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Abstract 
We have proposed that a new type of microwave 

resonator, based on Photonic Band Gap (PBG) structures, may 
be particularly useful for high energy accelerators. We 
provide an explanation of the PBG concept and present data 
which illustrate some of the special properties associated with 
such structures. Further evaluation of the utility of PBG 
resonators requires laboratory testing of model structures at 
cryogenic temperatures, and at high fields. We provide a brief 
discussion of our test program, which is currently in progress. 

I. INTRODUCTION 

The use of high Q cavity resonators has become an 
integral part of the accelerator technology applicable to 
present and future experiments in high energy particle 
physics. Currently, the resonators in use or under 
construction, are based on geometric structures where the 
normal modes are readily understood as a consequence of the 
electric field satisfying the boundary conditions imposed by 
the metal walls of the cavity. The nature of both the 
fundamental and higher order modes can often be 
qualitatively visualized, even though accurate evaluation of 
the mode frequencies may be numerically demanding. In 
contrast, the resonant cavities that we have proposed for 
potential use in a future generation of accelerators are based 
on what has been termed Photonic Band Gap (PBG) 
structures, and they are sufficiently different from both the 
traditional metal walled cavities or the diverse types of 
dielectric resonators, that they have to be analyzed and 
evaluated in their own right. Because the criteria for 
establishing the resonant modes in a PBG structure are so 
different, they (presently) cannot be designed or evaluated 
with the level of intuition normally applicable to the 
traditional cavity designs. Indeed, the difference in mode 
densities may be one of the principal advantages of PBG 
structures, with the possibility, for example, of designs that 
have negligible or even no higher order modes. 

In this paper, for the convenience of the reader, we 
present a physical explanation of the PBG structure and its 
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key properties, followed by illustrative data and numerical 
simulations. We conclude with a brief discussion of a typical 
configuration for a PBG cavity suitable for an accelerator, 
and an outline of our test program. We have presented a more 
detailed introduction to the idea of utilizing PBG structures as 
accelerator cavities [l]. We refer the reader to several prior 
articles that may also be specifically useful [2,3]. 

II. A PHYSICAL EXPLANATION OF THE PBG 
RESONATOR 

The principal component of a PBG resonator is a 
photonic lattice; that is, a configuration which has a 
periodically varying dielectric constant in at least one 
direction, and is uniform in all other potential directions. We 
define the dimension of the PBG element as the number of 
directions in which the dielectric function varies periodically. 
A 1-D PBG structure, for example, could be a waveguide 
filled with a set of dielectric slabs periodically spaced along 
its length. A 2-D PBG system could be a lattice of very long 
parallel dielectric rods. A 3-D PBG structure could be 
composed of dielectric scatterers placed, for example, on a 
diamond 1atticeP The dimension of the photonic lattice 
plays an important role in determining the electromagnetic 
mode characteristics of the PBG resonator. 

Any actual PBG resonator will contain a dielectric 
lattice terminated in some way (e.g., conducting walls or 
absorber). While it is difficult to solve the general boundary 
value problem, Maxwell’s equations for an infinite periodic 
dielectric lattice can be solved numerically with relative ease, 
and the solutions obtained reflect the dominant properties of 
any significantly large, but finite, section of such material. 
The essential characteristic of a periodically varying 
dielectric medium, common to any dimension, is that regions 
of frequency exist for which no propagating modes are 
present for waves traveling in a particular set of directions in 
the lattice. These frequency regions are called band gaps. In 
general, one finds band gaps for every direction of 
propagation for which there is periodic modulation of the 
dielectric constant. However, if there is a frequency region 
where these band gaps overlap for all the possible 
propagation directions, then the system is said to possess a 
complete photonic (i.e., electromagnetic wave) band gap. In 
1-D some complete band gaps are guaranteed for any 
periodicity in the dielectric constant, since there is only one 
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direction of propagation. In higher dimensions, whether or 
not a complete PBG exists depends on the type of lattice, 
filling factor, dielectric mismatch, and scatterer structure. 

Once we have identified an infinite dielectric lattice 
with a complete PBG, we may then ask how a finite section 
of such a lattice will behave. Rather than having absolute 
forbidden frequency regions, a finite lattice will now have 
modes in the band gap region which grow or decay in some 
direction with exponential dependence. As a practical 
example, if we imagine varying the frequency of a wave 
incident on a lattice and measuring the power which is 
transmitted, we would find regions of nearly perfect 
transmittance, usually designated as pass bands, separated by 
regions of strong attenuation corresponding to the band gaps. 
If we are to apply the solutions obtained from the infinite 
lattice to a finite lattice, we require that the length scale of 
that lattice be at least several times larger than the largest 
attenuation length in the lattice. 

Having defined a PBG structure, how can it be useful 
for devices requiring a cavity-like resonance? Let us now 
restrict our discussion to a specific 2-D geometry. Our PBG 
structure simply consists of a periodic array of dielectric 
cylinders, with the axes of the cylinders Perpendicular to a 
pair of bounding conducting plates on top and bottom. This 
configuration may be tested (either in the laboratory or via 
numerical simulation) and it is found that indeed there are 
regions of frequencies for which the transmission through a 
finite length of the structure is exponentially attenuated for 
waves incident from any direction. We will see later that it is 
quite practical to find such configurations for 2-D systems at 
microwave frequencies, and that the characteristic 
attenuation lengths can be comparable to the lattice constant. 

We now consider a sample of the structure that is 
made with any circumferential geometry, as long as the 
distance from boundary to center is many times the value of 
the longest attenuation length for the frequency range of 
interest. One can make a perturbation to the dielectric region 
near the center of this lattice, and arrange to couple energy 
into that region via a small probe placed in a hole drilled 
through one of the metal plates above the perturbed site. We 
know that no energy radiating from the probe will propagate 
radially outward, because waves in all directions are 
exponentially attenuated for frequencies within a complete 
PBG. Thus, in general, the energy incident via the probe will 
be fully reflected. However, if the perturbation to the 
dielectric is strong enough, it may be possible that for some 
frequency, occurring within the PBG region, the 
electromagnetic fields may just match onto the exponentially 
decaying waves perfectly, for all directions, and constitute a 
resonant mode of that system, Indeed, we find that we can 
make configurations with the properties just described. The 
perturbation is termed a “defect”, and the resonant mode is a 
defect mode. In this special circumstance we would find 
that energy can be coupled into the “cavity” where the 
electromagnetic fields corresponding to that mode will build 
up until the losses equal the incident power flow. As it turns 
out, completely removing a cylinder from an otherwise 

periodic lattice often produces a defect mode with the desired 
properties. 

To utilize the preceding type of resonance to 
accelerate an electron beam we consider modes where the 
electric rf field is everywhere normal to the metal plates 
with a maximum at the center (i.e. a monopole character). 
The bunched electron beam, suitably phased, would enter via 
a hole in one plate, and emerge with increased energy 
through a similar hole in the other plate. As with other types 
of resonant cavities, there would have to be provisions for 
coupling drive power into a cavity, which in turn could feed 
many other resonant cavities all at the same frequency, and 
suitably coupled by adjustments to the intercavity apertures. 
An illustration of a possible 3 section, 211 accelerator 
modular unit based on a triangular periodic lattice is 
presented in Figure 1. As we shall discuss, the triangular 
lattice appears to be particularly advantageous as a PBG- 
defect resonant cavity for accelerator applications. 

High Dielectric 

I_ 

Figure 1. A schematic view of the proposed 271: 
accelerator unit. In this example the unit consists of three 
triangular photonic lattices, separated by superconducting 
sheets. Each of the lattices has a cylinder removed to allow 
the formation of a defect mode with an electric field 
maximum in the center. Holes drilled through the conducting 
plates would allow a particle beam to be accelerated through 
the unit. 

III. NUMERICAL SIMULATIONS AND 
ILLUSTRATIVE EXPERIMENTS 

As a first approach to designing a potential PBG 
accelerator cavity, we need to determine whether the structure 
has complete photonic band gaps. This information can be 
found by computing what has come to be termed the photonic 
band structure. Since we are concerned with 2-D 
configurations, and we wish to accelerate particles from one 
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plate to the next, we restrict our attention to modes in which 
the electric fields are polarized along the cylinder axes (TM 
modes). Thus, the wave equation we solve reduces to: 

V%(z) =-$(jl)E(ji) (1) 

where the dielectric function satisfies 

E ?+;i =&pi) ( 1 (2) 

The vector d is any primitive lattice vector. The methods for 
solving Eq, (1) are well-known [l-5]; the solutions are Bloch 
waves, which have the form 

E(x) = uir(z)eLi (3) 

where uI; 2 + d = uG(X). The vector k indexes solutions, ( 1 
and is referred to as the wave vector. For each value of k 
there is a discrete set of solutions with a discrete set of 
frequencies (on(k)) . The solutions for a given n are 
continuous as a function of the wave vector, forming sheets in 
reciprocal space. These sheets are known as bands, and n, the 
band index, refers to a given sheet. The bands, due the 
periodicity of the lattice in coordinate space, are also periodic 
in reciprocal space; it is thus sufficient to view the solutions in 
a restricted region of reciprocal space called the Brillouin 
Zone (BZ). Because the real lattice has fourfold rotational 
and reflection symmetries, only the solutions for a single 
octant of the square BZ are unique. A plot of the mode 
frequencies { Wn( k)) corresponding to lattice vectors along 
the boundary of the BZ comprises the photonic band structure. 
The Brillouin Zones and band structures for lattices with other 
symmetries can be similarly defined. 

When we calculate the band structure for a given 
lattice configuration, we expect to learn at what frequencies 
complete band gaps occur, and how large the band gaps are. 
An example of a photonic band structure calculation is shown 
in Figure 2, where we find three band gaps in the spectrum 
within the lowest fourteen bands. We and others [5,6] have 
systematically studied the behavior of band gaps for 2-D 
lattices over a large variation of dielectric constants and filling 
factors, and for a variety of lattice types. The lattice 
configurations include the square and triangular lattices with 
dielectric cylinders at the lattice sites, as well as the inverse 
cases of dielectric hosts with holes (&=l) at the lattice sites. 

Experimental confirmation of photonic band gaps can 
be readily obtained through transmission experiments. As 
discussed above, waves incident on a photonic lattice with 
frequencies corresponding to the band gap region of the 
lattice, decay into the lattice with exponential dependence. 
Thus, band gaps in the band structure will be manifest as 
regions of attenuation in a transmission measurement. A 
schematic diagram of our test apparatus is found in reference 
[3]. We are able to make simple transmission measurements 
with the equipment, as well as make measurements of the 
electric energy density of standing wave modes. In Figure 3 
we present the transmission spectrum through a square lattice 
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Figure 2. The photonic bandstructure for the square 

lattice of cylinders with dielectric constant &=9. The lattice 
cylinder diameter is 1 cm, and the lattice spacing is 1.27 cm. 
The three band gaps are indicated by the shaded area. 

along the (10) direction. The sample was a 7 X 19 array of 
cylinders, with dielectric constant &=9, set in a precision 
drilled Styrofoam template. Microwave absorber was placed 
surrounding the scattering region, which minimized reflection 
back into the lattice. Note the sharp attenuation at frequencies 
corresponding to the gap region in the calculated 
bandstructure of Figure 2. The transmittance is reduced by 
over 40 dB, and has reached the noise floor of the microwave 
sweeper (a Hewlett-Packard 8756A scalar network analyzer). 
The configuration used for Figure 3 also had one central 
cylinder removed. Note the appearance of the sharp 
resonance in the gap, corresponding to the resonant defect 
mode. 

In Figure 4 we present a detailed mapping of the 
electric energy density (&E2) as a function of the distance 
around a removed cylinder from a square lattice. The mode 
corresponds to a resonance similar to the one shown in Figure 
3, except the lattice spacing is 1.33 cm. The defect mode 
shown is a monopole mode (antinode in the center), has the 
four fold symmetry of the lattice, and is well localized. The 
fields decay most gradually along the (10) and related 
symmetry directions. A plot along a cut in these directions 
logarithmically revealed the l/e decay length to be 
approximately 0.6 lattice constants. We will compare this 
value with numerical simulations in Section IV. 

IV COMPLEX BANDSTRUCTURE 

In ad_dition to the Bloch type of solutions with real 
wave vector k, the wave equation also has solutions with real 
frequency corresponding to complex values of k. These 
solutions will exist only when the periodicity of the lattice is 
broken, for example at a surface or defect. The analytic 
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Figure 3. Transmittance vs. frequency of microwaves through 
a square lattice of 7 x 19 cylinders. The cylinders have radius 
a=1 cm, and lattice constant d=1.27 cm (0.5”). The dielectric 
constant of the cylinders is &=9. The gap which is shown 
corresponds to the second photonic band gap in Figure 2. The 
sharp spike in the band gap occurs only after a single central 
cylinder is removed and is the resonance of interest. 

properties of the solutions to the Scrodinger equation with a 
periodic potential have been rather thoroughly analyzed [7]. 
For illustration we restrict the propagation vector to lie along 
the (10) direction of the lattice. In Figure 5 we present the 
calculated complex bandstructure for the (10) direction of a 
square lattice. The dimensions of the lattice are the same as 
the lattice used to make the defect mode in Figure 4. Real 
frequency lines with complex k must either form loops 

Figure 4. A spatial map of the electric energy density of a 
defect mode corresponding to the resonance shown in the 
band gap in Figure 3. All parameters of the lattice are the 
same as those for Figure 3, except for the lattice constant 
which in this case was d = 1.33 cm. 

connecting one band to another, or must come up from minus 
infinity and connect to a band. The trajectory of any given 
real frequency line must increase monotonically with 

frequency; the collection of these real frequency lines form 
paths which wind their way through the bandstructure. If we 
select any given frequency, we find each path gives us no 
more than one solution at that frequency. 

The complex bandstructure provides us with 
relatively quick insight which can be useful in many 
instances. As an example, when we consider a lattice 
geometry for possible use as a PBG structure, we can find 
from the complex bandstructure not only the size of the gaps, 
but also the attenuation length of the given gap. The longest 
attenuation length available to the system will dictate the 
minimum lateral dimension of the structure; parameters can 
thus be roughly optimized to find a smallest structure. Note 
that in the second gap there are three real frequency paths 
shown with imaginary k (there are, of course, infinitely many 
solutions with imaginary k at any frequency); however, the 
smallest imaginary k has a mid-gap value of 0.83, 
corresponding to a field decay length of X= 1.21 lattice 
constants. This is in good agreement with the power decay 
length of 0.6 lattice constant along the (10) direction of the 
defect mode, measured from the experimental data above. 
While the complex bandstructure is important for insight and 
for certain calculations such as surface modes and 
transmission spectrums, it is necessary to perform a complete 
calculation to verify the existence of a desired defect mode, 
and then to evaluate near field shape, symmetry, etc., of the 
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Figure 5. Complex band structure for the (10) 
direction. The parameters for this calculation match those 
used for the lattice used in Figure 4. The solid lines between P 
and X correspond to pure traveling waves. The dotted lines 
on either side of that region correspond to the imaginary (i.e., 
attenuative) part of the complex wave vector. 

mode. Calculations such as these have been successfully 
carried out with very good accuracy for both two- and three- 
dimensional structures [g]. 
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V. DISCUSSION AND FUTURE EXPERIMENTS 

Extensive numerical simulation studies are required 
to design an optimum PBG resonant structure. An important 
criterion will be to find a structure that has no resonant higher 
order modes. As another example, we find that the 
exponential decay of the fields for a triangular lattice can be 
-30% faster than that of the square lattice with similar 
parameters. This in turn means that one can have a smaller 
physical structure for a given design value of unloaded Q (The 
periphery of a PBG resonator has absorber so as to reduce the 
Q of all other frequencies, and this in turn means that the 
unloaded Q will be set by the net Poynting energy flow to the 
periphery of the finite PBG lattice). Using superconducting 
niobium plates and high purity sapphire for the dielectric 
cylinders. we can expect to achieve intrinsic unloaded Q 
values of >109. While such high unloaded Q values are 
required for the regions cooled to liquid helium temperature, 
we note that the loaded Q for other superconducting designs is 
typically only -106. For the structures discussed, we can 
expect to reach such Q values with a radius of ~10 lattice 
constants. 

Our immediate experimental program is to determine 
several key properties via measurements in a cryogenic 
apparatus. These include the demonstration of unloaded Q 
>109, operation at high gradients (~10 MV/m), and an 
investigation of the frequency stability, tunability, intercavity 
coupling, and external power coupling. One may expect 
particular difficulties due to dielectric breakdown at high field 
strengths. Once the cryogenic tests are successful, we plan to 
place a modest multi-cavity unit on a beam line and determine 
for the presently available superconducting cavities. 
However, we feel this effort is particularly worthwhile 
because the properties of PBG structures are so very different 
the limitations set by multipaction, charging, etc. Clearly 

there are formidable problems to be investigated and solved in 
order to make PBG resonant structures a practical replacement 
than those of the usual resonant cavities. We suggest that 
other interesting applications may arise, particularly as the 
special features of PBG structures and resonators become 
fully appreciated. 
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