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ABSTRACT

We introduce a new accelerator cavity desigs_ based on _hotonic _and Gap
(PBG) structures. The PBG cavity consists of a two-dimensional periodic array of
high dielectric, low loss cylinders with a single removal defect, bounded on top and
bottom by conducting sheets. We present the results of both numerical sin_ulations
and experimental measurements on the I'BG cavity.

INTRODUCTION

We consider here a new class of resonant cavities which we are investigating
in the context of what has come to be temaed Photonic _.and Gap (PBG) structures.i, 2
The concepts underlying the PBG condition, and the experimeutal and numerical
confirmation of typical resonant modes, will be prescslted later in this paper. The
collfigur.'ltions we have investigated are comprised of a periodic array of short
dielectric cylinders, which are bounded on top and bottom by a metal sheet, and fiom
which one cylinder has been removed at the central site. We find that the
elecU'olnagnetic modes associated with these configurations are analogous to resonant
cavity modes, with the E field polarized perpendicular to the metal sheets. Thus, if all
aperture is placed in each metal sheet at the site of the missing cylinder, we ca,
envision an electron beam entering through one plate, being accelerated by the
parallel rf E field, al_d then emerging fi'om/,he other plate. A suitable three-sectiol_
coupled set of such structures could, for example, form the familiar 2n: basic
accelerator unit with 2rt/3 phase advance per section (Fig. 1).

The reasons why we believe this new class of structures may be particularly
suited for accelerators are:

(i) They have a set of resonant fi'equencies which are eJ_tirely different from
those associated with the usual cavity structures, and therefore may be much better
suited to reducing the higher order mode problem. Indeed, it may be possible to
arrange that there will be only one trapped mode,

(ii) The spatial distribution of the E field for the resonant mode falls off
exponentially from the center of the active region, thus minimizing constraints on the
boundary material.

(iii) The structures may be readily fabricated utilizing sapphire cylinders and
superconducting niobium plates which will result in Q values > 106. We note that the
only superconducting material req_fired is in the form of a flat sheet, with no bends,
joints, or welds, a circumstance which may mitigate limitations of acceleration

gradient associated with the superconducting surface. _' '_ C'r_O
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Fig. 1. A schematic view o]'the proposed 2rr. accelerator ulzit. In this example the
unit consists of three triarzgular photo_zic lattices, separated by supercomlucting
sheets. Each of the lattices has a c),li_der removed to allow the formation o.[a defect
mode with an electric field ma._imum in the center. Holes drilled through the
conducting plates would allow a particle beam to be accelerated througlz the mzit.

We envisage a number of potential problems with the proposed strtlctures. In
particular, there is the concern that dielectric material (such as pure saTphire ) located
inside the vacuum, and at a distance of ~I cm from the electron beam will exhibit
charging, multipaction, and/or dielectric breakdown. Furthermore, we have not
studied problems which may be associated with ju_wlions belween Ihe dielectric _l_)d
the superconducting sheets. It will require further numerical simulation and the
appropriate experimental testing to establish the optimuna configurations and validity
of this approach.

In Section I we present a physical explanation of tile I'I3G concept. In Section
II we discuss our experimental equipment and techniques. In Section III we discuss
the methodology that has been formulated for ll_e numerical determination of the
electromagnetic "band structure", and also calculation of the defect states. In Section
IV we present some of the experimental results which illustrate the key properties of
selected PBG-defect structt_res. Some concluding discussion alld remarks are given
in Section V.

I. Introduction to the PBG Concept

It is simplest to int_oduce the PBG concept in the cow,text of wave propagation
in physical systems which have a periodic structure along some specified spatial
direction. Well known examples are the wave function of a particle moving in a
periodic potential, mode propagation in periodic linear acceler_ltor structures, and a



waveguidc of unifi.wm cross section filled with dielectric with permittivity varying
periodically along tile waveguide axis. For concreteness we fix our attention on the
last of these and recall that such systems can be discussed i_J terms of modes w]_ich
are fully characterized by the transverse variation of their electromagnetic fields along
the waveguide cross section. Fixing our attention on a particular mode we note lhat
such a structure will exhibit an alternating series of stop bands and pass bands as the
frequency is varied. 3 In the language of the PBG co_)m_unity lhe stop bands are
referred to as photonic band gaps; photonic because we are dealing with Maxwell's
equations (not entirely logical because we are dealing ',vith them classically) and
bands gaps in analogy with tile langu_ige used to describe electronic states in the
periodic potentials of crystalline solids. A wave propagating iJ_a dielectric fi'ee
section of the .waveguide whicl_ encounters a long section of llle periodic structure
will be totally reflected if its fi'equency lies within one of the band gaps. "Fhus, if one
interrupts the periodicity by removing a section of the periodically varying dielectric,
there is the possibility of a trapped mode in which a wave whose fi'equency lies in the
band gap is reflectcd back and fortli between the two dielectric filled sections; if tl_e
multiply reflected WavEsare in phase with one another then the possibility is realized.
The resultant tr_igpcd mode is referred to as a defect state, associated with tlae fact theft
the gap in the periodicity is referred to as a defect, both in analogy with the
terminology applied to elEcU'onic states in solids,

Before proceeding to a discussion of the case of periodicity in more than one
dimension, we briefly mention an extension of the above disct_ssion to the case of
structures which are symmetric under rotation about an axis witl_ dielectric const_|nt
which varies as a function of the radial distance r from the axis. 4 For example, one
might consider a set of contiguous concentric tubes of alternating dielectric constatat.
It is easy to show that one can choose the radii of the cylinders so as to have bands of
frequencies that are non-propagating for rotationally symmetric radial waves. 13y
omitting an approi._t'iate amount of the central section one can ,again have radial v,,aves
with frequency in the gap which experience multiple reflections from the surroundi_g
structure. Again, if the dimensions are such t,laatthe multiple reflections are in phase,
one has a trapped mode. One can readily envis,nge a mode of this sort which would
be quite suitable for parlicle acceleration. We refer to such col_figurations as "radial
band gap" structures with radial band gap modes.

We turn now to consideration of structures with two-dimensional periodicity
of the sort discussed in the inu'oduc,ion. We first focus our attention on the case of an
infinite periodic lattice. The solutions of MaxwelJ's equations can be chosen stlch that

each compone,at has the form exp(ik.R)F(P,)G(z)where the functions F have the
periodicity of the lattice, Here R is a two-dimensional position vector in the plane of
periodicity and z the coordin_lte perpendicular to it. The two-dimensional vector k is
referred to as the wave vector and may be thought of as residing in the reciprocal
lattice space. For each value of k there are a discrete set of solutions with a discrete
set of fi'equencies {co,(k)}. The band index n refers to the particular discrete solution.
The {con},whicla may be thought of as two-dimensional surfaces in (k, co)space, have
the double periodicity of the reciprocal lattice. Each o_, and the associated solutions
represents an allowed frequency band of propagating waves. The fiequency span
associated with each band surface may or may not overlap that associated with other
surfaces. Hence, in contrast with the one-dimensional case, there may or may not be
"band gaps", that is, frequency ranges for which no propagating solutions exist. As
the name suggests, a PBG system is an array which does contain band gaps.

A "defect", formed, say by removing one of the cylinders, presents the same
possibility that we noted in the one-dimensional situation, namely a superposition of
plane waves with fi'eqt|ency in the g_119which ,'u'ereflected into one another when they
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try to penetrate the surrounding lattice. For pm'ticular geometries and frequency these
multiple reflections may be in-phase so as to allow them to combine to form a
trapped mode, analogous to the localized electronic defect states familiar in
semiconductor physics.

Experimental and theoretical studies of band structure and trapped localized
defect modes in two-dimensional structures will be presented in the next sections.

II. EXPERIMENTAL APPARATUS

In order to experimentally study the band gtap structure and associated defect
modes, we utilize a microwave scattering chamber, '1which e:_ables us to make
mappings of the standing wave defect modes, and also measure the microwave
transmission through various lattices of dielectric cylinders. The ia,terior of the
scattering chamber is 1 cm high, 46 cm wide, aJ_d51 cm long. The bottom and side
walls of the chamber are machined out of a solid aluminum plate. On both ends of
the chamber are standard 8-12 Gl-lz waveguide fittings which can be used to detect or
inject microwaves in the chamber via a tapered region integrnlly machined into (he
main plate. An alt::llint]rn cover plale, fi'ee to move lalerally, completes the chamber.
The scatterers inside the chamber ,are typically cylinders with height of 1 cm and a
v,'u'iety of radii and dielectric constants. Accurate lattices can be constructed by
placing the cylinders into a precision drilled styrofoam (dielectric constant of 1.03)
template. Finally, a thick layer of low density absorber is placed between the interior
chamber walls and the styrofoam template, w,hich serves to minimize reflection.

In conjunction with an HP network analyzer we are able to sweep the
microwave frequency and make measurements of the power transmitted through the
scattering region. We are also able to map the spatial structure of standing wave
modes (e.g., defect modes) by weakly coupling to a tuned probe through ally of a
lattice of small holes iJl the cover plate. Usix_gstandard homodyz_e techniques, we can
measure both the phase and amplitudes of the fields sampled by the probe. 13y
mapping the Mie resonances associated with scattering fi'om a single cylinder, we
have found that the probe does not significantly perturb the system and that the
chamber is adequately terminated.

III. THEORETICAL CALCULATIONS

A. Bandstructure

A great deal of work has recently been done to compute the band structure for
a lattice of iilfinitely long dielectric cylinders.5,6, 7 These calculations have mainly
been concerned with the specific case of waves propagating perpendicular to the
cylinder axes; that is to say, modes for which the fields are independent of z, where z
is the coordinate axis parallel to the cylinder axes. For this case modes with electric
field polarization parallel and perpendicul_,r to the cylindrical axis propagate
independently. Equivalently, the modes can be characterized as transverse magnetic
(TM) and transverse electric (TE) with respect to the z-axis. In order to discuss the
full set of modes for the accelerator cavity which we have in mind, it is necessary to



extend these calculations to include arbitrary propagation direction so that fields are
assumed to have an exp(iqz) variation, q being the wavevector direcled along the
cylinder axes. This causes the TE ai_d TM modes to hybridize and to lead to a
coupled pair of second order 2-D partial differential equations instead of the
uncoupled pair which occur for the q=0 case.

Maxwell's equations for the lattice of dielectric cylinders, taken to be infinite
in the transverse directions, are

C

g'x_q-i£eg (2)
¢

where e(x,y) is tl,e periodic dielectric function representing the cylinders, and I.t=l
everywhere. We have assumed a ti,ne dependence of e i°_t. If we further assunm an
explicit dependence on the longitudinal (z) component such thnt

g =(g, +_E)e-'q' (3)

then Eqs. (1) and (2) yield

-iql x F-,- _-x VE = -i---mI-t_l, ., (3)
C

x g, =-i--m,I-I_. (6)
c

-iql x Iq, - _.x VH = i---meg, (7)
C

_' x I-q,= i 2 eE_ (8 )c

Eqs. (5) through (8) can becombined to yield

_. e_E + e_:_=13_..9 x _I-] (9)

where
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K2 _q2 (1])=7

15= clc_ (12)

1-132=----- (13)
E,__2

Tile transvers'.e field components have been diminated in Eqs. (9) and (10), and we
are thus left with coupled linear equations for the z field components E(x,y) a))d

H(x,y) with parameter _3.
Since 8(x,y) is invariant under translation by any distance composed of

integral multiples of a lattice constant, we may expand it in an infinite sum over
reciprocal lattice vectors as

= t:oe (14)
0

where

(3' R = 2_n n = 0,:t:1,+_2,... ( 15 )

and
.4

/I I \

2J,
/[C"Ja) (16)

f is the filling factor, 8a is tile cylinder dielectric constant, a is the cylinder radius, and
R is a translation vector, 0t(x,y) can be expanded similarly, (For future reference we
note that I/_;(x,y), which we will need later, may also be expanded in this way,) The
translational invariance also restricts the field solutions of Eqs, (9) and (I0) to satisfy

E(_ + I_)= e¢"_E(R) (I 7)

We may thus expand the field solutions in terms of reciprocal lattice vectors as
!



= ) (20)
0

k is known as the wave vector, or crystal mon_entt)m in solid slate physics; for an
infinite system with translational sy.mmetry, k indexes the allowed eigenmodes, which
are known as Bloch states, or runnlng wave states. (We are thinkillg of the states as
Bloch stales in 2-D modulated by exp(iqz).) Substituting all the above expansions
into Eqs. (9) and (10), we arrive at the following cot)pled equations:

+o1.0'

t ~ ['5.1 "
O0 (.1,

Eqs. (21) and (22) constitute a generalized eigenvalue equation of tile form

= K2 (23)

Equation (23) can be brought to a symmetric, standard eigenvalue equation by making
tile substitution

- 1 ,E0I 100Eo, (24)

For the case when 13=0, Eqs. (21) and (22) are uncoupled, and using Eq. (24) reduce
to the matrix equations for the unform polarizations reported previously.

The results of calculations for a square lattice are shown in Fig. 2(a)-(d),
where we include the bandstructures for a selection of different 13values. For the 13=0
case we plot the TM and TE modes separately. We note that for this particular
example the 13=0TM mode band structure exhibits band gaps for all directions of k-
vector, but that tl_e 13=0TE mode band structure does not. Since the TE and TM
modes hybridize for non-zero 13,it is perhaps not surprising that none of the hybrid
cases investigated show gaps. Even when both TE and TM bandstructures show gaps,
the frequency range of the gaps may not overlap. Should this be the case it is likely
that the gaps will be absent for non-zero [5cases.
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Fig. 2. (Inset) Because of the periodicity of the lattice, we may restrict our arte,tion
to frequencies correspondilzg to a minimum set of k vectors. For a square lattice thLr
.vet,shown in the inset within tlzedashed lines, comprises also a square in reciprocol
lattice space. Furthermore, because the real lattice has foul fold rotational a_zd
reflection symtnetries, only the solutions for a sittgle octant of this square are ttnique.
A plot of the frequencies corresponding to k vectors along the boundat3, of the octant
forms the "band structure". It is expected that each frequency span coincides ,t,ith
that of the full toll(k) surface. (a) Band structure for the square photonic lattice. In
this case, the electric field is parallel to the cylinder axes (TM). There are two band
gaps for this polarization evident for the given frequency range. 109 reciprocal
lattice vectors were used to obtain the band structure plot.
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Fig. 2. (b) Here, the elec;ric field is polarized perpendicular to the cylinder axes.
There are no gaps in this case.
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Fig. 2 (d) The square latticer band structure computed with _ = 0.6.



B. Defect Studies

When the transl,'_tional symn_etry of tile lattice is violated by, for example, the
addition of some impurity, previct)sly forbidden states with imaginary values of the
Bloch vector k are now allowed. Tllus, in addition to lhe exlended periodic runniug
wave states which comprise the band structtJres for infinite lallices, there may also be
states which decay away exponentially fi'om the perturbed site. If tile pertttrbation
consists of a single cylinder removal, tl_e associated mode is a defect mode. In 1-D it
is possible to analyze defect sf:,tes by directly assuming Illat they are formed fi'om
Bloch waves with imaginary values of k.3

In higl_er dimensions the situation is naore complicated, and we calculate tile
properties of impurity modes by expanding the new eigenfunctions in terms of the
infinite lattice Bloch function,s. V_'_iting the dielectric fuJ_ction as

e.(_) = e._, (_) + Ed_r(_) (2 5 )

wllere we have separated the periodic variation fiom the local defect function, we
may write Eq.(9) as

c°_ c°'z(_),-:-_ (_)_(_) (26)v_E(_)+-2-(_o(_)-_)F.(_)+_ _.,,,._

To arrive at Eq. (26) we set I]=0, and concern ourselves only with the "I'M mode. We
do this primarily because we do not have at hand a lion-zero 13case for which a gap is
present. Since the TM mode has E parallel to the cylinder axis, this is the mode of
primary interest for accelerator applicatioj_s. Because of the finite spacing between
plates for the accelerator cavity, only tile'TM modes exist for _=0 for relevent
fi'equencies.

Expanding tile solution in terms of the Bloch waves found previously,

13(_,)= ,_=,f_,, E_,,,(_) (27)
f_,n

and using the orthogonality relation

j E_,.(_)e_r(_)E_..._V=C_,8_.8°o, (28)

we find the eigenvalue equation

dVE_,.(_)e.,a(_.)E_,,., f_,,., = So-_ f_,. (29)k ,n '[dereet
Lvoltune
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where 11is the band index, and the normalization constant has been taken into tile
Bloch fuJlctions. Eq. (29) can be manipulated into a symmetric eigenvalue equation
as

where

+k-kla/-I .
(31)

<, c,. 16 -G'+k-I_'la/2J

and

ot_ = o3_f_ (32)

We can use Eq. (30) to numerically calculate the modified band structure due to Ihe
addition of a perturbation in dielectric consta_t to an otherwise perfect lattice. In
order to follow this procedure, however, we must first choose a finite set of k v_lues
for the sum iil Eq. (27). Choc,sing a set of N k values effectively constrains the size tff
the lattice to N sites; it is this sublattice, N sties plus the defecl, that constituleS II_e
new unit cell of an overall super-lattice. We expect that for bound modes in which
the fields fall off exponentially fi'om the center of a perturbation, reasonable
numerical convergence may be achieved witll a fairly small number N of siles.

To further reduce the computational _ask in the numerical calculation we can
make use of any discrete rotational symmetry possessed by the impurity dielectric
function. In the case of a defect in a square lattice, for example, there are three
distinct mode types; monopole, dipole, and quadrupole. An accelerator mode must,
of course, have monopole character.

We have completed calculations for defects in square and triangular lattices
utilizing the above procedure. We find, however, thnt the calculated defect frequency
is very sensitive to the number of reciprocal laltice vectors (RLV's) used in the
expansions in Eqs. (14) and (19). While tl_e band structure calculation exhibits
reasonable convergence for the lower bands using only about one hundred RLV's, it
appears that the equivalent convergence for the defect mode requires a much greater
number of RLV's. Using an alternate lechnique, Meade et ai.8 have succeeded in
calculating the fi'equency dependence of the defect modes in a square pholo_ic laltice;
their results agree very well with previously reported measurements .5

IV. EXPERIMENTAL RESULTS

The focus of our experimental investigations has been to verify the various
theoretical predictions resulting from the numerical calculations. Once the
calculations demonstrate the necessary accuracy, it will then be possible to search for
the optimal parameters for an accelerator structure. In Fig. 3(a) we present
transmission data for the triangular lattice, verifying the predicted second band gap.
In Fig. 3(b) we present the transmission data for a triangular lattice with a defect (a

I



single cylinder removed). Note the presence of the new peak in tile forbidden region
corresponding to the defect mode. The frequency width of the defect mode, zero in
principle for an infinite lattice, in this case is set by the cylinder ntld boundary plate
losses, in addition to the finite size of the lattice.
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Fig. 3 (a): Transmitted power vs../'requr:z,,:yfor a triangular photonic lattice. 7"he
lattice was composed of 200 dielectric cylinders with e=9.0 in a sO,rofoam template
with e.=1.03. The lattice spacing was 1.27 cm. hz a transmission experiment, incident
waves with frequencies corresponding to the forbidden bated gap frequencies are
exponentially attenuated across the lattice; thus, the sharp dip in transmitted power
provides a measurement of a band gap from t0- 11.5 GHz.
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Fig. 3 (b) Transmitted power vs. frequency for a triangular lattice with a single
cylinder removed. Note the new peak occurring in the band gap region
corresponding to a defect mode.
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In Fig. 4 we show spatial mappings of tile defect modes for square mid
Iriangular lattices with the same dielectric and lattice constants. We see that the
triangular mode fails off much more r_pidly away fiom the defect center than does fhe
square lattice mode, a feature suggested by our comi_uter simulations, The de;,, I
modes in both cases are monopole in character.

Defect Mode l_iergy De.nsie),M_,p
Triangular Lattice

-3 -2 -I 0 I 2 3

l)i,_l_ce {in units of d)

Fig. 4 (a) A map of the electric energy density for a defect mode in the seco_ut gop of
the triangular lattice (d = 1.27 cm).
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Fig.4 (b)A mat,oftheelectricenergydensity/ora de/ectmode inthesecomlgayqf
thesquarelattice(d= 1.50cm).

V. CONCLUDING DISCUSSION AND REMARKS

In order to eslablish t:,eutility of PBG structures as accelerator cavities, a
great deal more work needs to be done. We discuss inthissection a number of issues
(in addition to those mentioned in the introduction) with which we are currently
concerned.

While we have shown the existence of trapped modes whose configuration
appears to be suitable for particle acceleration, we need to investigale the question of
higher order modes. It appears fi'om the work already done thai the existence of bnnd
gaps is exceptional rather than typical. We are hopeful, therefore, that structures can
be found which exhibit a single band gap. 13,,ecausethe fi'equency range of the gap is
limited, it seems likely that the number of trapped modes present in any gap is small,
and our results seem to imply that situations can be found in which the gap contains
only a single such mode. Given tlaat this is the case, there remains the possibility that
there will also exist quasi localized modes in the allowed fiequcncy ranges. Such
modes would be the analogue of the damped resonances of waveguide loaded
conventional cavities. To see how such modes might arise, rect_ll thai we found no
band gaps for the finite q case for the square lattice. It is, however, very likely that a
TM band gap mode is only slightly shifted and weakly coupled to propagating TE
modes by a finite but small value of q, leading to a mode of finite but high Qext. Such
modes may also arise under circumstances in which the overlap range of two gaps is
small. In this case propagation may occur only over a very limited range of angles in
wave vector space. Localized modes with finite Qext may well occur in such regions,
the narrow angle directions of propagation acting like a set of waveguides loading the
cavity

In the text above we have only considered the use of metallic end walls as
terminations of the PBG cavity in the z direction. Mueiler, et al.9 have suggested
using the Clogston 1° layered conductor scheme as a means of reducing end wall
losses without resorting to superconductivity. We also plan to investigate the utility
of the Zakowicz 11dielectric coating scheme. We also need to investigale cavily-to-
cavity coupling.



Apropos of tile cavity coupling question, we are also considering the design of
a band gap structure which avoids this issue. A smooth dielectric waveguide wilh
qc/o) = 1 would be a suitable structure for an inverse Cerencov accelerator. On the
basis of the results reported above for non-zero q, it seems unlikely that a low loss
structure could be formed from a lattice array of parallel cylindi'ical ro, l::. On the
other hand it seems clear that a low loss radial band gap structure, of the sort
mentionc, I i_ the secr,r,t section, can bc designed.
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