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ABSTRACT AS03-89€r dosar

We introduce a new accelerator cavity design based on Photonic Band Gap
(PBG) structures. The PBG cavity consists of a two-dimensional periodic array of
high dielectric, low loss cylinders with a single removal defect, bounded on top and
bottom by conducting sheets. We present the resulls of both numerical simulations
and experimental measurements on the PBG cavily.

INTRODUCTION

We consider here a new class of resonant cavitics which we are investigating
in the context of what has come to be termed Photonic Band Gap (PBG) structures.}»2
The concepts underlying the PBG condition, and the experimental and numerical
confirmation of typical resonant modes, will be prescnted laier in this paper. The
configurations we have investigated are comprised of a periodic array of short
dielectric cylinders, which are bounded on top and bottom by a metal sheet, and from
which one cylinder has been removed at the central site. We find that the
elecromagnetic modes associated with these configurations are analogous to resonant
cavily modes, with the E field polarized perpendicular to the metal sheets. Thus, if an
aperture is placed in each metal sheet at the site of the missing cylinder, we can
envision an electron beam entering through one plate, being accelerated by the
parallel rf E field, and then emerging from ghe other plate. A suitable three-section
coupled set of such structures could, for example, form the familiar 21 basic
accelerator unit with 21t/3 phase advance per section (Fig. 1).

The reasons why we believe this new class of structures may be particularly
suited for accelerators are:

(i) They have a set of resonant {requencies which are enlirely different from
those associated with the usual cavity structures, and therefore may be much better
suited to reducing the lugher order mode problem. Indeed, it may be possible (o
arrange that there will be only one trapped mode.

(ii) The spatial distribution of the E field for the resonant mode falls off
exponentially from the center of the active region, thus minimizing constraints on the
boundary material.

(iii) The structures may be readily fabricated utilizing sapphire cylinders and
superconducting niobium plates which will result in Q values >105. We note that the
only superconducting material required is in the form of a flat sheet, with no bends,
joints, or welds, a circumstance which may mitigate limitations of acceleration
gradient associated with the superconducting surface. ? :
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Fig. 1. A schematic view of the proposed 2m accelerator unit. In this example the
unit consists of three triangular photonic lattices, separated by superconducting
sheets. Each of the lattices has a cylinder removed to allow the formation of a defect
mode with an electric field maximum in the center. Holes drilled through the
conducting plates would allow a particle beam to be accelerated through the unit.

We envisage a number of potential problems with the proposed structures. In
particular, there is the concern that dielectric material (such as pure sarphire) located
inside the vacuum, and at a distance of ~1 cm from the electron beam will exhibit
charging, multipaction, and/or dielectric breakdown. Furthermore, we have not
studied problems which may be associaled with jurctions between the dielectric and
the superconducting sheets. It will require further numerical simulation and the
appropriate experimental testing to establish the optimum configurations and validity
of this approach.

In Section 1 we present a physical explanation of the PBG concept. In Section
11 we discuss our experimental equipment and techniques. In Section 11l we discuss
the methodology that has been formulated for the numerical determination of the
electromagnetic "band structure”, and also calculation of the defect states. In Section
IV we present some of the experimental results which illustrate the key properties of
selected PBG-defect structures. Some concluding discussion and remarks are given

in Section V.

1. Introduction to the PBG Concept

It is simplest to introduce the PBG concept in the context of wave propagation
in physical systems which have a periodic structure along some specified spatial
direction. Well known examples are the wave function of a particle moving in a
periodic potential, mode propagation in periodic linear accelerator structures, and a



waveguide of uniform cross section filled with dielectric with permittivity varying
periodically along the waveguide axis. For concreteness we fix our altention on the
last of these and recall that such systems can be discussed in terms of modes which
are fully characterized by the transverse variation of their electromagnetic fields along
the waveguide cross section. Fixing our attention on a particular mode we note that
such a structure will exhibit an alternating scrics of stop bands and pass bands as the
frequency is varied.3 In the language of the PBG community the stop bands are
referred to as photonic band gaps; photonic because we are dealing with Maxwell's
equations (not entirely logical because we are dealing with them classically) and
bands gaps in analogy with the language used to describe electronic states in the
periodic potentials of crystalline solids. A wave propagating in a dielectric free
section of the wavcguide which encounters a long scction of the periodic structure
will be totally reflected if its frequency lies within one of the band gaps. Thus, if one
interrupts the periodicity by removing a section of the periodically varying dielectric,
there is the possibility of a trapped mode in which a wave whose frequency lies in the
band gap is reflected back and forth between the two dielectric filled sections; if the
multiply reflected waves are in phase with one another then the possibility is realized.
The resultant trapped mode is referred to as a defect state, associated with the fact that
the gap in the periodicity is referred to as a defect, both in analogy with the
terminology applied to clectronic states in solids.

Before proceeding to a discussion of the case of periodicity in more than one
dimension, we bricfly mention an extension of the above discussion to the case of
structures which are symmetric under rotation about an axis with diclectric constant
which varies as a function of the radial distance r from the axis.4 For example, one
might consider a sct of contiguous concentric tubes of alternating diclectric constant.
It is casy to show that one can choose the radii of the cylinders so as to have bands of
frequencies that are non-propagating for rotationally symmetric radial waves. By
omitting an appropriate amount of the central scction one can again have radial waves
with frequency in the gap which experience multiple reflections from the surrounding
structure. Again, if the dimensions are such that the multiple reflections are in phase,
one has a trapped mode. One can readily envisage a mode of this sort which would
be quite suitable for particle acceleration. We refer to such configurations as "radial
band gap" structures with radial band gap modes.

We turn now to consideration of structures with two-dimensional periodicity
of the sort discussed in the inwroduction. We {irst focus our attention on the case of an
infinite periodic lattice. The solutions of Maxwell's equations can be chosen such that

each component has the form cxp(if(-ﬁ)F(fz)G(z) where the functions F have the

periodicity of the Jattice. Here R is a two-dimensional position vector in the plane of
periodicity and z the coordinate perpendicular to it. The two-dimensional vector k is
referred (o as the wave vector and may be thought of as residing in the reciprocal
lattice space. For each value of k there are a discrete set of solutions with a discrete
set of frequencies {w,(k)}. The band index n refers to the particular discrete solution.
The {w,), which may be thought of as two-dimensional surfaces in (k, ) space, have
the double periodicity of the reciprocal lattice. Each w, and the associated solutions
represents an allowed frequency band of propagating waves. The {requency span
associated with each band surface may or may not overlap that associated with other
surfaces. Hence, in contrast with the one-dimensional case, there may or may not be
"band gaps", that is, frequency ranges for which no propagating solutions exist. As
the name suggests, a PBG system is an array which does contain band gaps.

A "defect", formed, say by removing one of the cylinders, presents the same
possibility that we noted in the one-dimensional situation, namely a superposition of
plane waves with frequency in the gap which are reflected into one another when they




try to penetrate the surrounding lattice. For particular geometries and frequency these
multiple reflections may be in-phase so as to allow them to combine to form a
trapped mode, analogous to the localized electronic defect states familiar in
semiconductor physics.

Experimental and theorctical studies of band structure and trapped localized
defect modes in two-dimensional structures will be presented in the next sections,

II. EXPERIMENTAL APPARATUS

In order to experimentally study the band gap structure and associaied defect
modes, we utilize a microwave scattering chamber,? which enables us 1o make
mappings of the standing wave dcfect modes, and also measure the microwave
transmission through various lattices of diclectric cylinders. The irterior of the
scattering chamber is 1 cm high, 46 cm wide, and 51 cm long. The boitom and side
walls of the chamber are machined out of a solid aluminum plate. On both ends of
the chamber are standard 8-12 GHz waveguide fitlings which can be used to detect or
inject microwaves in the chamber via a tapered region integrally machined into (he
main plate. An aluminum cover plate, frec to move laterally, completes the chamber.
The scatterers inside the chamber are typically cylinders with height of 1 cm and a
variety of radii and dielectric constants. Accurate lattices can be constructed by
placing the cylinders into a precision drilled styrofoam (dielectric constant of 1.03)
template. Finally, a thick layer of low density absorber is placed between the interior
chamber walls and the styrofoam template, which serves to minimize reflection.

In conjunction with an HP network analyzer we are able to sweep the
microwave frequency and make measurements of the power transmitted through the
scaltering region. We are also able to map the spatial structure of standing wave
modes (e.g., defect modes) by weakly coupling to a tuned probe through any of a
lattice of small holes in the cover plate. Using standard homodyne techniques, we can
measure both the phase and amplitudes of the fields sampled by the probe. By
mapping the Mie resonances associated with scattering from a single cylinder, we
have found that the probe does not significantly perturb the system and that the
chamber is adequately terminated.

11l. THEORETICAL CALCULATIONS
A. Bandstructure

A great deal of work has recently been done to compute the band structure for
a lattice of infinitely long dielectric cylinders.»6.7 These calculations have mainly
been concerned with the specific case of waves propagating perpendicular to the
cylinder axes; that is to say, modes for which the ficlds are independent of z, where z
is the coordinate axis parallel to the cylinder axes. For this case modes with electric
field polarization parallel and perpendicular to the cylindrical axis propagate
independently. Equivalently, the modes can be characterized as transverse magnetic
(TM) and transverse electric (TE) with respect to the z-axis. In order to discuss the
full set of modes for the accelerator cavity which we have in mind, it is necessary to



cxtend these calculations to include arbitrary propagation direction so that fields are
assumed to have an exp(iqz) variation, q being the wavevector directed along the
cylinder axes. This causes the TE and TM modes to hybridize and to lead to a
coupled pair of second order 2-D partial differential equations instead of the
uncoupled pair which occur for the =0 case.

Maxwell's equations for the lattice of dielectric cylinders, taken to be infinite
in the transverse dircctions, are

-

VxB=-i2uil (1)
C

VxH=iLeE (2)
C

where €(x,y) is the periodic dielectric function representing the cylinders, and =1
everywhere. We have assumed a time dependence of e@!, If we further assume an
explicit dependence on the longitudinal (z) component such that

E = (E, + iE)e"“‘" (3)
= (H, +2H)e™ (1)

then Egs. (1) and (2) yield

-iqZ X E‘—ix'\%E:—iiD—uﬁ‘ R (5)
C

¥ xB, =-i2uHz (6)

C
. A Y Y A = L@ =

~-igZxH, -Zx VH =i—¢E, (7)
C

Vxﬁ‘=i—0‘36E2 (8)

Egs. (5) through (8) can be combined to yield
\7-ea65+en<2=[32-{7xa\-7!-1 (9)

V-a§H+K2=~Bi-§xoﬁE (10)

where



k2= - g2 (11)
C

=9 12

B . (12)
1__2

a= "5 (13)

The transverse field components have been eliminated in Egs. (9) and (10), and we
are thus left with coupled linear equations for the z field components E(x,y) and
H(x,y) with parameter p.

Since £(x,y) is invariant under translation by any distance composed of
integral multiples of a lattice constant, we may expand it in an infinite sumn over
reciprocal lattice veclors as

e(X)= Y eqe’"* (14)
3
where
G-R=2mn  n=0,%1,%2,.. (15)
and
B, =8, +(e. 1 fZJ'gGIa) (16)
' IGa

f is the filling factor, €4 is the cylinder dielectric constant, a is the cylinder radius, and
R is a translation vector. a(x,y) can be expanded similarly. (For future reference we

note that 1/&(x,y), which we will need later, may also be expanded in this way.) The
translational invariance also restricts the field solutions of Eqs. (9) and (10) to satisfy

1

E(X+R) =" E(%) (17)

H(% + R) = ¢* "H(%) (18)

We may thus expand the field solutions in terms of reciprocal lattice vectors as



B(7) = Y Ege™ ) (19)

H(R)= Y e o (20)
G

k is known as the wave vector, or crystal momentum in solid state physics; for an
infinite system with translational symmetry, k indexes the allowed eigenmodes, which
are known as Bloch states, or running wave states. (We are thinking of the states as
Bloch states in 2-D modulated by exp(iqz).) Substituting al} the above expansions
into Egs. (9) and (10), we arrive at the following coupled equations:

Z&a-e'[(r‘ +G)- (E +C_3')17|G, +BE'(E + (3) x(E +("3’)]l~3(.;, =k,  (21)
‘<

Zea(,_a.(i& + G) (E + G')E(,, - Bi-(E + (3) X (1? + G')&mafﬁar =Kk s g (22)
G’ G’

Eqgs. (21) and (22) constitute a generalized eigenvalue equation of the form

M(};J=K2N[I~ZJ (23)
=3 =\H .

Equation (23) can be brought to a symmetric, standard eigenvalue equation by making
the substitution

. 1 .
E-‘.'—-' — “’-,, 24
¢ [\/E]a-cr ¢ (24)

For the case when $=0, Eqs. (21) and (22) are uncoupled, and using Eq. (24) reduce
to the matrix equations for the unform polarizations reported previously.

The results of calculations for a square lattice are shown in Fig. 2(a)-(d),
where we include the bandstructures for a selection of different B values. For the =0
case we plot the TM and TE modes separately. We note that for this particular
example the B=0 TM mode band structure exhibits band gaps for all directions of k-
vector, but that the B=0 TE mode band structure does not. Since the TE and TM
modes hybridize for non-zero f, it is perhaps not surprising that none of the hybrid
cases investigated show gaps. Even when both TE and TM bandstructures show gaps,
the frequency range of the gaps may not overlap. Should this be the case it is likely
that the gaps will be absent for non-zero [} cases.
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Fig. 2. (Inset) Because of the periodicity of the lattice, we may restrict our attention
to frequencies corresponding to a minimum set of k vectors. For a sSquare lattice this
set, shown in the inset within the dashed lines, comprises also a square in reciprocal
lattice space. Furthermore, because the real lattice has fourfold rotational and
reflection symmetries, only the solutions for a single octant of this square are unique.
A plot of the frequencies corresponding to k vectors along the boundary of the octant
Jorms the "band structure”. [t is expected that each frequency span coincides with
that of the full wn(k) surface. (a) Band structure for the square photonic lattice. In
this case, the electric field is parallel to the cylinder axes (TM). There are two band
gaps for this polarization evident for the given frequency range. 109 reciprocal
lattice vectors were used to obtain the band structure plot.
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B. Defect Studies

When the translational sytometry of the lattice is violated by, for example, the
addition of some impurity, previcusly forbidden states with imaginary values of the
Bloch vector k are now allowed. Thus, in addition to the extended periodic running
wave states which comprise the band structures for infinite lattices, there may also be
states which decay away exponentially from the perturbed site. If the perturbation
consists of a single cylinder removal, the associated mode is a defect mode. In 1-D it
is possible to analyze defect states by directly assuming that they are formed from
Bloch waves with imaginary valucs of k.3

In higher dimensions the situation is more complicated, and we calculate the
propertics of impurity modes by expanding the new eigenfunctions in terms of the
infinite lattice Bloch functions. Writing the diclectric function as

E(g);‘epcr(i)-*‘edcf(i) (25)

where we have scparated the periodic variation from the local defect function, we
may write Eq.(9) as

V2E(R) +ic°?(e,,,,(z) ~1)B(R) + - B(X) = =7 € (F)E(X) (26)

To arrive at Eq. (26) we set P=0, and concern ourselves only with the TM mode. We
do this primarily because we do not have at hand a non-zero B case for which a gap is
present, Since the TM mode has E parallel to the cylinder axis, this is the mode of
primary interest for accelerator applications. Because of the finite spacing between
plates for the accelerator cavity, only the “I'M modes exist for f=() for relevent

frequencies.
Expanding the solution in terms of the Bloch waves found previously,

E(;\):‘_ Zfl—(,nEk‘n(i) (27)

ki
and using the orthogonality relation

J‘E;.n(i)ef’“(i)Eﬁ'.n’dv = Ci Sii'snn' (2 8)

)

we find the eigenvalue equation

Z J.dVE;'“(sz)edcf(i)Ei',n' fi' ’ = = 2 fi.n (29)

k’n’| defect
volume



where n is the band index, and the normalization constant has been taken into the
Bloch functions. Eq. (29) can be manipulated into a symmetric eigenvalue equation

as

... M., o
Y|y —Bg =k (30)

where

(5 -G +k-ih)

M., = Egl| = = BEER (31)
kK («z;;‘” G -G +k=kpsa|°

and
o =0 f, (32)

We can use Eq. (30) to numerically calculate the modified band structure due to the
addition of a perturbation in dielectric constant to an otherwise perfect lattice. In
order to follow this procedure, however, we must first choose a finite set of k values
for the sum in Eq. (27). Chonsing a set of N k values effectively constrains the size of
the lattice to N siles; it is this sublattice, N sites plus the defect, that constitutes the
new unit cell of an overall super-latice. We expect that for bound modes in which
the fields fall off exponentially from the center of a perturbation, reasonable
numerical convergence may be achieved with a fairly small number N of sites.

To further reduce the computational sask in the numerical calculation we can
make use of any discrete rotational symmetry possessed by the impurity dielectric
function. In the casc of a defect in a squarc lattice, for example, there are three
distinct mode types; monopole, dipole, and quadrupole. An accelerator mode must,
of course, have monopole character.

We have completed calculations for defects in square and triangular lattices
utilizing the above procedure. We find, however, that the calculated defect frequency
is very sensitive to the number of reciprocal lattice vectors (RLV's) used in the
expansions in Eqs. (14) and (19). While the band structure calculation exhibits
reasonable convergence for the lower bands using only about one hundred RLV's, it
appears that the equivalent convergence for the defect mode requires a much greater
number of RLV's. Using an alternate technique, Meade et al.8 have succeeded in
calculating the frequency dependence of the defect modes in a square photonic lattice;
their results agree very well with previously reported measurements .5

1IV. EXPERIMENTAL RESULTS

The focus of our experimental investigations has been lo verify the various
theoretical predictions resulting from the numerical calculations. Once the
calculations demonstrate the necessary accuracy, it will then be possible to search for
the optimal parameters for an accelerator structure. In Fig. 3(a) we present
transmission data for the triangular lattice, verifying the predicted second band gap.
In Fig. 3(b) we present the transmission data for a triangular lattice with a defect (a



single cylinder removed). Note the presence of the new peak in the forbidden region
corresponding to the defect mode. The frequency width of the defect mode, zero in
principle for an infinite lattice, in this case is set by the cylinder and boundary plate
losses, in addition to the finite size of the lattice.
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Fig. 3 (a): Transmitted power vs. frequercy for a triangular photonic lattice. The
lattice was composed of 200 dielectric cylinders with €=9.0 in a styrofoam template
with €=1.03. The lattice spacing was 1.27 cm. In a transmission experiment, incident
waves with frequencies corresponding to the forbidden band gap frequencies are
exponentially attenuated across the lattice; thus, the sharp dip in transmitted power
provides a measurement of a band gap from10- 11.5 GHz.
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Fig. 3 (b) Transmitted power vs. frequency for a triangular lattice with a single
cylinder removed. Note the new peak occurring in the band gap region
corresponding to a defect mode.



In Fig. 4 we show spatial mappings of the defect modes for square and
triangular lattices with the same dielectric and latlice constants. We see that the
triangular made falls off much more rapidly away from the defect center than does the
square lattice mode, a feature suggested by our computer simulations. The dei-: 1
modes in both cases are monopole in characier.
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Fig.4 (a) A map of the electric energy density for a defect mode in the second gap of
the triangular lattice (d = 1.27 cm).



Defect Mode Energy Density Map
Square Lattice

LR N

eE

LN B TR S S S S

lllll IIGJ

-3 -2 -1 0 I 2 3

. Distance (in }mils of d) )
Fig.4 (b) A map of the electric cnergy density for a defect mode in the second gap of

the square lattice (d = 1.56 cmn).

V. CONCILUDING DISCUSSION AND REMARKS

In order to establish Cic utility of PBG structures as accelerator cavities, a
great deal more work needs to be done. We discuss in this section a number of issucs
(in addition to those mentioned in the introduction) with which we are currently
concerned.

While we have shown the existence of trapped modes whose configuration
appears to be suitable for particle acceleration, we need to investigate the question of
higher order modes. It appears from the work already done that the existence of band
gaps is exceptional rather than typical. We are hopeful, therefore, that structures can
be found which exhibit a single band gap. Because the frequency range of the gap is
limited, it seems likely that the number of trapped modes present in any gap is small,
and our results scem to imply that situations can be found in which the gap contains
only a single such mode. Given that this is the case, there remains the possibility that
there will also exist quasi localized modes in the allowed freguency ranges. Such
modes would be the analogue of the damped resonances of waveguide loaded
conventional cavities. To sce how such modes might arise, recall that we found no
band gaps for the finite q case for the square lattice. It is, however, very likely that a
TM band gap mode is only slightly shifted and weakly coupled to propagating TE
modes by a finite but small value of q, leading to a mode of finite but high Qex. Such
modes may also arise under circumstances in which the overlap range of two gaps is
small. In this case propagation may occur only over a very limited range of angles in
wave veclor space. Localized modes with finite Qux mmay well occur in such regions,
the narrow angle directions of propagation acting like a set of waveguides loading the
cavily

In the text above we have only considered the use of metallic end walls as
terminations of the PBG cavity in the z direction. Mueller, et al.9 have suggested
using the Clogston!? layered conductor scheme as a means of reducing end wall
losses without resorting to superconductivity. We also plan (o investigate the utility
of the Zakowicz!! dielectric coating scheme. We also need to investigate cavity-to-

cavity coupling.



Apropos of the cavity coupling question, we are also considering the design of
a band gap structure which avoids this issue. A smooth dielectric waveguide with
qc/o = 1 would be a suitable structure for an inverse Cerencov accelerator. On the
basis of the results reported above {or non-zero q, it seems unlikely that a low loss
structure could be formed from a lattice array of parallel cylindrical rod=z. On the
other hand it seems clear that a low loss radial band gap structure, of the sort
mentione:! in the secrnd section, can be designed.
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