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Abstract
Photonics-based neural networks promise to outperform electronic counterparts, accelerating neural network computations

while reducing power consumption and footprint. However, these solutions suffer from physical layer constraints arising

from the underlying analog photonic hardware, impacting the resolution of computations (in terms of effective number of

bits), requiring the use of positive-valued inputs, and imposing limitations in the fan-in and in the size of convolutional

kernels. To abstract these constraints, in this paper we introduce the concept of Photonic-Aware Neural Network (PANN)

architectures, i.e., deep neural network models aware of the photonic hardware constraints. Then, we devise PANN training

schemes resorting to quantization strategies aimed to obtain the required neural network parameters in the fixed-point

domain, compliant with the limited resolution of the underlying hardware. We finally carry out extensive simulations

exploiting PANNs in image classification tasks on well-known datasets (MNIST, Fashion-MNIST, and Cifar-10) with

varying bitwidths (i.e., 2, 4, and 6 bits). We consider two kernel sizes and two pooling schemes for each PANN model,

exploiting 2� 2 and 3� 3 convolutional kernels, and max and average pooling, the latter more amenable to an optical

implementation. 3� 3 kernels perform better than 2� 2 counterparts, while max and average pooling provide comparable

results, with the latter performing better on MNIST and Cifar-10. The accuracy degradation due to the photonic hardware

constraints is quite limited, especially on MNIST and Fashion-MNIST, demonstrating the feasibility of PANN approaches

on computer vision tasks.

Keywords Photonic neural networks � Analog computations � Effective number of bits � Quantization

1 Introduction

The recent advances in Machine Learning (ML), and

specifically in Deep Learning (DL), have undoubtedly

driven the current success of artificial intelligence. ML and

DL models are deployed in an ever increasing number of

applications, ranging from computer vision [1, 2] to speech

recognition [3, 4] to fraud detection [5] and many others

[6].

DL relies on Deep Neural Networks (DNNs), i.e.,

structures whose basic element is vaguely inspired by
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biological neurons. Neural networks have been tradition-

ally implemented in electronic platforms (both CPUs and

GPUs) based on the von Neumann architecture [7]. The

high degree of programmability and the advancements in

terms of processing capabilities of digital electronic

architectures of the last decades enabled the great

achievements of DNNs [8]. However, with the end of

Moore’s law and the exponential increase of DNN model

complexity (at a pace of doubling every 3.4 months [9]),

electronics is failing to keep up with the processing speed

and energy efficiency required for large-scale deployment

of complex models [10, 11].

Many research efforts are, therefore, investigating

alternative hardware solutions for the acceleration of

DNNs [12, 13]. In this context, photonics-based solutions

attracted a lot of interest with the promise of outperforming

electronic counterparts in speed, power consumption, and

computing density [14]. Over the last few years, several

Photonic Neural Network (PNN) architectures have been

proposed exploiting integrated, fiber or free-space optics

with the aim of accelerating DNN inference with analog

computations in the photonic domain [15]. In [14], the

authors highlight the advantages of performing multiply-

accumulate (MAC) operations in photonics in terms of

energy ([ 102), speed ([ 103), and computing density

([ 102). Photonics has also the potential to outperform

high-speed GPUs in performing convolutions with a lower

power consumption [16].

Furthermore, the photonic implementation of the non-

linearities needed in the activation functions of neurons has

been recently investigated [17, 18], in some cases

exploiting an electro-optic hardware platform [19, 20].

In the context of PNNs, the need of software frame-

works for simulating training and inference operations of

photonic neuromorphic architectures has been soon rec-

ognized. For this purpose, specialized frameworks, such as

neuroptica [21] and neurophox [22], have been developed.

These tools aim to emulate and train PNNs based on

Mach–Zehnder interferometer (MZI) meshes. In particular,

neuroptica provides several levels of abstractions, from the

direct control of the MZI phase shifters, to the training of

stacked structures using a Keras-like API. On the other

hand, neurophox allows to train these chips using the Haar

random technique developed in [23]. These simulators are,

therefore, powerful tools, albeit specifically aimed to

develop photonic accelerators based on MZI meshes.

In this paper, we focus on the abstraction of the physical

layer constraints arising from generic analog photonic

hardware, namely the limited resolution of the computa-

tions (in terms of effective number of bits), the requirement

to use positive-valued inputs, and the limitations in the fan-

in and in the size of convolutional kernels. Based on these

constraints, (i) we introduce the concept of Photonic-

Aware Neural Network (PANN) architectures, developing

photonic-hardware compliant DNN models exploiting the

Larq library [24]; (ii) we devise PANN training schemes

resorting to quantization strategies aimed to obtain suited

neural network parameters. The performance of PANNs is

then assessed in a case study concerning image classifica-

tion on well-kwown datasets, demonstrating the limited

accuracy degradation due to the constraints coming from

the use of photonic hardware.

The remainder of this paper is structured as follows: in

Sect. 2, we review the main photonic architectures aimed

at DNN inference acceleration, with a focus on integrated

approaches. Section 3 firstly highlights the constraints

arising from the adoption of photonic hardware. Afterward,

a training-to-inference strategy is discussed, as well as the

developed photonic-aware DNN models. Section 4 pre-

sents and discusses the image classification results obtained

on the different datasets. Finally, Section 5 concludes the

paper.

2 Photonics for neural networks: state
of the art

A recurrent research theme at the border of optics and

computing fields is the concept of a photonics-based

computer [25, 26], aimed to overcome, through optics the

speed, the energy consumption and the computing density

limits imposed by electronics. While some notable results

have been achieved at the beginning of the century

[27–29], the interest in developing a digital optical com-

puter based on logic gates has then faded. Despite the

lower speed of electronics, the level of integration and

energy efficiency enabled by CMOS process advancements

overcame Photonic Integrated Circuits (PIC) in performing

logic operations.

However, in recent years, following the breakthrough of

deep learning [30], a significant research effort was put to

explore non-conventional architectures to reduce the

hardware resources and the energy necessary to run DNNs

[31–33]. In this scenario, photonics gained a renewed

interest as an alternative platform to implement analog

neuromorphic functionalities [14, 15, 34]. The goal of

optical neuromorphic processors is not to replace digital

computers, but to enable analog computations with high

bandwidth, low latency, and high energy efficiency [35].

In this paper, we focus on photonic devices for accel-

erating deep learning inference. These photonic engines

rely on the inherent parallelism and speed of optics to

perform DNN computations (e.g., matrix–vector multipli-

cations and pooling). As an example of the computing

capacity enabled by photonic devices, 11 Tera-operations
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per second have been recently demonstrated using a fiber-

based approach [36]. By pushing on integrated photonics

solutions, optical processors promise also to significantly

lower the power consumption for DNN computations,

while increasing at the same time the footprint efficiency

[37]. To unleash the potential of a drastic reduction in

power consumption, several photonic solutions leverage

passive components to implement weights, i.e., not

requiring energy besides input generation and output

acquisition. These solutions have the drawback of a limited

speed at which weights can vary, in the hundreds or even

tens of kHz range. Nevertheless, in weight-sharing archi-

tectures such as convolutional neural networks, this is not a

heavy constraint as these parameters are slowly changing.

In the following, we report a few photonic implementations

of deep learning inference accelerators, with a focus on

integrated solutions.

The coherent matrix multiplier depicted in Fig. 1a is a

milestone in this field [38]. The silicon photonics-based

device exploits a mesh of MZI to perform matrix multi-

plications on an input vector of coherent lightwaves. This

is done by physically implementing the singular value

decomposition theorem. In terms of DNN, this device

implements a layer of fully connected (FC) neurons and

thus, stacking several devices, a FC-DNN can be obtained.

In the demonstration, however, the nonlinear activation

function was emulated in software. Another experimentally

validated coherent approach is shown in Fig. 1b, namely

the optical linear algebra unit (OLAU). The OLAU basic

element is composed of four MZIs in the form of a dual in-

phase and quadrature (IQ) modulator [39], typically used in

optical communications, composed of two MZIs with a

phase shifter at one MZI output, as highlighted in Fig. 1b.

In the OLAU each dual IQ modulator implements two

input-weight multiplications, whose results are sent to

optical 3dB combiners to perform the accumulation. In this

way, the OLAU carries out matrix–vector multiplications

in a distributed manner and implements again an FC layer.

Despite a great potential, the actual scalability of these

devices is still limited due to impairments and losses [40].

Other solutions rely on Wavelength Division Multi-

plexing (WDM), i.e., the use of multiple channels routed

on the same waveguides at different wavelengths. The

strength of these architectures is that multiple wavelengths,

and thus multiple inputs, can be broadcast to multiple

neurons. In this context, the architecture exploiting a

microring resonator (MRR) bank recently gained a lot of

attention as several proof-of-concept PICs have been fab-

ricated with this approach. These solutions exploit resonant

structures, the MRRs, to selectively weigh the different

wavelengths within the same waveguide, as exemplified in

Fig. 1c. The result of several multiply-and-accumulate

operations is encoded in the photocurrent of a balanced

photodetector placed after the MRR bank. Thanks to the

hybrid photonic–electronic approach, a nonlinearity can be

applied to the photocurrent, modulating the photonic neu-

ron output. An MRR-bank-based PIC has been recently

used for compensating fiber nonlinearities in a long-haul

transmission experiment [41]. On the other hand, in [42]

the use of a Semiconductor Optical Amplifier (SOA)-based

cross-connect to perform weighing in a WDM architectures

is proposed, as sketched in Fig. 1d. The experimental

demonstration has been carried out with an Indium Phos-

phide (InP)-based photonic integrated device working on

the iris dataset and still exploiting digital electronic hard-

ware for the nonlinear activation fuction. Nonetheless, the

strength of this approach relies on the fact that SOAs can

inherently compensate for optical losses and exhibit all-

optical nonlinearities.

Focusing on serial architectures, Fig. 1e reports a pho-

tonic electronic multiply-accumulate neuron [43]. This

architecture relies on an hybrid opto-electronic approach

where multiplications are performed at high speed in the

optical domain, while the accumulation is carried out by an

analog electrical frontend. Two high-speed MZIs are

employed to impress inputs and weights on an incoming

lightwave. The modulated signals are received in a bal-

anced photodetector whose photocurrent encodes the

multiplication result. Successive results are accumulated as

a charge onto a capacitance and ultimately read by an

analog-to-digital converter with a nonlinear input–output

characteristic, so that the nonlinear activation function is

inherently applied.

3 Photonic-aware neural networks

In this section, we outline the process adopted to develop

and train PANNs. In the first part, we describe the main

constraints derived from the use of analog optical tech-

nologies. In the second part, we report the solutions

adopted to translate hardware limits in software with a

focus on the DNN training-to-inference strategy. Finally,

we present the developed DNN models and the computer

vision datasets used to assess their performance. We call

the devised DNNs PANN Architectures and the method for

obtaining the DNN parameters PANN Training.

3.1 Limitations due to the photonic hardware

As surveyed in Sect. 2, photonic engines are analog pro-

cessors that perform matrix–vector multiplications at high

speed and low power consumption, while exploiting inte-

grated photonic solutions to reach unprecedented comput-

ing densities [14]. Although in principle analog values can

vary in a continuous set of values, noise and distortions

Neural Computing and Applications (2022) 34:15589–15601 15591

123



prevent distinguishing different values with infinite preci-

sion, limiting the resolution of analog computations.

Indeed, different values of analog signals can be distin-

guished only if they are ‘‘far enough’’, meaning that their

distance cannot be closed by noise fluctuations. Further-

more, devices such as photonic neuromorphic engines are

characterized by essentially constant noise intervals [44],

meaning that the noise does not depend on the represented

values. This translates into the fact that analog engines can

distinguish only a finite number of different equally spaced

levels. In this scenario, the Effective Number of Bits

(ENOB) can be used to assess the equivalent resolution of

analog signals, relating the number of distinguishable

values into the corresponding number of bits needed for

digital storage. For instance, if 16 levels can be distin-

guished, the signal has an ENOB of 4. For photonic neural

networks, the typical bit resolution goes well below clas-

sical 32-bit floats down to very small values (i.e., � 6 bits

[14, 42, 43, 45]).

An additional limitation imposed by photonic hardware

concerns the inputs of the PANN architecture. Indeed, in

most configurations inputs are required to be positive-val-

ued, as they are encoded in the intensity of optical signals.

This impacts the normalization function of the input data,

as well as the activation function used in each neuron that

should have positive-only outputs, such as the ReLU [46]

or the Sigmoid [47]. Another constraint on the input side of

photonic neurons is related to the maximum number of

Fig. 1 Photonic architectures for optical matrix–vector multiplica-

tions. a Coherent matrix multiplier. b Coherent dual IQ modulator,

acting as a basic element of an optical linear algebra unit. c Microring

Resonator (MRR) weight bank. d InP SOA-based cross-connect.

e Hybrid photonic–electronic multiply-accumulate neuron
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inputs (i.e., fan-in) to each neuron. Different photonic

architectures are characterized by different constraints, as

for instance MZI meshes can perform block operations at

the expense of several electro-optical conversions, while in

[43] the constraint arises from the electronic accumulation

phase: the maximum number of inputs is about 200 for

these implementations.

A final limitation due to the underlying hardware con-

cerns the maximum kernel size in convolutional layers.

Given the current experimentally validated photonic con-

volutional kernel implementations [40–42], the maximum

kernel size is equal to 3� 3 elements.

The main constraints imposed by the photonic hardware

are summarized in Table 1.

3.2 Photonic-aware neural network
computations

As pointed out in Sect. 3.1, noise and distortions limit the

resolution of analog computations, allowing to distinguish

a limited set of equally spaced-levels, leading to a very

coarse bit resolution (i.e., � 6 bits). For this reason, the

floating point type, typically used for classical neural net-

work computation, cannot be exploited to emulate photonic

hardware.

To overcome this issue, in this paper, we propose to

exploit reduced-precision fixed-point type for PANN

inference and present a suited training approach. Indeed,

the direct quantization of the weights computed using floats

typically significantly reduces the accuracy of the obtained

DNN [48, 49]. Dealing with this aspect, many approaches

in the literature allow to use equally spaced types in neural

networks [50–53]. All these strategies perform the training

phase using the floating point type, however they take into

account that the inference phase will be carried out using

low bitwidth equally spaced types, consequently adjusting

the weights. In particular, Rastegari et al. [51], Courbariaux

and Bengio [52] implement binary operations in neural

networks to achieve better performance at the expense of a

very coarse granularity of inputs and weights, while [53]

extends those works to equally spaced types with arbitrary

precision by introducing a bitwidth-dependent quantization

function.

We now focus on training DNNs taking into account the

resolution constraints from the photonic hardware. The

approach presented in this paper aims to emulate the

underlying photonic architecture, satisfying the bitwidth

constraint (i.e., the ENOB) by exploiting quantized weights

in the fixed-point domain.

The behavior of the quantization process carried out

during the training phase is reported in Fig. 2. The input

quantizer and the kernel quantizer describe the way of

quantizing the incoming inputs and weights, respectively.

A quantized layer computes the activation y as:

y ¼ rðf ðqkernelðwÞ; qinputðxÞÞ þ bÞ

with full precision weights w, arbitrary precision input x,

layer operation f, output r, and bias b.

A very important aspect is the operation of the kernel

quantizer qkernelðwÞ during the training phase. The concept

of latent weights is introduced aside quantized weights to

be used by the photonic hardware [54]. Basically, latent

weights are a full precision copy of the weights used

throughout the training process. Their purpose is to accu-

mulate the small changes from the gradients without loss of

precision. During the forward pass, a quantized version of

these weights is used. When the vector of updates for the

weights is obtained, the latent weights are updated instead

of the quantized weights. Once the model is trained, only

the quantized weights are used for inference.

Besides weights, we need also to consider the derivation

of the quantization function during back-propagation.

Being discrete-valued, its derivative is 0 almost every-

where: thus, its gradient would stop the network from

learning. To overcome this problem, the pseudo-gradient

method is used for optimizing weights during back-prop-

agation [55]. One of the most commonly used pseudo-

gradients is the Straight-Through Estimator (STE), defined

as:

oqkernelðwÞ
ow

¼
1 jwj � 1;

0 otherwise

�

Essentially, it ignores the derivative of the quantization

function, and the incoming gradient is evaluated as if the

function was a clipped identity function.

Regarding the inputs, they are quantized on the same

number of bits used for weights. We implement the pro-

posed PANN training-to-inference strategy by relying on

the DoReFa quantizers implemented in Larq [24, 53], since

it provides a convenient way to flexibly define the bitw-

diths on both inputs and weights.

Table 1 Summary of the PANN constraints

Photonic constraints Value

Equally spaced levels � 6 bits

Inputs Positive

Neuron fan-in � 200

Kernel size � 3� 3
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3.3 Datasets and models

After introducing the photonic constraints and the quanti-

zation strategies, we focus on the datasets and models used

in the experiments. In particular, three common benchmark

datasets are used:

• MNIST [56]: it is a dataset composed of 28� 28 8-bit

grayscale images containing handwritten digits from 0

to 9. The training set is made of 60, 000 images, while

the test set is composed of 10, 000 samples.

• Fashion-MNIST [57]: it is an alternative to MNIST

dataset, containing images of Zalando’s articles. The

structure of the images and the number of samples of

this dataset are the same as the MNIST.

• Cifar-10 [58]: it is a dataset made of 32� 32 RGB

images from 10 different classes (i.e., airplane, auto-

mobile, bird, cat, deer, dog, frog, horse, ship, and

truck). There are 50, 000 images in the training set and

10, 000 images in the test set.

All the input images for the three datasets, already satis-

fying the photonic constraint regarding positive-valued

inputs, have been pre-processed to normalize all samples to

the interval [0, 1]. This, however, leads to input values in

floating-point domain (i.e., 32-bit numbers), not satisfying

the photonic hardware constraints. For this reason, the

developed PANN architectures include an input quantizer

in the first layer. This differs from traditional quantization

approaches, that typically keep the inputs in full-precision

[53].

Regarding the models, two versions for each neural

network model have been developed, exploiting 2� 2 and

3� 3 convolutional kernels, respectively. Specifically, the

models used for MNIST and Fashion-MNIST are reported

in Fig. 3. Instead the models used in Cifar-10 are slightly

deeper, reported in Fig. 4. In all models, the ReLU has

been exploited as the activation function, which ensures

that the next layer inputs are positive. Moreover, a SoftMax

layer has been employed as a final layer to carry out the

classification.

In detail, the MNIST/Fashion-MNIST models have been

developed based on the LeNet-5 architecture [59], with an

increased depth to counteract the lower precision [60]. Four

convolutional layers have been devised, each of them fol-

lowed by a batch normalization (BN) layer. These layers

are used to accelerate the training by reducing internal

covariate shift [61]. Furthermore, a pooling layer is added

after the first and second convolutional layers. Both an

average and a max pooling have been tested. It is worth

noting that the average pooling is of particular interest in

the context of PNNs, since it is a linear operation, and

hence, it can be easily implemented in photonics [62]. At

the end of the structures, there are two fully connected (FC)

layers, composed of 100 and 10 neurons, respectively.

The developed models are compliant with the fan-in

limitation of 200: this is particularly critical in the flat-

tening operation, i.e., when passing from a convolutional

layer to an FC one. In the 2� 2 kernel model, the last

convolutional layer has 12 feature maps of size 4� 4. This

results in 192 features, compliant with the fan-in for the

subsequent FC layer. Similarly, with 3� 3 kernel, 32 one-

element feature maps are obtained after the last convolu-

tional layer. In this way, these two models are photonic-

compliant and can be used on the MNIST and Fashion-

MNIST datasets.

Concerning the Cifar-10 dataset, the same strategy has

been used: two models have been defined, one for each

kernel size. The developed architectures are derived from

the Binary Nets [63], with some modifications to satisfy

photonic constraints. The 2� 2 model exploits 5 convo-

lutional layers, each one followed by a ReLU activation

function and a BN layer. After the second, third, and fourth

convolutional layer, pooling layers are employed. The third

pooling layer allows the developed model to further reduce

the number of features aimed to comply with the fan-in

constraint. After flattening, three FC layers have been used,

composed of 200, 100, and 10 neurons, respectively. The

3� 3 model is very similar to the 2� 2 model with one

except for the absence of the third pooling layer: in this

case, the fan-in constraint is satisfied due to the larger

kernel size that shrinks down more the number of features.

Regarding the training phase, all the models have been

trained using Adam as optimizer [64]. In details, the

MNIST/Fashion-MNIST models have been trained for 30

Fig. 2 PANN training. A layer

is defined along with an input

quantizer and a kernel quantizer
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Fig. 3 PANN architectures for experiments on MNIST and Fashion-MNIST datasets

Fig. 4 PANN architectures for experiments on Cifar-10 dataset
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epochs, while the Cifar-10 models have exploited 50

epochs. All the training phases have used a batch size equal

to 64.

4 PANN results

In this section, we discuss the results obtained by the

models suited for photonic implementation on the three

benchmark datasets i.e., MNIST, Fashion-MNIST, and

Cifar-10. The experiments have been conducted using

DoReFa with a varying number of bit resolution (i.e., 2, 4,

and 6 bits) on two model versions, with 2� 2 and 3� 3

kernels. Additionally, for each model we have considered

two pooling variants, exploiting either max pooling or

average pooling.

To make a fair comparison, PANN architectures (blue

line in the following figures) have been compared with two

baselines: (i) float, exploiting a 32-bit floating-point

architecture (black line), and (ii) PANN w/ float input

where just the input of the first layer is not quantized (or-

ange line).

4.1 MNIST

The accuracy of the models with max pooling on MNIST

dataset is shown in Fig. 5 as a function of the bit resolution

of the quantized parameters.

The figure shows a limited accuracy degradation when

exploiting PANN models. Indeed, in the worst case (i.e.,

2� 2 kernel with 2 bits) an accuracy drop of about 1.3%

can be observed with respect to the float baseline. More-

over, it can be noticed that the input quantization itself has

a certain impact on the accuracy, especially at low

bitwidths.

The results obtained on MNIST dataset using average

pooling are reported in Fig. 6. Both 2� 2 and 3� 3 kernel

sizes show very good performance. In the case of 3� 3

kernel using 6 bits, the accuracy degradation with respect

to the baseline model is very low (i.e., 0.26%), showing

that the photonic hardware can approach the performance

of the electronic counterpart. Comparing the pooling

options, slightly better results are obtained with the average

pooling, even if the difference are very small (0.15% on

average).

Fig. 5 Results on MNIST dataset with max pooling

Fig. 6 Results on MNIST dataset with average pooling
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4.2 Fashion-MNIST

The results obtained by PANN models on the Fashion-

MNIST dataset using max pooling are reported in Fig. 7.

The performance degradation with respect to the float

baseline is slightly increased due to the more complex

structure of the dataset. When using 2 bits, the accuracy

drop is 5.8% (5.4%) with the 2� 2 (3� 3) kernel. How-

ever, by exploiting a higher number of bits, the difference

between the photonic models and the floating-point archi-

tectures can be significantly reduced, up to 1.1% using six

bits in both kernel configurations. Considering the PANN

with floating point input, the input quantization reduces the

accuracy up to 1.3%, however this impact can be made

negligible by increasing the bitwidth, as shown in the 6-bit

configurations.

The results with average pooling are shown in Fig. 8.

The overall behavior is similar to max pooling: indeed

even in this case the 3� 3 kernel models perform better

than 2� 2 models. The PANN accuracy decreases with

respect to max pooling except for the 3� 3 on two bits.

The performance drop with respect to the float baseline is

2.1% in the best case, i.e., 3� 3 kernel on six bits.

4.3 Cifar-10

The accuracy of PANN models on Cifar-10 dataset using

max pooling is shown in Fig. 9. In this case, the gap

between the PANN models and the floating point baseline

is higher, about 8% in the best case (i.e., 3� 3 kernel on

six bits). When using just two bits, the accuracy drop

reaches 20% (18.2%) for the 2� 2 (3� 3) kernel models,

with an 8% drop caused by the input quantization. This is

due to the complexity of the Cifar-10 dataset, which is

composed of RGB images (i.e., 3-channel images) with

more features compared to the MNIST/Fashion-MNIST

datasets. Again, the input quantization issue can be solved

by using higher bitwidths, indeed no impact can be

observed when operating at a bitwidth of 6.

The performance achieved by the average pooling on

Cifar-10 is reported in Fig. 10.

In this scenario, the accuracy is slightly higher com-

pared to the max pooling, reaching a drop of 6.4% in the

best case (3� 3 kernel size on 6 bits). Thus, the average

pooling allows to decrease the gap with both the baselines

(i.e., also reducing the impact of the input quantization).

Fig. 7 Results on Fashion-MNIST dataset with max pooling

Fig. 8 Results on Fashion-MNIST dataset with average pooling
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5 Conclusion

The breakthrough of deep learning has recently led to a

renewed interest on photonics for computing. Several

optical architectures for deep learning have been investi-

gated, focusing on integrated approaches. Such photonic

accelerators promise to bring substantial improvements in

terms of speed up and power consumption and footprint

reduction for DNN inference.

Exploiting these analog processors comes at the cost of

some limitations: computations are carried out on analog

signals with limited resolution (� 6 bits with equally

spaced levels) with positive-valued inputs, the fan-in to

photonic neurons is limited to a couple of hundreds inputs,

and convolutional kernels are demonstrated up to a 3� 3

size. These limitations mainly derive from the lack of

mature photonic technologies, leading to undesired losses

and impairments. While in the foreseeable future some of

these aspects are likely to be improved, the exploitation of

photonic hardware for DNN acceleration in the short-

medium term requires AI models that are compliant with

current technology.

In this paper, we, therefore, introduced the concept of

PANN architectures, i.e., DNN models compliant with the

constraints imposed by the photonic hardware. Moreover,

we devised a quantization-based PANN training-to-infer-

ence scheme to obtain neural network weights in the fixed-

point domain suited for the underlying photonic

architecture.

The performance of these DNN models has been then

assessed in computer vision tasks. During our experiments,

we considered two kernel sizes, namely 2� 2 and 3� 3,

and two pooling schemes, i.e., max pooling model and

average pooling. The impact of the different bitwidths (2,

4, and 6 bits) on the accuracy has been reported and dis-

cussed. Thanks to the higher number of parameters and the

higher computational precision, models with larger kernel

size and higher bitwidths achieve higher accuracy. Indeed

in all three datasets, the highest accuracy is reached by the

3� 3 kernel-sized model with six bits. Specifically, in the

best case we are able to reach an accuracy of 99.2% on

MNIST, 90.2% on Fashion-MNIST, and 75.4% on Cifar-

10. When compared to the floating point baseline the

PANN architectures suffer a very limited drop in accuracy

on MNIST and Fashion-MNIST (i.e., 0.3% and 1.1% in the

best case, respectively) and slightly higher on Cifar-10

(i.e., 6.5%). The impact of input quantization is negligible

for all tested configurations, unless just two bits are

exploited on Cifar-10 dataset. Moreover, max and average

pooling schemes achieve similar results, with the latter

Fig. 9 Results on Cifar-10 dataset with max pooling

Fig. 10 Results on Cifar-10 dataset with average pooling
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even outperforming the former in all configurations of both

MNIST and Cifar-10, thus enabling the use of all-optical

average pooling, which can be easily realized with passive

devices.

These results show the feasibility of DNN operations

using photonic hardware. However, further development

and investigations are required to improve the scalability of

the underlying photonic hardware in terms of bit resolution

and trade-off with weight update frequency, neuron fan-in

and kernel size [65].
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