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Field-orthogonal temporal modes of photonic quantum states provide a new framework for quantum

information science (QIS). They intrinsically span a high-dimensional Hilbert space and lend themselves to

integration into existing single-mode fiber communication networks. We show that the three main

requirements to construct a valid framework for QIS—the controlled generation of resource states, the

targeted and highly efficient manipulation of temporal modes, and their efficient detection—can be fulfilled

with current technology. We suggest implementations of diverse QIS applications based on this complete

set of building blocks.
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I. INTRODUCTION

Quantum information science (QIS) offers means for

storing, transmitting, and processing information in ways

not achievable using classical information technology.

Examples of the benefits of QIS are unconditionally secure

communication, ultraprecise metrology beyond classical

limits, and superior computational algorithms.

While all of those can theoretically be realized using

only photons, it is generally accepted that quantum com-

putation will be implemented in material systems, whereas

quantum communication (QC) and information transfer

across a distributed quantum network—a so-called “quan-

tum internet” [1]—will be based on photons. Strongly

interacting material systems, which can be controlled with

outstanding precision, facilitate the implementation of

stationary logical processors and quantum memories.

The latter are an indispensable building block for long-

distance entanglement distribution via quantum repeaters,

which in turn is inextricably linked with secure long-

distance quantum communication. Photons, in contrast,

interact only weakly with themselves and their environ-

ment, meaning that they experience very low decoherence.

Thus, they are naturally suited for carrying fragile quantum

information over transmission lines in a network. The

remaining challenge for these hybrid network architectures

is the efficient interfacing of flying qubits (photons) and

stationary qubits (material systems), which is complicated

by the fact that most practical material systems have

stringent requirements on the photon spectral-temporal

amplitude. Thus, small photonic coprocessor units that

facilitate, for instance, the coherent reshaping of photons in

time and frequency must be available. Note that these do

not necessarily have to fulfill the more stringent demands

of fault-tolerant quantum computation to be practical

and, therefore, as we show, can be realized with current

technology.

In this paper, we introduce a practical framework for

photonic quantum information science. Our framework

exploits temporal modes (TMs) of single photon states—

field-orthogonal broadband wave-packet states—that to

date have not been demonstrated to enable a viable basis

for quantum information encoding. In particular, we

complement existing knowledge with all missing building

blocks, which are needed to demonstrate that TMs satisfy

the three major requirements for the implementation of

the photonic subsystems of large-scale quantum networks:

firstly, for the preparation of good signal carriers, appro-

priate resource states have to be generated and completely

characterized with high reliability and flexibility; sec-

ondly, the subsequent processing of quantum information

in coprocessor units requires that controlled operations

can be implemented; finally, efficient detection schemes,

which enable faithful information read-out, must be

available.

We expect that the TM framework for photonic quantum

information will open avenues towards the realization of

practical QIS applications. One such application is the

boson sampler [2–6], which, though not on par with the

requirements for fault-tolerant quantum computation, may

soon show performance beyond the capabilities of state-

of-the-art classical computers, which are pushed to their

limits by linear optical networks with about 100 modes, of

which only 30 are occupied. Our new TM paradigm may

offer improved methods to construct large networks with

reduced switching losses, which are currently thought to be
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the main limiting factor when considering the scalability of

photonic quantum processing [7].

In the following, we first introduce the basic concepts of

our framework by formally defining TMs and their use as

an information-encoding basis. Then, we briefly review the

current state of the art of generating TMs with ultrafast

parametric down-conversion (PDC), where we outline why

existing sources do not yet fulfill the requirements for QIS

with TMs. After this, we highlight recent developments

in TM manipulation, which serve as the starting point for

the definition of the complete TM framework. The key

enabling findings for this are our recent results, which

introduce means for sorting TMs with high efficiency and

selectivity in excess of 99.5%. This high efficiency of the

“quantum pulse gate” (QPG) operation can be achieved by

dispersion-engineered, multistage frequency conversion

driven by spectro-temporal shaped laser control pulses.

We then present new concepts and components, which

enable the establishment of the complete TM framework. In

particular, we design the flexible generation of entangled

resource states of arbitrary, user-defined dimension, we

introduce TM quantum-state tomography of single-photon

as well as photon-pair states to verify the successful state

generation, and we establish concrete applications for QIS.

We show that all operations necessary to implement

photonic coprocessors and quantum communication appli-

cations can be implemented with TMs. We conclude the

paper with a discussion of the experimental challenges and

limitations of our framework.

II. FUNDAMENTAL CONCEPTS

Starting from a very general point of view, we note that

light has four degrees of freedom (DOF), any of which

could be used to encode quantum information: these are the

helicity and the three components of the momentum vector.

In a beamlike geometry these may be stated as polarization,

transverse mode profile (encompassing two DOFs), and

energy (that is, frequency). From these DOFs, polarization

is most widely applied in quantum information processing.

The generation of polarization-entangled Bell states [8] as

resource states is nowadays an established experimental

method. Two orthogonal polarization modes can easily be

separated by means of using polarizing beam splitters, and

proper gate operations are readily implemented with linear

optical elements such as wave plates, (polarizing) beam

splitters, and detectors. However, polarization intrinsically

spans a mere two-dimensional Hilbert space, and thus

cannot exploit the true potential of QIS, which, in certain

cases such as quantum key distribution (QKD), benefits

from higher-dimensional Hilbert spaces [9,10].

The second DOF, transverse mode profile, has received

considerable attention recently, as it has become apparent

that the orbital-angular-momentum (OAM) states of light

are a useful basis for encoding information [11–13] and can

be efficiently sorted with time-stationary linear optical

elements [14]. They have been used recently to demon-

strate, for instance, enhanced security and bitrate in

quantum communication [15–17]. Still, the OAM basis

has three drawbacks limiting its current value for some

QIS applications: first, it is inherently incompatible with

existing single-mode fiber networks because information is

encoded onto different spatial field distributions; second, it

is susceptible to medium perturbations such as turbulence,

which affects free-space links; and third, the generation of

OAM states with a tailored structure, for instance, a well-

defined number of modes, is as of yet an unsolved problem.

Only recently has the final DOF of light—energy, that

is frequency—been recognized as an underutilized re-

source for QIS. Because frequency and time are conjugate

variables, we call a set of overlapping but orthogonal

broadband wave-packet modes by the name “temporal

modes.” In a coherent-beam-like or single-transverse-

mode guided wave geometry, TMs form a complete basis

for representing an arbitrary state in the energy degree of

freedom [18]. TMs overlap in time and frequency, yet are

field orthogonal. In this respect, they are analogous to

transverse spatial modes, yet they possess distinct advan-

tages. Since all TMs “live” inside the same spatial field

distribution, they are naturally suited for use with highly

efficient and experimentally robust waveguide devices and

existing single-mode fiber networks. In addition, they are

insensitive to stationary or slowly varying medium per-

turbations such as linear dispersion, due to their over-

lapping spectra, making them suitable for real-world

applications.

While the TM concept applies to any states of light (e.g.,

squeezed quadrature states [19,20]), we restrict ourselves to

single-photon states to keep this paper concise and read-

able. In this context, TMs are a complete mode set for

expanding the electromagnetic field and, in addition, can be

regarded as a complete set of quantum states for single

photons.

A. Temporal modes for single-photon states

For a fixed polarization and transverse field distribution

(e.g., in a beamlike geometry), a single-photon quantum

state in a specific TM can be expressed as a coherent

superposition of a continuum of single-photon states in

different monochromatic modes:

jAji ¼
Z

dω

2π
fjðωÞâ†ðωÞj0i: ð1Þ

Here, â†ðωÞ is the standard monochromatic creation

operator and fjðωÞ is the complex spectral amplitude of

the wave packet. By Fourier transform, this same state can

be expressed as a coherent superposition over many

possible “creation times,” and then reads
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jAji ¼
Z

dt ~fjðtÞÂ†ðtÞj0i≡ Â†
j j0i; ð2Þ

where we use the definition

â†ðωÞ ¼
Z

dteιωtÂ†ðtÞ; Â†ðtÞ ¼
Z

dω

2π
e−ιωtâ†ðωÞ:

ð3Þ

In Eq. (2), ~fjðtÞ is the temporal shape of the wave packet

[defined as the Fourier transform of fjðωÞ] and Â†ðtÞ
creates a photon at time t. We also define a so-called

broadband-mode operator

Â†
j ¼

Z

dt ~fjðtÞÂ†ðtÞ ¼ 1

2π

Z

dωfjðωÞâ†ðωÞ; ð4Þ

which creates the wave-packet state jAji. In Fig. 1, we

exemplarily plot the first three members of a TM basis,

chosen for illustration to be a family of Hermite-Gaussian

functions of frequency. With this, it is possible to express

every single-photon temporal wave-packet quantum state

jΨi in a basis of TMs as a superposition of wave-packet

states,

jΨi ¼
X

∞

j¼0

cjÂ
†
j j0i; ð5Þ

with complex-valued expansion coefficients cj.
We want to highlight that, although they fully overlap in

polarization, space, frequency, and time, TMs are orthogo-

nal with respect to a frequency (time) integral,

1

2π

Z

dωf�jðωÞfkðωÞ ¼
Z

dt ~f�jðtÞ ~fkðtÞ ¼ δjk: ð6Þ

They also obey bosonic commutation relations [18,21],

½Âi; Â
†
j � ¼ δij; ð7Þ

just as do the well-known monochromatic creation

operators.

B. Quantum information encoding with TMs

Deploying TMs for quantum information encoding

is an appealing prospect, because TMs span an infinite-

dimensional Hilbert space. This has been shown to facili-

tate increased information capacity per photon and

increased security in quantum communication [15–17]

when compared to two-dimensional encoding. The carriers

of information in a d-dimensional Hilbert space are

typically called “qudits.”

We define a TM qudit as a coherent superposition of d
TM states:

jψidTM ¼
X

d−1

j¼0

αjjAji: ð8Þ

To highlight the formal similarity of TMs with other

encoding bases, we start by discussing TM qubits.

The most common implementation of a photonic qubit

is the polarization qubit, which can be written as jψi ¼
αjHi þ βjVi. Here, jHi and jVi denote horizontal and

vertical polarization, respectively, and jαj2 þ jβj2 ¼ 1.

Commonly, a polarization qubit is represented as a point

on the surface of a Poincaré sphere, as sketched in Fig. 2(a).

In analogy to this, the definition of a TM qubit requires

two orthogonal states with which we associate the logical

“0” and “1.” Without loss of generality, we can consider

zeroth-order and first-order Hermite-Gaussian functions of

frequency to define the TMs, labeled and , and

consequently write

FIG. 1. First three members of a TM basis in the frequency

domain (left) and the time domain (right).

FIG. 2. (a) Poincaré sphere. The logical “0” and “1” of a

polarization qubit can be encoded in any two diametrically

opposite points on the sphere. Typically, horizontal and vertical

polarization are deployed. (b) Bloch sphere for TM qubits. Any

two orthogonal TMs and their coherent superpositions may be

used to encode TM qubits. In this example, the TMs are zeroth-

and first-order Hermite-Gaussian pulses.
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ð9Þ

Then, a TM qubit is given by

ð10Þ

where again jαj2 þ jβj2 ¼ 1. Similar to polarization qubits,

the TM qubit is best visualized as a point on the surface of a

Bloch sphere, as shown in Fig. 2(b).

C. Mutually unbiased bases

Sets of bases, for which the overlap between a basis

vector of one basis with any basis vector from any of the

other bases has the same absolute value, are called mutually

unbiased bases (MUBs) [22]. They lie at the heart of QIS

applications such as quantum key distribution [23] or

quantum state tomography [24]. The physical meaning

of MUBs is the following: if a certain quantum state is an

eigenstate of one basis, then a measurement in any other

MUB yields a uniformly random result yielding no

information. Using polarization states, the three sets of

Stokes vectors denoting horizontal and vertical, diagonal

and antidiagonal, as well as left- and right-circular light

form the typically used MUBs.

For the case of the aforementioned TM qubit from

Fig. 2(b), the basis modes of the three possible MUBs

are indicated by the different colors and we explicitly plot

them in Fig. 3. The color coding corresponds to Fig. 2(b). If

the qubit was given by , measuring in either the “red” or

“green” basis results in “0” (upper row) or “1” (lower row)

with a probability of 50%.

The challenge for TMs is the implementation of a device

that facilitates a mode-selective measurement, where the

phase coherence plays a particularly important role. For a

polarization qubit, an appropriate combination of wave

plates and polarizing beam splitters readily accomplishes

the projection onto the respective basis sets. For TMs, the

situation is more complicated, since time-stationary oper-

ations are not sufficient for mode selectivity and so-called

quantum pulse gates have to be employed [25–28]. We

return to this point below, where we briefly review the

solution to the mode-sorting problem.

III. STATE OF THE ART

In this section, we briefly summarize the current state of

the art in generating and manipulating TM states. Typically,

the former is realized with parametric down-conversion,

whereas the latter can be achieved by deploying TM-

selective quantum pulse gates.

A. TM structure of photon pair states

Today, parametric down-conversion in optical wave-

guides is the workhorse for the generation of photon-pair

and heralded single-photon states. Notably, PDC generates

quantum states with a rich intrinsic TM structure, when

ultrafast pulses are deployed as pump [29]. This structure is

decoupled from the transverse spatial mode, which is solely

determined by the waveguide geometry. It is encoded in the

so-called joint spectral amplitude (JSA) of the PDC

fðωs;ωiÞ, which can be written as [30,31]

fðωs;ωiÞ ¼ αðωs;ωiÞ · ϕðωs;ωiÞ: ð11Þ

Here, αðωs;ωiÞ is the pump-envelope function, which

encompasses energy conservation and the spectrum of

the pump pulses, and ϕðωs;ωiÞ is the phase-matching

function, which describes momentum conservation and

depends on the medium dispersion.

With that, we denote the photon-pair component of the

generated state,

jψiPDC ¼
Z

dωsdωifðωs;ωiÞâ†ðωsÞb̂†ðωiÞj0; 0i; ð12Þ

where â†ðωsÞ and b̂†ðωiÞ are standard monochromatic

creation operators for signal and idler photons.

A decomposition of the JSA into two sets of uniquely

defined TM basis functions ffðsÞðωsÞg and ffðiÞðωiÞg,
which exhibit pairwise correlations such that

fðωs;ωiÞ ¼
X

∞

k¼0

ffiffiffiffiffi

λk
p

f
ðsÞ
k ðωsÞfðiÞk ðωiÞ ð13Þ

reveals the underlying TM structure of the PDC state [29].

Here, the expansion coefficients are normalized according

to
P

kλk ¼ 1. We graphically show this expansion for a

typical, nonengineered PDC in Fig. 4(a).

FIG. 3. The columns show the three MUBs for a TM qubit, with

the fundamental TM shapes being a zeroth- and first-order

Hermite-Gaussian pulse, respectively. The colored areas are

the spectral amplitude, whereas the dark lines are the spectral

phases of the TMs; the color coding corresponds to Fig. 2(b).

Note that in this case, the qubit is encoded in the leftmost basis.
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From Eqs. (12) and (13), we obtain

jψiPDC ¼
X

∞

k¼0

ffiffiffiffiffi

λk
p

jAk; Bki; ð14Þ

where we again use the broadband mode operators from

Eq. (4). This expression shows that the PDC excites pairs of

TM states jAki and jBki with a relative weight of
ffiffiffiffiffi

λk
p

.

For the special case of a dispersion-engineered PDC that

excites only a single pair of TMs (see, for instance,

Refs. [32–37]), the state from Eq. (14) reduces to

jψiPDC ¼ jA0; B0i. This situation is shown in Fig. 4(b).

In this case, by detecting the photon created in one channel,

one heralds the single-photon state in the other channel in a

known, pure TM. We note, however, that this is not

sufficient for generating resource states for QIS applica-

tions. On the one hand, the general PDC state has an

inadequate structure, because the number of TMs in the

state cannot be precisely controlled. On the other hand, the

single-TM state does not constitute an entangled resource

state, which is a necessary requirement for different QIS

applications.

B. Coherent manipulation of the TM structure

of single-photon states

A major requirement for realizing QIS with TMs is the

coherent manipulation of a state in the TM basis. This can

be achieved by deploying so-called quantum pulse gates

[25,27,28,38]. Note that although we restrict our discus-

sions to three-wave mixing implementations of QPGs here,

all results can be generalized to four-wave mixing. The

underlying physical process of a QPG based on three-wave

mixing is dispersion-engineered sum-frequency generation

inside a nonlinear optical waveguide, where one photon

from an ultrafast pump pulse and a “red” quantum signal

fuse into a “green” converted output photon. Here, red and

green describe two well-separated frequency bands, for

instance, 1535 nm (red) and 557 nm (green), respectively

[26]. An adaption of this approach for use with continuous-

variable quantum states has been proposed in Ref. [20]. In

four-wave mixing implementations, two nondegenerate

pump pulses are used, which facilitate smaller frequency

shifts of single photons as compared to using three-wave

mixing [39–41].

An ideal QPG that is mode matched to the TMs of the

source as defined above acts on an arbitrary single-photon

input state jψiin of the form Eq. (8) according to

jψiout ¼ Q̂
ðηÞ
i jψiin; ð15Þ

with

Q̂
ðηÞ
i ¼ 1 − jAiihAij − jCihCj

þ cos θiðjAiihAij þ jCihCjÞ
þ sin θiðjCihAij − jAiihCjÞ: ð16Þ

The cosine term preserves either of the two states of

interest, while the sine term “swaps” them with efficiency

sin2ðθiÞ. The first three terms enforce unitarity. This

expression is a family of unitary transformations on the

single-photon state space composed of two nonoverlapping

subspaces (here, frequency bands): one spanned by the TM

states jAji, and a single TM state jCi occupying the other. It
has an elegant interpretation: the QPG acts as a quantum

mechanical beam splitter, which operates on TMs

instead of polarization or spatial modes. As detailed in

Refs. [38,42], the blue pump pulse spectrum αðωÞ defines

[arb. units]

[a
rb

. 
u
n
it

s]

[arb. units]

[a
rb

. 
u
n
it

s]

[arb. units]

[a
rb

. 
u
n
it

s]

[arb. units]

[a
rb

. 
u
n
it

s]

[arb. units]

[a
rb

. 
u
n
it

s]

[arb. units]

[a
rb

. 
u
n
it

s]

FIG. 4. (a) Representation of a general PDC process. The leftmost panel shows the JSA fðωs;ωiÞ, which is the product of pump

envelope function (black solid lines) and the phase-matching function (black dashed lines). This function is decomposed into two sets of

TMs ffðsÞðωsÞg and ffðiÞðωiÞgwith weighting coefficients
ffiffiffiffiffi

λk
p

. In the central part, we plot the first three TM pairs. The rightmost panel

shows the distribution of expansion coefficients
ffiffiffiffiffi

λk
p

. (b) A dispersion-engineered PDC process excites only one pair of TMs. The JSA

does not exhibit any correlations between signal and idler photons. The distribution of weighting coefficients
ffiffiffiffiffi

λk
p

consequently exhibits

only a single entry greater than zero.
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the targeted “red” input TM state jAii that is selected and

converted to the “green” output state jCi with an efficiency
given by η ¼ sin2ðθiÞ. Note that the QPG can also select

superpositions of TM states, when the pump pulses are

shaped accordingly. The parameter θi describes the strength

of the QPG operation and can be tuned with the pump pulse

energy, although the shapes of the “red” and “green”modes

will change slightly for different values of θi, due to time-

ordering corrections [43–45] (i.e., the input and output TMs

are not identical). For genuine QPG operation, θj ¼ 0 for

j ≠ i; that is, all TMs that are not addressed are completely

transmitted. This situation is sketched in Fig. 5(a).

From Eq. (16) we see two things. First, the QPG converts

any targeted input state jAii into the same output state jCi.
This is important in light of large network architectures,

because it facilitates interference between formerly

orthogonal TM states after the QPG operation. Second,

the QPG can also be operated “backwards.” In this case, it

accepts one single input state jCi, which is coherently

reshaped to an arbitrary output TM state jAii. This allows
the treatment of the jCi frequency band as a buffer, or

“processing” state space, and allows one to perform

arbitrary linear operations on TM qudits that reside in

the fjAjig space using combinations of QPGs, as we

show below.

A measure to quantify the operation fidelity of a QPG is

the so-called temporal mode selectivity [27],

S ¼ sin4ðθiÞ
P

∞
j¼0 sin

2ðθjÞ
≤ 1; ð17Þ

which measures the ratio between the squared conversion

efficiency of the selected mode and the conversion effi-

ciencies of all modes. A mode selectivity of 1 characterizes

perfect single-TM operation, whereas a mode selectivity of

0 signifies a total absence of modal selectivity.

It has been shown that the single-stage QPG realization

from Fig. 5(a) cannot exceed a mode selectivity of S ¼ 0.85

due to the effects of time ordering, which lead to a temporal

multimode behavior at conversion efficiencies exceeding

90% [43,44]. This limitation can be overcome by utilizing a

two-stage Mach-Zehnder– or Ramsey-like setup of two

successive QPGs with an efficiency of 50% each, which are

driven by the same pump pulse shape [27,28]. We sketch

this in Fig. 5(b).

In the two-stage QPG a single photon in the target TM

will be converted into an equal superposition of a “green”

and a “red” mode by the first stage, and will then be

coherently fully frequency shifted or backconverted in the

second stage depending on an externally applied phase shift

to the device. The nontarget TM components of the photon

will not participate in the interferometric conversion

process due to their vanishingly small per-stage conversion

efficiencies, and will effectively transparently pass through

the device. The need for phase coherence across the two

stages can be met by deriving the two pump pulses from the

same master pulse. In a specific configuration [27,28], this

method also eliminates the temporal distortion in the shapes

of the “red” and “green”modes due to time-ordering effects,

which enables the cascading of QPGs without the need for

inter-QPG compensatory TM reshaping. Note that the

overall operation of the two QPGs is again collectively

described by Eq. (16) and that we use the simplified sketch

from Fig. 5(a) for reasons of convenience from here on.

Various overall efficiency values can now be achieved by

tuning the interferometric phase shift in between the two

stages [Fig. 5(b)] instead of changing the pump power.

In a recent experiment, the implementation of a single-

stage QPG with a TM selectivity of 80% at a conversion

efficiency of η ¼ 87% when operated at the single-photon

level has been demonstrated [26].

Note that alternative approaches to TM-selective sum-

frequency generation are studied in Refs. [46–48], which

forego group-velocity matching. Although potentially

simpler from an experimental point of view, these

approaches cannot generally reach high selectivities as

defined above [43].

IV. COMPLETING THE TOOL KIT

FOR A TM QIS FRAMEWORK

In this section, we introduce the missing components,

which enable our TM framework. In particular, these are

FIG. 5. (a) Schematic of the QPG operation. The shape of the

blue pump pulse selects one TM from the “red” input signal and

converts it to the “green” output with an efficiency of η. All other

signal TMs are completely transmitted. The index i labels the

addressed input TM. (b) A Mach-Zehnder– or Ramsey-like

configuration of two successive QPGs with an efficiency of

50% each overcomes the time-ordering limitations of a single

QPG and facilitates the selection and conversion of a single TM

with an efficiency of 100%.
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the generation of TM states with an arbitrary, user-defined

dimension and their verification using single-photon and

photon-pair TM tomography. Thereafter, we show that

ideal QPGs can be used to implement linear-optics single-

and photon-pair quantum operations.

A. TM engineering and TM Bell states

Typical QIS applications require at least the faithful

generation of Bell states. In the following, we demonstrate

how this can be accomplished for TMs by combining in a

very natural way a dispersion-engineered PDC with pulse-

shaping techniques, which are well established in the fields

of ultrafast optics and coherent control (for a good review,

see Ref. [49]).

To this end, we consider shaped pump pulses with

Hermite-Gaussian spectra given by

αðωs;ωiÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
ffiffiffi

π
p

2nσ
p Hn

�

Δω

σ

�

exp

�

−
ðΔωÞ2
2σ2

�

: ð18Þ

Here, Δω ¼ ωp − ωs − ωi is the frequency mismatch

between the pump, signal, and idler fields, HnðxÞ is a

Hermite polynomial of order n, and σ is the spectral 1=e
width of the pump spectral intensity.

Figure 6(a) shows an engineered PDC that is driven by a

first-order Hermite-Gaussian pump pulse. The JSA decom-

poses into

fðωs;ωiÞ ¼
1
ffiffiffi

2
p ½fðsÞ0 ðωsÞfðiÞ0 ðωiÞ þ f

ðsÞ
1 ðωsÞfðiÞ1 ðωiÞ�:

ð19Þ

This result can be interpreted such that the PDC

comprises exactly two pairs of TMs with equal excitation

probability. Consequently, we write the generated photon-

pair state as

ð20Þ

where the graphical representation in the second line

highlights the shapes of the individual signal and idler

TMs. This state is a TM jψþi Bell state, which is a

fundamental resource for QIS applications.

In Fig. 6(b), we consider a second-order Hermite-

Gaussian pump pulse. The decomposition of the resulting

JSA shows that the generated state comprises exactly three

TM pairs. Although the relative weights are not evenly

distributed anymore, the dimensionality of the state is well

defined. Further increasing the order of the pump Hermite-

Gaussian pulse successively adds additional TM pairs to

the structure of the generated state.

In this way it is possible to generate high-dimensional

photonic states with an unprecedented degree of control.

We emphasize again that all TMs “live” inside the same

transverse spatial waveguide mode, which makes our

approach exceptionally robust and guarantees experimental

simplicity.

B. Photon TM-state tomography

With the ability to generate TM states with arbitrary

dimension, the missing element to render a QIS framework

based on TMs feasible is the verification of the state

generation. To this end, we require TM-state tomography,

where the challenge is to retrieve the (complex-valued)

entries of a quantum state’s density matrix in a basis of

FIG. 6. (a) When pumping a dispersion-engineered PDC with a first-order Hermite-Gaussian pulse, the resulting JSA (left) has a

negative part signified by the red color. Note that the pump envelope function is again denoted by solid black lines, whereas the phase-

matching function is shown as dashed black lines. A decomposition of this JSA yields exactly two pairs of TMs (center) with similar

expansion coefficients (right). Hence, the generated state is a TM Bell state. (b) By further increasing the order of the Hermite-Gaussian

pump, it is possible to successively add TM pairs to the generated state. This state features an extremely well-defined dimensionality,

although the relative weights of the modes become unbalanced.
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TMs. This differs from polarization-state tomography

because of the higher dimensionality of the TM-state

space. For an arbitrary single-photon state, the density

matrix is given by

ρ̂ ¼
X

i;j

CijjAiihAjj; ð21Þ

with associated TMs ffiðωÞg. This state can be analyzed

with a QPG, which selects a coherent superposition of TMs

given by ζfkðωÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ζ2
p

e{ϕflðωÞ, where ζ ∈ ½0; 1�, as
shown in Fig. 7(a). This function is defined by the shape of

the pump pulse the QPG is “programmed” with. Detecting

both the converted output and the transmitted light with

single-photon detectors, we measure the average converted

count rates RC and RT , respectively, which are related to

elements of the input density matrix by

RC

RC þ RT

¼ ζ2Ckk þ ð1 − ζ2ÞCll þ 2Re½ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ζ2
p

e{ϕClk�:

ð22Þ

From this expression, we see that for ζ ¼ 0 and ζ ¼ 1,

we directly obtain Ckk and Cll, respectively. To retrieve the

complex coefficient Clk, we set ζ ¼ ð1=
ffiffiffi

2
p

Þ and evaluate

the counts for ϕ ¼ 0 and ϕ ¼ ðπ=2Þ. By extension, we also
obtain Ckl and thus a complete subset of matrix coefficients

of the density matrix ρ̂. In this way, the complete density

matrix or an experimentally feasible subset thereof can be

sampled. It is important to note that any chosen portion of

the density matrix can be “directly” measured in this way

without reconstructing the entire state. This is true only for

a QPG that can achieve unit selectivity, although without

high selectivity, the elements can still be found up to an

unknown normalization constant. This would necessitate

measuring the entire matrix (or making small-magnitude

assumptions about the unmeasured coefficients).

This procedure can be generalized to certain biphoton

states as sketched in Fig. 7(b). A general two-photon state

in two different spatial modes (with photon labels A and B)
may be expressed in two sets of TM bases as

ρ̂ ¼
X

i;j;k;l

CijkljAi; BjihAk; Blj: ð23Þ

The two photons are analyzed with two separate QPGs,

which select TMs given by ζAfmðωÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ζ2A

p

e{ϕAfnðωÞ
and ζBfpðωÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ζ2B

p

e{ϕBfqðωÞ, respectively. Then we

employ four single-photon detectors labeled CA, TA, CB,
and TB, as shown in Fig. 7(b). We can then measure

coincidence rates between pairs of detectors (say between

CA and CB, denoted by RCA;CB, and so on). The following

expression of such coincidence rates,

RCA;CB

RCA;CB þ RCA;TB þ RTA;CB þ RTA;TB

; ð24Þ

can be expressed in terms of the biphoton density matrix

elements as

ζ2Aζ
2
BCmppm þ ð1 − ζ2AÞð1 − ζ2BÞCnqqn þ ζ2Að1 − ζ2BÞCmqqm þ ð1 − ζ2AÞζ2BCnppn

2Refe{ϕAζA
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ζA
p

½ζ2BCmppn þ ð1 − ζ2BÞCmqqn� þ e{ϕBζB
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ζB
p

½ζ2ACmpqm þ ð1 − ζ2AÞCnqqn�
þ ζAζB

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ζA
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ζB
p

ðe{ðϕAþϕBÞCmpqn þ e{ðϕA−ϕBÞCmqpnÞg: ð25Þ

Cycling through the parameter space ðζ1;2;ϕ1;2Þ ∈
fð1;−Þ; ð0;−Þ; ð1=

ffiffiffi

2
p

; 0Þ; ð1=
ffiffiffi

2
p

; π=2Þg as well as
varying the indices ðm; n; p; qÞ will reveal any
desired set of coefficients from the two-photon density
matrix.

V. QIS APPLICATIONS

In this section, we combine the different building blocks

to detail several QIS applications, which can be realized in

the TM framework and highlight its versatility. We first

FIG. 7. (a) TM state tomography of a single-photon state with

density matrix ρ̂. Both transmitted and converted output of the

QPG are detected with single-photon detectors. (b) Generalized

scheme for the TM tomography of a biphoton state. Photons “1”

and “2” are sent to two different QPGs, and the transmitted and

converted outputs are detected with single-photon detectors.
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consider photon TM purification and TM reshaping, then

move on to quantum communication scenarios and con-

clude with considerations on single-qubit gate operations

and cluster-state generation. Note that we discuss the

technical challenges that have to be faced when implement-

ing these applications in detail in the following section.

A. Photon TM “purification”

Let us consider an application, which requires either a

photon-pair at very specific wavelengths or a choice of

nonlinear material, such that it is not possible to directly

implement a dispersion-engineered PDC source that gen-

erates only a single pair of TMs, but instead a general PDC

state as sketched in Fig. 4(a). In this case, people typically

resort to spectrally narrow intensity filtering to facilitate the

heralding of approximately pure single photons, thus

discarding the greater portion of the generated photon

pairs [50,51]. Our TM tool kit provides a more efficient and

elegant solution to this problem, which additionally facil-

itates the heralding of genuinely pure broadband single

photons from a correlated source, such as shown in

Fig. 4(a).

We assume the general PDC state from Eq. (14) and

detect one of the photons, say, photon A, with an unfiltered
single-photon detector as sketched in Fig. 8(a). This heralds

photon B with a reduced density matrix that is given by

ρ̂B ¼
X

∞

k¼0

λkjBkihBkj; ð26Þ

which is generally a mixed state with purity P ¼
P

kλ
2
k.

On the other hand, we can send photon A to a QPG,

which acts as a complex spectral-amplitude shape “filter”

that selects a single TM f
ðsÞ
i ðωsÞ with efficiency η, and

detect only the converted output. In this case, a successful

detection heralds photon B, which is in a pure state with

corresponding density matrix,

ρ̂B ¼ jBiihBij; ð27Þ

as sketched in Fig. 8(b) [25]. Note that this “purification”

comes at the cost of a lower heralding rate, which is

reduced by the factor λi. Still, the advantage is that a photon

in a desired TM can be created, rather than simply a

spectrally filtered photon.

As a side remark, although we restrict our analysis to

photon-pair states, the TM framework can be directly

applied to continuous variable states. In this context, a

particularly important non-Gaussian operation is TM-

selective photon subtraction from a multimode state, which

is required for entanglement distillation [52]. It is based on

the same operation as the photon TM purification, but uses

a QPG that is intentionally operated at very low conversion

efficiency [20].

B. Single-photon TM reshaping

Large-scale networks require an efficient interfacing

between distinct nodes. For different photon sources, this

means that the photons have to be made indistinguishable.

For coupling photons to solid-state systems, this means that

the TM of the photons has to match the acceptance TM of

the system. In both cases, a coherent TM reshaping of the

photons is preferable to other filtering operations, since

the latter introduce prohibitive losses. In Fig. 9, we sketch

a TM reshaper: A first QPG converts the “red” input

photon—which we implicitly assume to be pure and thus

TM single mode—to the “green” channel; a second QPG is

then used to backconvert the photon to the “red” channel.

However, here we match the shape of the bright pump pulse

to the required TM and by this reshape the photon. Note

that the reshaped mode does not have to be a mode from the

original photon TM basis, which is indicated by the label A
(as opposed to a numeric label) of the QPG operation in the

figure. The complete reshaping operation can then be

written as

jψiA ¼ Q̂
ð1.0Þ
A Q̂

ð1.0Þ
0 jA0i ¼ Q̂

ð1.0Þ
A jCi ¼ −jAAi; ð28Þ

where we assume the original photon to be in the TM state

jA0i and the overall phase of the output state can be

neglected. The operators Q̂
ð1.0Þ
i are the QPG operators from

Eq. (16). In principle, arbitrary reshaping is possible in

this way. Note that a reshaping of the green TM can be

realized by tailoring the phase-matching function of the

QPG [53–55]. In this way, an adapted interface between

photons at telecommunication wavelengths and specific

quantum memories can be realized with a single QPG.

FIG. 8. (a) Non-mode-selective detection of one PDC photon

generally projects its sibling into a mixed state. (b) Deploying a

QPG to herald a single TM yields a pure heralded broadband

photon at the cost of a lowered heralding rate.

FIG. 9. TM reshaping of a single photon. A QPG first converts

the red single photon to the green channel. A second QPG then

reshapes the photon during backconversion.
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C. Quantum communication

Another important aspect of QIS is quantum communi-

cation, where quantum information is transmitted between

distant parties, by convention called Alice and Bob. To this

end, information has to be encoded at Alice’s location and

decoded and read out at Bob’s location. Deploying the

aforementioned devices and methods, a QC system based

on TMs can be readily set up.

Here, we discuss two approaches to realizing this. The

first approach utilizes different TMs as different commu-

nication channels and thus relies on TM multiplexing. Note

that in this approach, information is not encoded in the TMs

but in another degree of freedom, for instance, the polari-

zation. The second approach directly encodes the informa-

tion in arbitrary superpositions of single-photon TMs, and

thereby can implement genuine high-dimensional QC.

The use of TMs for channel multiplexing would be

distinguished from conventional time- or frequency-based

optical multiplexing, which use either separated short

pulses or narrow spectral windows to define different

information channels. Such schemes have recently been

proposed in the general context of QIS as well [56,57].

However, they are not based on genuinely field-orthogonal

modes, which translates to a lower “packing density” of

signal channels in time-frequency space to ensure approxi-

mate orthogonality. A fundamental advantage of our TM

approach is that it is intrinsically based on genuinely field-

orthogonal wave-packet modes, which provide in-principle

zero cross talk between mode channels, while densely

packing these modes in time-frequency phase space.

In QC, for a TM multiplexing a scheme to work, add-

drop functionality is essential. Using the QPG, both

operations can be implemented as sketched in Fig. 10(a).

On Alice’s side, a succession of QPGs adds different

channels to the communication line. This is possible due

to the TM-selective operation of the QPG, which reshapes

the “green” input fðcÞðωÞ into the desired “red” TM

f
ðsÞ
i ðωÞ. At the same time, the existing “red” TMs

f
ðsÞ
j ðωÞ with j ≠ i are not affected. Note that this operation

mode of the QPG has been referred to as quantum pulse

shaper earlier [38]. After transmission, Bob deploys a

cascade of QPGs to demultiplex the different channels into

separate ports, from which the information is read out [46].

The second approach, high-dimensional QC, is appeal-

ing in light of quantum key distribution applications, where

the goal is to establish a secure encryption key between

Alice and Bob. Deploying TMs, the implementation of a

generalized BB84 protocol [23] becomes possible. To

clarify this procedure, we first sketch the realization of

the original BB84 protocol using two TM MUBs instead

of polarization in Fig. 11(a). Alice randomly prepares one

of the four possible basis states with a QPG and sends it to

Bob. Bob in turn randomly chooses the measurement basis

of his QPG and directly detects both output ports, which

then correspond to 0 and 1. Thereafter, Alice and Bob

publicly announce their preparation and measurement

bases and keep only those events when both coincide.

Sacrificing a part of the so-retained key, Alice and Bob can

uncover an eavesdropper by the 25% error he or she

inevitably introduces.

This scheme is readily extended to d dimensions. We

illustrate this for the case of d ¼ 4, which is depicted in

Fig. 11(b). In this case, five MUBs and thus a total of 20

possible basis states exist, from which Alice randomly

chooses one. The four basis states of each MUB now

encode logical 0 to 3. In the figure, we use the first four

Hermite-Gaussian pulses as the “mother” basis from which

“daughter” MUBs are created. Again, Alice transmits the

chosen state to Bob who performs the read-out in a

randomly chosen basis. Note, however, that Bob now

requires three QPGs to completely separate the four basis

states of the MUBs. More generally, Bob requires d − 1

QPGs for a basis of size d. There are two major advantages

to high-dimensional encoding schemes in QC. On the one

hand, high-dimensional encoding facilitates a higher infor-

mation capacity per photon, and thus leads to a reduction in

the overall number of required photons. On the other hand,

it has been shown that high-dimensional encoding can

increase the security of quantum key distribution, due to a

larger error that is introduced by a potential eavesdropper

when intercepting the transmission [9,10].

D. Quantum computation

In this section, we discuss two routes towards

quantum computation enabled by the completion of the

TM tool kit. First, we consider linear optical quantum

computation (LOQC), where TM qubits propagate through

FIG. 10. In a TM multiplexing scenario, Alice uses orthogonal

TMs as independent channels, which are sent to Bob in one single

physical fiber. He demultiplexes the channels with QPGs and

reads out the information. The QPGs are being employed as TM

multiplexers (Alice) and demultiplexers (Bob) on a single-mode

optical channel.
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a linear-optical network and are subject to single- and two-

qubit operations, which define the computation algorithm.

Then, we investigate cluster-state quantum computation,

where multiple TM qubits are fused in a specific way to

create a graph state with a tailored entanglement structure.

Then, measurements of the nodes (photons) of the cluster

state implement the computation algorithm, the result of

which can be read out from the remaining nodes. Although

universal photonic quantum computation is beyond today’s

technological capabilities [7], the required operational

building blocks can be realized with TMs.

Since in this paper we focus on three-wave mixing

implementations of QPGs, we are effectively restricted to

one single “green” output TM state jCi, thoughwe allow for

a complete set of “red” input TM states jAii. Consequently,
the input states are treated as the primary qudit information

“register” space, and the output channel will play the role of

a “processing” space.Note that this behavior gives rise to the

question of whether QPGs are sufficient to realize all of the

necessary operations for quantum computation. We show in

the following that they are.

1. LOQC

In LOQC, deterministic two-qubit operations are prov-

ably impossible. However, arbitrary single-qubit operations

can be implemented with a combination of QPGs. For this,

we require two special cases of the QPG operation from

Eq. (16). First, a QPG with a conversion efficiency of

100%, and second, a QPG with a conversion efficiency of

50%. They are represented by operators

Q̂
ð1.0Þ
i ¼ 1− jAiihAij− jCihCjþ jCihAij− jAiihCj ð29Þ

and

Q̂
ð0.5Þ
i ¼ 1 − jAiihAij − jCihCj

þ 1
ffiffiffi

2
p ðjAiihAij þ jCihCjÞ

þ 1
ffiffiffi

2
p ðjCihAij − jAiihCjÞ: ð30Þ

FIG. 11. (a) Implementation of the BB84 QKD protocol with TMs. Alice randomly prepares one of four possible basis states

and sends it to Bob, who randomly measures in one of two MUBs. The two outputs of Bob’s QPG correspond to 0 and 1.

(b) Generalized BB84 in a four-dimensional encoding scheme. Alice randomly prepares one of the 20 possible basis states. Bob

chooses randomly one of the five MUBs to measure. Note that in this case he requires three QPGs to fully resolve the four possible

basis states of each MUB.
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In Fig. 12, we show how these operations driven by the

proper pump shapes can be sequentially combined with

channel-dependent phase shifts, which shift the phase only

in the “green” processing space and are shown as “green”

boxes, to implement the following single-qubit operations

(up to an overall phase) on the fjA0i; jA1ig space:

(a) Hadamard gate,

Ĥ ¼ jA0i þ jA1i
ffiffiffi

2
p hA0j þ

jA0i − jA1i
ffiffiffi

2
p hA1j; ð31Þ

(b) Pauli-X gate (type I, II),

X̂ ¼ jA1ihA0j þ jA0ihA1j; ð32Þ

(c) Pauli-Y gate (type I, II),

Ŷ ¼ −ιjA1ihA0j þ ιjA0ihA1j; ð33Þ

(d) Pauli-Z gate,

Ẑ ¼ jA0ihA0j − jA1ihA1j; ð34Þ

(e) phase-shift gate,

ϕ̂ ¼ jA0ihA0j þ eιϕjA1ihA1j: ð35Þ

These realizations rely on only two different pump

shapes, corresponding to the “red” TMs f
ðsÞ
0 ðωÞ and

f
ðsÞ
1 ðωÞ, which encode the logical 0 and 1. The phase-shift

gate can be simplified, if the phase (ϕþ π) is imprinted

onto one of the two pump pulses. Then, the channel-

dependent phase shift can be omitted.

Note that the “green” channel is used only internally,

whereas the input and output channels are the red TMs.

This greatly reduces the challenge of maintaining phase

relations between different frequency bands. It also elim-

inates the phase-coherence requirement for pump pulses

across different red-channel-to-red-channel single-qubit

gates, only requiring it for pump pulses internal to any

given single-qubit gate. Additionally, the sequential steps

can, in principle, be fabricated in monolithic devices, which

promises a compact and robust implementation with

building blocks that are well suited to be used in integrated

networks.

We also emphasize that, in a manner similar to Ref. [58],

any single qudit operation can be realized with a concat-

enation of the single-qubit operations outlined in this

section. Then, the pump shapes have to be chosen such

that the single-qubit gates operate on every two-

dimensional subspace of the qudit space successively.

2. Cluster-state quantum computation

Finally, we consider the generation of discrete variable

cluster states based on TMs. To efficiently grow cluster

states from a supply of resource Bell pairs, we require

several operations. Assuming that we already have a stock

of linear cluster states that we want to merge into two-

dimensional cluster states, we need local Hadamard trans-

formations and projective measurements [59]. We have

already shown how these can be implemented with TMs.

More important is the ability to generate linear cluster states

from Bell pairs. In order to do so, we have to rely on qubit

fusion. A general method that facilitates this for polariza-

tion qubits has been introduced by Browne and Rudolph

[60], where it was referred to as Type-I fusion. Here, we

adapt this scheme to operate on TM qubits as defined

in Eq. (10).

FIG. 12. Implementation of single-qubit gates for LOQC using

QPGs with 100% conversion efficiency (white boxes), QPGs

with 50% conversion efficiency (yellow boxes), and phase shifts

of the green jCi TM (green boxes). Note that both the Pauli-X
gate and the Pauli-Y gate have two possible experimental

implementations, which differ in the order in which the red

TMs f
ðsÞ
0 ðωÞ and f

ðsÞ
1 ðωÞ are addressed.
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Two qubits in spatial beams a and b are sent to two

QPGs, as sketched in Fig. 13. The QPGs implement the

operation Q̂
ð1.0Þ
0 on qubit a and Q̂

ð1.0Þ
1 on qubit b, respec-

tively. This means that the “red” TMs f
ðsÞ
0;aðωÞ and f

ðsÞ
1;bðωÞ

are converted to the “green” TMs fðcÞðωÞa;b. The two green
channels are interfered on a balanced beam splitter behind

the QPGs to erase any distinguishing information and the

beam splitter output ports are detected by detectors 1 and 2.

The successful detection of a single “green” photon heralds

the successful qubit fusion operation, which can be written

in terms of Kraus operators,

Ô1;2 ¼
1
ffiffiffi

2
p ðjA0ibhA0jahA0jb ∓ jA1ibhA1jahA1jbÞ; ð36Þ

where the sign depends on whether detector 1 or 2 fires.

The state after a successful fusion is given by

jψifused ¼
1
ffiffiffi

2
p ðjA0ib ∓ jA1iaÞ; ð37Þ

which, as expected, again denotes a qubit state. Note that

the two parts of the fused qubit can be deterministically

combined into a single spatial mode with the add-drop

functionality of the QPG discussed in the context of

quantum communication.

VI. CHALLENGES

In this section, we detail the challenges one faces when

implementing QIS applications based on TMs. While

photonic quantum information systems are ideal for serving

as intermediary between memory, interaction, and detec-

tion resources, they come with known challenges. Most

notably, the absence of any direct photon-photon inter-

action limits all-optical quantum information processing

to nondeterministic logic gates [61] or cluster-state

measurement schemes [62]. When compared with optical-

polarization or beam-path encoding of quantum informa-

tion, the proposed TM encoding brings additional

challenges, which need to be overcome in order to take

advantage of the large in-principle benefits of using TMs

for QIS: their relative immunity from channel dispersion

and their compatibility with quantum memories in hybrid

QIS systems, where efficient coupling into and out of

disparate devices is highly dependent on temporal mode

matching which can, in principle, be achieved with TM

reshaping.

For this, the limiting factor is the bandwidth ΔνPM of the

phase-matching function of the QPG, which determines the

minimal bandwidth of the reshaped TM. For the QPG

presented in Ref. [26], the spectrum of the “green” TM had

a FWHM ofΔλg ¼ 0.14 nm, corresponding to a bandwidth

of Δνg ≈ 135 GHz, which equals ΔνPM [38]. We can

calculate the narrowest possible phase-matching bandwidth

of a QPG based on a lithium niobate waveguide with

uniform periodic poling. The maximum waveguide length

is limited by the size of commercial lithium niobate

crystals to around Lmax ≈ 90 mm. Using this number,

the resulting phase-matching bandwidth is calculated to

be ΔνPM ≈ 9.7 GHz, which is close to the maximum

bandwidth of state-of-the-art quantum memories based

on Raman interaction in warm Cs vapor of 9.2 GHz

[63]. In addition, recent results on manipulating the

phase-matching function by manipulating the periodic

poling pattern of waveguides [53–55] hold the promise

for a future decrease of the effective phase-matching

bandwidth. Thus, deploying QPGs as interfaces between

flying and stationary qubits is a realistic vision.

An additional complication when interfacing flying and

stationary qudits is the required multimode capability of the

quantum memory. The Raman memory mentioned above,

for instance, can store only a single TM [64]. However, it

has recently been shown that a concatenation of several

Raman-type memories can overcome this limitation and

store high-dimensional TM states [65]. This result is a

promising step towards the realization of high-dimensional

hybrid quantum networks and facilitates the seamless

integration of quantum memories into the TM framework.

A further challenge is the achievable loss budget for a

QIS application based on TMs. In this context, we highlight

again that all TMs live inside the same spatial mode and

thus feature low-loss transmission through standard single-

mode fibers. In addition, waveguide to fiber coupling with

efficiencies exceeding 92% has been demonstrated [66].

Finally, waveguide propagation losses as low as

0.016 dB=cm in titanium-indiffused lithium niobate wave-

guides can be realized with state-of-the-art technology [67].

In total, we find an insertion loss of roughly 1.0 dB for

coupling from a fiber to a 90-mm-long QPG and back to a

fiber. In this case, the main losses arise from the fiber

couplings. We note that this challenge is not singular to the

TM framework, but rather a challenge that the whole field

of integrated quantum photonics has to face. Although

current loss numbers are still prohibitively high, a

FIG. 13. Two TM qubits in spatial beams a and b can be fused

with two QPGs, which select different “red” TM components

from the qubits and selectively frequency convert them. Then, the

“green” outputs of the QPGs are interfered at a 50=50 beam

splitter (blue rectangle) and detected with detectors 1 and 2. For

more information, see the text.
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significant increase in waveguide to fiber coupling effi-

ciency can be expected in the coming years, which will

alleviate this situation.

Let us now focus on the realistically achievable number

of TMs and thus the dimensionality of the accessible

Hilbert space. With increasing mode order, the complexity

as well as the spectral extent of TMs increases. Hence, the

number of modes will be bounded, on the one hand, by the

resolution of the deployed pulse shapers for pump pulses

and, on the other hand, by the maximum spectral band-

width of single-TM operation of the QPGs. For the

demonstrator from Ref. [26], the maximum spectral band-

width can be calculated to be around 25 nm for an input

signal centered around 1550 nm. For larger bandwidths, the

group-velocity dispersion inside the waveguide becomes

non-negligible and the process is not TM single-mode

anymore. Let us then assume that the TM states are

generated with a PDC in a potassium titanyl phosphate

waveguide as presented in Refs. [36,37]. Then, the FWHM

of the fundamental TM is around 5.0 nm. In this case, 10

TMs can be addressed with a selectivity in excess of 95%. A

simple optimization of the PDC bandwidth and the length of

the QPG waveguide increases this number to 20 TMs. Note

that this is the limit of only the particular realization of a

QPG based on lithium niobate waveguides. Investigating

other materials with a more favorable group-velocity

dispersion behavior can yield an even higher mode number.

Concerning the resolution of state-of-the-art pulse

shapers, we note that spatial light modulators with up to

4096 pixels are commercially available. Paired with proper

imaging optics, these devices are capable of shaping TMs

of order 100 with a fidelity of more than 99.9%. With

respect to spatial light modulators, we also note their

current limited switching speeds, which are typically in

the order of few tens of kHz. These impose an upper limit

on the switching speed of QIS applications. Again, this

challenge does not only affect the TM framework, but also

QIS based on transverse spatial modes, which also relies on

spatial light modulators as key elements.

Now, we consider the fidelity of the LOQG gate

operations. In Ref. [28], Reddy et al. investigate the mode

selectivity of two-stage and multistage approaches to

realizing QPGs. They found that in a two-stage QPG,

the maximum selectivity is S ≈ 98.46%, which translates to

a maximum gate fidelity of around 95.4%, since every

LOQC gate consists of three QPGs. This value cannot

compete with requirements on fault-tolerant LOQC, but

may facilitate small coprocessing operations with only few

gates. In addition, by increasing the number of stages in the

QPG, the selectivity asymptotically approaches one. Thus,

there is a trade-off between the TM selectivity and the total

internal losses of a gate operation, which has to be

evaluated in light of specific applications’ requirements.

Finally, let us turn our attention to the synchronization of

the time-dependent, active components driven by shaped

laser pulses in a TM framework. The timing requirements

may be more severe when using TMs instead of other

encoding bases, because the TM scheme relies essentially

on temporal orthogonality, which is degraded under time

jitter. To overcome this timing challenge over long-distance

transmissions, we envision the use of weak coherent “pilot”

pulses, which when amplified at the receiver can serve as a

timing reference, a pump pulse, and a transmission-

medium-induced linear-dispersion compensator, all in one.

In general, we find that, as with all burgeoning frame-

works for optical QIS, the use of TMs will require

significant investments in integrated device fabrication

technology and timing electronics. TMs also share with

other frameworks the need for efficient single-photon

detection and lossless programmable optical routing.

Ultimately, TM-based schemes might have to rely on

performance gains from single-mode networkability and

higher-dimensionality, supplemented by their accommoda-

tion of broadband quantum memories, to outperform other

optical QIS frameworks.

VII. CONCLUSION

We show that TMs of single-photon states form an

appealing framework for QIS. Formally, they are compa-

rable with transverse spatial field modes, but have distinct

advantages over spatial modes: they are naturally compat-

ible with waveguide technology, making them ideal can-

didates for integration into existing communication

networks, and they are not affected by typical medium

distortions such as linear dispersion, which renders them

robust basis states for real-world applications. Still, TMs

are as yet an underused resource for QIS.

In this paper, we demonstrate that QIS based on TMs is

feasible with current technology. We introduce a novel

method for the generation of photon pair states comprising

a user-defined number of TMs, which facilitates, in

particular, the generation of TM Bell states. This method

relies on the combination of dispersion-engineered PDC

with classical pulse shaping for the pump pulses of the

process. We then propose TM tomography of single-photon

and photon-pair states as building blocks for a QIS

framework based on TMs.

Having established the necessary basis, we move on to

the implementation of QIS applications. With small pho-

tonic coprocessing units embedded into large-scale hybrid

quantum networks in mind, we first focus on TM “puri-

fication” and TM reshaping. Thereafter, we discuss quan-

tum communication based on TMs, where we present two

approaches: a TM multiplexing approach, where different

TMs represent independent channels, and a high-

dimensional TM QKD scenario, where the information

is encoded into the order of the TMs. Finally, we demon-

strate that any single qudit operation can be implemented

with a succession of properly adjusted QPGs. We conclude

the applications section with a scheme for TM cluster state
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generation which highlights the versatility of the TM

framework.

Finally, we discuss in detail technical challenges thatmust

be faced when implementing QIS based on TMs.We expect

that the introduction of this new framework will open novel

research avenues in both fundamental and applied QIS.
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