b~(I) =0 for all—I. It can be shown that this fact
assures the existence of a stationary solution for r~ oo.

(3) A computer-aided calculation of the eigenvalues
shows that for certain values of I, the corresponding ma-
trix M' ' has some eigenvalue repeated (once) in the diago-
nal, that is, it has a multiple eigenvalue. Explicitly, it can
be shown that for each of the following values of I:

I =10,15,24, 2S,29,36,38,43, . . . ,

M' 'R= b(I)R+S-,
M'"S= —b(I)S .

(22a)

(22b)

As a first solution we choose S=0, R= A~(I), so that we
can take

P~ '(r) = Aq (I) exp[ b(I)r] . —
A second solution comes by choosing S= A~(I),
R=D(I), and we get

P2 '(r) =D(I) exp[ b(I)r]+ Aq(I)r —exp[ b(I)r], —

where the column matrix D(I) must satisfy Eq. (22a),
with S= Ag (I), i.e., [M' '+ 3b(I) ]D(I)= Ag (I)..

The general solution of the master equation can then be
expressed as follows:

where b(I)=bg(I)=bq(I) and R and S are unknown
column matrices. It can be shown immediately, by substi-
tuting these trial solutions into Eq. (17), that R and S
must satisfy the equations

there corresponds one (and only one) repeated eigenvalue
of multiplicity 2; we call the corresponding chains "de-
generate. "

The general solution of Eq. (17) can be obtained by cal-
culating the corresponding eigenvectors of M' '. We dis-

a(+)
P„(r)= g C (I)A (I) exp[ b(I)r]—

j=0
if n +2m =I&10, 15,24, 25, 29, . . ., and

(23a)
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a(I}
(r) = g I Cj(I)AI (I) exp[ bl—(I)r] j

j=0
j&g h

P(n, m;n', m')(r)
min(m, m'}

CjAj(n, m;n', m') exp(Ajr),
j=o

(27)

+x(I)Ak (I)exp[ b(—I)r]

+l,(I)[D (I)+Ak (I)r] exp[ b(I—) r]

(23b)

where Aj= baal
a—re the eigenvalues (assumed simple) of

the triangular matrix M(n, m; n', m '). The
Az(n, m;n', m') are right eigenvectors whose components
satisfy the recursion relations

bkk—Ajk(n, m;n', m')+bk k+,Al k+l(n, m;n', m')

bllAjk—(n, m;n', m') .

if n +2m =I= 10, 15,24, 25, 29, . . . . Formulas for the
components of the column matrix D(I) and the constants
CJ(I), a(I), and l,(I) are developed in the Appendix

The time evolution for the off-diagonal matrix elements
P„„m=(n, .m

~
pf(r)

~

n', m') is

P„.„, ,(r) = b(n, m—;n', m')P„

bt-1, t

A. (n, m n' m'')=jk
1 if k=j
0 ifk)j.

if k(j

From this relation it can be obtained by iteration that

(28)

+c (n +2,m —1;n'+2, m' —1)

+~n +2, m —1;n'+2, m' —» (24)

The left eigenvectors Bj(n,m;n', m') are similarly intro-
duced; they satisfy the recursion relations

bk ) kBj k l(n, m;n', m') bkkBjk(n—,m;n', m')
where

b (n, m;n', m') = —,
'

I n (n —1)(m + 1)

+ n'(n' —l)(m'+ l) I, (25a)
Iteration allows us to obtain

bled Bjk(n, m—;n', m') .

c (n, m;n', m') =
I n (n —1)n'(n' —1)

&((m + l)(m'+ l) I
' . (25b)

The differential equations in Eq. (24) can be recast into a
set of differential matrix systems of the form

0 ifk (j
1 if k=j

B j(kn, m;n', m')= .
ok k+1

t=j+1. k+1 k+1 jjb
if k)j.

(29)

P(n, m;n', m') =

~n, m;n', m'

~n +2,m —1;n'+2, m' —1

~n +2k, m —k;n'+2k, m' —k

P(n, m;n', m') =M(n, m;n', m')P(n, m;n', m'),
d~

with P(n, m;n', m') being the column vector

(26)
Forming the scalar product with Bk(n, m;n', m') from the
left in the two sides of Eq. (27) for r=0, the orthonormal-
ity condition

(Bk, Aj) = g BklAjl =5kj

leads to

where k =0, 1, . . . , min(m, m') and M(n, m;n', m') .is the
finite-dimensional band matrix (of width 2)

bo1

Cj ——g Blh(nrem ~n'~m')Pn+2k, m —k;n +2k m k(0) .
h

Substituting Eq. (30) into Eq. (27), we get

(30)

M(n, m;n', m') =
—b11 b

bkk

0

bk, k+1

n +2k, m —k;n'+2k, m' —k (&)

= g g Bjk(n, m;n', m')Ajk(n, m;n', m')
j h

& exp( —bjj7')Pn +2k, m k ~ n'+2k m' k (0)
with

bkk =b (n +2k, m k;n'+2k, m'—
bk & k=c(n+2k, m —k;n'+2k, m' —k) .

The solution of Eq. (26) can be expressed in the form

where j, h =0, 1, . . . , min(m, m'). Taking k =() 'in the
last formula and inserting in it. the expressions Eqs. (2g)
and (29) for the coefficients Ajk and Bjk, we obtain the f;
nal expression for the off-diagonal matrix elements:



PHOTON STATISTICS IN THE THREE-PHOTON HYPER- ~ . . 1603

n m'n' m'(r) = min(m, m') min(m, m')

j=O

h

g c (n +2t, m —t;n'+2t, m' t—)
t=1

g [b(n +2t, m t;n—'+2t, m' t) —b(—n +2j,m —j;n'+2j, m' j—) J

Xexp[ b(—n+&J , m'—j;n'+2j, m' j)r—]P„+2~~ g „+2q,~ g(&) . (31)

In the degenerate situation, i.e., when there are multiple
eigenvalues in the matrix M(n, m;n', m') diagonal, there
will appear singularities in the rhs of Eq. (31). In that
case it should be still possible to recover this formula by
adding some appropriate renormalization prescription.

chaotic input photons, g~
' increases initially up to values

significantly higher than its mutual chaotic value which is
a typical enhanced photon-bunching phenomenon. The
second-order coherence degree g„' ' (see Fig. 5) tends to de-
crease as time progresses, owing to the fact that its aver-

V. DISCUSSION

We show in Figs. 3—7 the change, in time, of the sta-
tistical properties of the photon fields in several cases of
interest, obtained by computer calculation and taking as
initial conditions the coherent or chaotic distributions of
photon-number probability for each of the two radiation
modes involved. As is shown in Fig. 3, the initial rate in
the growing of the Stokes mode intensity is greater in the
case where, initially, the incident pumping mode is chaot-
ic. Figure 6 shows the change in time of the second-order
coherence degree g' '. We note [see Fig. 6(a)] that at time
zero, there is a sudden increase in its value; this increase is
quite more apparent for initially chaotic pumping light in
which case g~

' tends to the completely incoherent value
for the Stokes mode. In both cases, after the most in-
coherent situation, g~

' slowly decreases, but whereas
curve a tends to recover the initial completely coherent
situation, curve b tends to stabilize at a value near 1.5.

The behavior in time of g~
' for the chaotic Stokes

mode is shown in Fig. 6(b). It can be noticed that, for

l.5- (a)

g
(2)
0

I.O

0 0.05 O.l

time t

2,0

0.5 ~ I I ~ I ~ ~ ~ I

IO

(n), (m)

g
(2)

I.O-

0 Ol

time g

I I I I I I

0.05

0 0.05 O.I

FIG. 3. Average number of photons (n ) (incident field) and

(m ) (Stokes field) vs time, with (np) =10, (mp) =2. I, initial-

ly coherent incident field, coherent Stokes field; II, chaotic in-

cident field-coherent Stokes field.

FIG. 4. (a) Second-order coherence degree g„' ' of the incident
field vs time for initially coherent incident field. I, initial aver-

age number of photons in the incident field (n )=p10; II,
( n p ) = 15. In both cases ( mp ) =0. (b) Second-order coherence

degree g' ' of the Stokes field vs time for initially coherent in-

cident field. I, ( n p ) =0; II, ( n p ) = 15. In both cases ( m p ) =0.
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2.0
(aj

20

(2)
gm

l.5-

I.O-

0 0.05
f irne

OI

l.o

0 005 Ol
time g

2,5

l5 (b)

l,0

0.5 0.05 O.l

time g

FIG. 5. (a) Second-order coherence degree g„' ' of the incident

field vs time for initially chaotic incident field. I, initially

. coherent Stokes field; II, initially chaotic Stokes field. In both
cases (np) =10, (mp) =2. (b) Second-order coherence degree
g„' ' of the incident field vs time for initiaHy coherent incident

field. I, initially coherent Stokes field; II, initially chaotic
Stokes field. In both cases (np ) = 10, (mp ) =2.

age photon number decays to almost zero for large times.
Photon antibunching, ' i.e., g„' '~ 1, is observed to occur
in all cases for the incident light.

Another statistical function of interest is the mutual
correlation degree g, . In Fig. 7 we observe the positive
correlation at initial times when the incident mode is ini-
tially chaotic. This reflects the fact that in this case the
Stokes photons tend to emerge correlated with the positive
fluctuations in the average number of photons present in
the chaotic incident beam.

Besides photon antibunching there is another nonclassi-
cal effect revealed by the violation of the condition

2 ( (2) (2)
gc &gn gm

which is the quantum translation of the Cauchy inequali-
ty. ' This violation means that the beams have acquired a
larger mutual correlation than the correlation between
photons in the same beam, and has been already discussed

IO
0

I t I s I l

0.05 O. l

time T.

FIG. 6. (a) Second-order coherence degree g' ' of the Stokes
field vs time for initially coherent Stokes field. I, initially
coherent incident field; II, initially chaotic incident field. In
both cases (np) =10, (mp) =2. {b) Second-order coherence de-
gree g' ' of the Stokes field vs time for initially chaotic Stokes
field. I, initially coherent incident field; II, initially chaotic in-
cident field. In both cases (np ) = 10, (mp ) =2.

by Zubairy" for the two-photon laser statistics and actu-
ally observed to occur in some cases. ' Figure 8 shows
that, at sufficiently large times, the value of
E =g, /g„g becomes greater than 1, so that the Cau-2 (2) (2)

chy inequality is eventually violated in the cases under
study. This fact should be related with the ultimate loss
of coherence and with the appearance of photon anti-
bunching as the incident beam becomes exhausted; in fact
g„' '—&0 as r +pp, while g, and —g~' remain finite. The
low number of photons involved makes it, however,
hazardous to claim for the physical realization of such
nonclassical states of radiation.
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&c

2.0

I.O

l. 5

I. O

0.5

05 I I I I I l
~~

005
fime

O.l

0.0 O. l 0.2
I

0.4 0,5

FIG. 7. Cross-correlation degree g, vs time for initially I,
coherent incident field, coherent Stokes field; II, coherent in-
cident field, chaotic Stokes field; III, chaotic incident field,
coherent Stokes field; IV, chaotic incident field, chaotic Stokes
field. In all cases ( n p ) = 10, ( mp ) =2.

'c

FICr. 8. Quotient K =g, /g„' 'g' ' vs time for initially I,
coherent incident field, coherent Stokes field; II, coherent in-
cident field, chaotic Stokes field; III, chaotic incident field,
coherent Stokes field; IV, chaotic incident field, chaotic Stokes
field. In all cases (np &=10, (mp& =2.

Figures 9 and 10, show the behavior of some statistical
properties of radiation, when the Cauchy inequality starts
to be violated, i.e., at threshold times r,h, for the two
beams in the initially coherent state. A linear progression
of the remanent intensity (n (r,h) ) with the initial intensi-
ty (no) is observed in Fig. 9. For the range of the (np)
values considered here ( ( n p ) (65), it can therefore be as-
certained that about 95% of the initial photon energy
should be absorbed in the incident beam before these
quantum-statistical effects emerge. It should be noticed
also that E increases above its initial value for an initially
chaotic incident beam, i.e., (dE/dr), o ~ 0 [see Eqs. (14)].
This, however, is not expected to be but a slight enhance-
ment in the relative mutual correlation at the early stage
of the process, with no further violation of the Cauchy in-
equality. Finally, the quasilogarithmic variation of r,h

versus (no ) shown in Fig. 10 indicates that the higher the
initial intensity, the sooner the discussed quantum effect
is manifested.

APPENDIX

In order to find the constants CJ(I) (I corresponding to
a nondegenerate chain), we use the eigenvectors "at left"
(row vectors) corresponding to the matrix M' ' defined by
the relation

BJ(I)M' '= bj(I)BJ(I—), j=0, 1, . . . , a(I) .

Solving the corresponding linear equations, we get
T

(Al)

1 if~=0
B~~(I)= 0 if m &j

m —1 bk(I) Q.(I)
II ifm(j.

(A2)

It can be shown that eigenvectors Az and BJ satisfy the
orthogonality condition,

(nth)
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FIG. 9. Average number of photons in the incident beam at
threshold time ( n, h ) vs initial average number of photons ( n p ).
The two beams are initially in coherent states and (mp ) =2.

FIG. 10. Threshold time w, h when E =1 vs initial average

number of photons (np). The two beams are initially in

coherent states and (mp) =2.
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(Bk AJ)= QBk A~ =0 if j~k . (A3)

The constants Cj can be calculated now by inversion of
the identity equation,

a(I)
P' '(0)= g CJ(I)AJ(I) . (A4)

j=o

We multiply this last equation to the left by eigenvectors
Bk(I) and obtain finally

(Bk,AJ)=0, j&k, j,k&g, h,
(Bk, Ah )=0, k&g, h,
(Bh, Ak) =0, k&g, h,
(E,AJ)=0, j&g,h,
(BJ,D) =0, j&g,h,
(E,Ah ) —(Bh,D)=0,

(A8a)

(ASb)

(A8d)

(ASe)

(A8f)

B P' '(0)
(B (I), P' '(0))

Ck(I) =
(Bk(I» Ak(I)) QBk Ak

(AS)

(Bt„Ap, ) =0 .

Now we write the identity equation, valid for degenerate
chains

For the case of degenerate chains, we can use the above
formulas for the constants CJ only for the case of simple
eigenvalues, i.e., for j&g,h. For the degenerate eigen-
values A, = b(I), w—e first obtain the vector D(I) defined
by the relation

[M' '+ Ib (I)]D(I)= Ap, (I),
where A~ is the sole existing eigenvector, corresponding
to the eigenvalue —b(I). If we solve the corresponding
linear-algebraic equations we obtain the recursion relation
for the components of 0,

a(,I)
P' '(0) = g CJ(I)AJ(I)+tt(I) Ah(I)+t(I)D(I)

j=o
j+g, h

(A9)

(Bk»'"(o» =Ck(Bk Ak»

(Bh, P' '(0)) =tt(Bt„AP, )+t(Bt„D),
(E,P' '(0) ) =tt(E, Ay, )+t(E,D) .

(A 1oa)

(A lob)

(A10c)

and multiply to the left by the row vectors Bk (k&g, h),
Bh, and E, respectively. Using the above orthogonality
relations we obtain the equations

+)(I)—[b(I)—b +t(I)]D +)(I)(I)=
b (I)

Determination of the constants e(I) and ~(I)

(A6)
The first of these equations is directly solved,

(BR,P (0))A), &gh (A 1 1)

We start by calculating the left eigenvectors BJ(I) and
Bh(I) (j&g,h) with the aid of the above formulas [see
(A2)]. The constants C~(I) for j&g,h can be taken as
above. Now we construct an auxiliary row vector E (I)
satisfying

The last two equations form an easy solvable system: we
find, after some algebraic manipulations,

E (I)[M' '+Ib(I)]=By, (I) .
(X)Z —X2Z) (X4 F —X3Z)

X* (A12)

Bh~ —[b (I) b~ (I)]E—
(I) (A7)

It can easily be shown that the components E satisfy the
recursion relation

where X, =(B„,D), X,=(ET,D), X, =(Bh, Ap, ),
Xg ——(E,Ah), I'=(Bp„P' '(0)), Z =(E,P' '(0)), and
X —X]X4 X2X3. Noting that X3 is identically zero
[see Eq. (ASg)), we finally obtain

Also, the following orthogonality relations are easily ob-
tained:

(X)Z —X2 F)
e= Y/X) .

4
(A13)
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