
PHYSICAL REVIEW B VOLUME 48, NUMBER 19 15 NOVEMBER 1993-I

Photonic band gaps and defects in two dimensions:
Studies of the transmission coefBcient
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Using the transfer-matrix technique for the propagation of electromagnetic waves in dielectric
structures, we calculate the transmission coefBcient versus the frequency of the incident wave for dif-

ferent polarizations in two-dimensional periodic and/or random arrangements of dielectric cylinders.
This technique has been applied to cases where the plane-wave method fails or becomes too time
consuming, such as when the dielectric constant is frequency dependent or has a nonzero imaginary

part, and when defects are present in an otherwise periodic system. For all the cases studied, the
results compared well with experiment.

I. INTRODUCTION

There is a growing interest in the studies of the prop-
agation of electromagnetic (EM) waves in periodic (both
in two and three dimensions) and/or random dielectric
structures (photonic band structures). The existence, in
periodic media, of a frequency gap where the propaga-
tion of EM waves is forbidden for all wave vectors, can
have a profound impact on several scientific and tech-
nical disciplines. ' It is therefore very important to ob-
tain three-dimensional (3D) and 2D periodic structures
that possess a full photonic band gap. Theoretical cal-
culations of Ho, Chan, and Soukoulis in 3D have shown
that periodic dielectric materials with a diamond or dia-
mondlike structure can indeed have photonic band gaps.
One of these structures, the "three-cylinder structure"
which consists of three sets of cylinders drilled into a di-
electric material at 35.26 degrees ofI' normal, has been
fabricated in the millimeter length scale and shown to
possess full photonic gap in the microwave region, in
agreement with the predictions of the theoretical calcu-
lations. Very narrow photonic band gaps have been found
also in a simple cubic geometry. For two-dimensional
systems, theoretical studies ' have shown that a tri-
angular lattice of air columns in a dielectric background is
the best overall 2D structure, which gives the largest pho-
tonic gap with the smallest index contrast. In addition,
it was demonstrated that lattice imperfections in 2D
and/or 3D periodic arrays of a dielectric material can give
rise to fully localized EM wave functions. Experimen-
tal investigations of the photonic band gaps have been
mostly done ' ' at microwave frequencies because of
the difFiculty in fabricating ordered dielectric structures
of optical length scales. The experimental results
are in excellent agreement with theoretical calculations.

Most of the theoretical calculations ' take into ac-
count the similarity that exists between electronic states
in a periodic potential and the EM waves in a periodic
dielectric medium. Techniques, such as the plane wave
developed for electronic-structure calculations, have been

applied to calculate the band structure for EM waves
propagating in either 2D or 3D periodic dielectric struc-
tures. The plane-wave expansion technique for EM waves
is now well developed. Most of the techniques concen-
trate on the calculation of the dispersion of the photon
bands in the infinite periodic structure, while experimen-
tal investigations focus mainly on the transmission of
electromagnetic waves through a finite slab of the pho-
tonic band-gap material patterned in the required peri-
odic structure. Even with the knowledge of the photon
band structure, it is still a nontrivial task to obtain the
transmission coefFicient for comparison with experiment.
Another quantity important for the design of photonic
band-gap experiments and devices is the attenuation
length for incident electromagnetic waves inside the pho-
tonic band gap. Another topic of interest is the behavior
of impurity modes associated with the introduction of
defects into the photonic band-gap structure. While this
problem can be tackled within a plane-wave approach us-
ing the supercell method ' in which a single defect is
placed within each supercell of an artificially periodic sys-
tem, the calculations require a lot of computer time and
memory. Recently, Pendry and MacKinnon introduced
a complementary technique of studying photonic band-
gap structures. Their method has the advantage that
the transmission coefFicients and attenuation coefIicients
for incident electromagnetic waves of various frequencies
can be obtained directly from the calculations. Their
method can also be efFiciently used in cases when the
plane-wave expansion method fails or becomes too time
consuming. In particular, when the dielectric function e
is frequency dependent, or when e has large imaginary
values, Fourier expansion methods are not useful. Disor-
dered systems and periodic systems with imperfections
can be easily studied by the method. The band struc-
ture techniques usually calculate the frequency cu given a
real wave vector k and a comparison with a transmission
experiment where an EM wave of fixed frequency u in-
cident on a dielectric sample is not trivial. The incident
EM wave excites all bands at that particular frequency.
This method for a given w calculates all the bands k(w).
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In this paper we report calculations for the photonic
band structure of periodic 2D arrays of cylindrical di-
electric scatterers, as well as cases where single or mul-
tiple defects are introduced. Comparison of the calcu-
lated transmission coefBcient with experimental studies
is excellent. The role of the absorption [i.e. , a nonzero
imaginary value of e(r)] of the dielectric scatterers is also
studied. It is clearly shown that the photonic band gaps
get smaller as the imaginary part of the dielectric func-
tion gets larger. The transmission coefBcient calculations
of the disordered case compare success fully with the ex-
periments and are capable of several predictions for arbi-
trary dielectric structures, with real and imaginary values
of the dielectric constant. This method was also tested
and used for 3D dielectric structures with satisfactory
agreement with experimental studies.

In Sec. II we describe the methods of calculating the
transmission coeKcient. In Sec. III we present and dis-
cuss the results and in Sec. IV we summarize the conclu-
sions of this work.

II. METHODS OF CALCULATIONS
I

We are interested in the propagation of EM waves in
a system that consists of a periodic and/or a random
array of inGnitely long parallel, identical dielectric rods,
characterized by a dielectric constant, e, embedded in a
background dielectric material characterized by a dielec-
tric constant, ~b. The rods are assumed to be parallel to
the x3 axis. The intersections of the rods with the x1x2
plane form a periodic 2D structure. We are mostly inter-
ested in studying the case where the EM waves propagate
in a plane perpendicular to the axes of the dielectric rods,
i.e., in the xix2 plane. Two polarizations of the EM field
are considered: first, the E polarization, in which the
electric Geld vector is parallel to the x3 axis, and second,
the H polarization, in which the magnetic field vector is
parallel to the x3 axis. The starting point is Maxwell's
equations

V' x E = i((u/c) E, V x H = —i(~/c) ~(r) E,

where the dielectric constant e(r) is position dependent,
and we seek solutions of Maxwell's equations which have
the form E(r) exp (—isn't).

For the case of E polarization E(r) = (O,O,E) and H(r)
= (Hq, H2, 0), Maxwell's equations give that

( ~2b2
l4—

l9H XCd= —~E2) = ——cE1)
C BX2 C

(5a)

BE1 'Lcd

Bx2 c (5b)

The equation for the magnetic Beld H obtained by elimi-
nating Eq and E2 from Eqs. (5a) and (5b) can be written
as

0 f'1 DH ) 8 f10H ) 'cu2
+ + , H=O-

Bxy g 6 Oxy ) Bx2 \ E t9x2 ) c

and by discretizing Eq. (6) one obtains

E;—,+, —E+, , —0, (4)

where the indices i and j denote the x1 and xq axis,
respectively, and 6 is the distance between neighboring
nodes in a uniform discrete 2D mesh. Equation (3) can
be solved by the plane-wave expansion method when the
dielectric function e is a periodic function. This is the
technique that most of the theoretical work in 2D has
used. However, Eq. (4) is exactly equivalent to the
well-studied problem of the tight-binding model of elec-
tronic localization. In particular, the most successful
method in obtaining the localized or extended nature of
the wave functions in disordered and/or periodic elec-
tronic systems is the transfer-matrix technique. Equa-
tion (4) can be solved by the transfer-matrix technique, ~s

where the electric fields E on one side of a structure are
related to those on the other. This way the transmis-
sion coeKcient through a particular dielectric arrange-
ment can be calculated. In addition, if the particular
dielectric arrangement is periodic, the eigenvalues of the
transfer matrix give the band structure of the system.
Notice that, in the propagation of EM waves in 2D di-
electric structures, the electric and magnetic Belds are
decoupled and one has a scalar problem [see Eq. (4) for
the E polarization] as in the case of the tight-binding
model for the propagation of electrons. For the 3D case,
the electric and magnetic fields are not decoupled and
one has a more complex transfer matrix to iterate.

For the case of H polarization H(r) = (0, 0, H) and
K(r) = (Eq, E2, 0), Maxwell's equations take the form

BE iw BE
2)Bxi c Bx2

Z(d= —H1,c (2a) +, +; +,
—1 —1 —1 (u2b2 )

) I Eg|''+yHi, j +1

BH2
Bxi

cE
C

(2b) —1 zy —1 —1 zyj i j—1 6+1 j~p+1&j 6, j ~z —1 j = 0)

The equation for the electric field E obtained by elimi-
nating Hq and H2 from Eqs. (2a) and (2b) can be written
as

( 0' 8' l+, ~E+~—,E=O
(Bx', Ox22 y

c'

and by discretizing Eq. (3), one obtains

where the indices i and j denote the 2:1 and x2 axis,
respectively. Again Eq. (6) as Eq. (3) for the E polar-
ization can and has been solved ' ' by the plane-wave
expansion method. Equation (7) is also equivalent to
a tight-binding model of electronic localization; however,
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izations in the case where e = 9+ii, i.e. , a relatively large
value of the imaginary part of e. Notice there are many
oscillations at low frequencies (see similar oscillations in
Fig. 1) which are the result of the multiple scattering
between the two surfaces of the material; for this rea-
son they tend to disappear as the imaginary part of ~ in-
creases. It is also possible with our technique to calculate
the reHection coefBcient, which is the more relevant quan-
tity when absorption processes become dominant. This
transfer-matrix technique can be used to design struc-
tures with particular reHecting properties.

In polar crystals, the coupling between the trans-
verse optical phonons and the transverse electromagnetic
waves afFects the propagation of EM waves in the mate-
rial. This coupling can be described by the ft. equency
dependent dielectric constant:

CdL —Cd

t(ld) = E~
T

[in the present case we assume that the imaginary part of
e(cu) is zero]. In this case, the dielectric material exhibits
a gap between cdL, and cdT, where EM waves cannot prop-
agate. We want to study how the two gaps interact in a
periodic structure where the high dielectric material is a
polar material characterized by the frequency dependent
dielectric constant given in Eq. (8). In particular, we
considered a 2D square lattice consisting of GaAs cylin-
ders with filling ratio f = 0.449 as in Fig. 1; for GaAs we
have that @~=10.9, cdi, ——0.875x10 3 s, cdT ——0.812x
10 s . GaAs is a material that can be used to create
a 2D photonic band-gap structure in the visible region.
In the homogeneous case (f = 1), the reflectance will be
one for cdT ( cd ( cdL, so there is a forbidden frequency
band (FFB) between w~ and tuL„ this FFB appears also
in the nonhomogeneous cases (f $1) as we can see in
Fig. 3. The gaps will be affected only when they are
close to the FFB region, for that reason we considered

lattice constants close to 6 pm (the f remains constant)
so the frequency of the gap will be close to either cdL,

or cdT. In Fig. 3 we present the results for two diferent
lattice constants (d = 7.54 pm and d = 5.65 pm) and
E parallel to the axis of the cylinders (the conclusions
are the same for both E and H polarizations). For the
2D square lattice with d = 7.54 pm and f = 0.449 and
a=10.9, the frequencies, where the first two gaps appear,
are roughly at 0.8 x 10 and 1.6 x 10 GHz. This can be
easily obtained from Fig. 1 since the frequency scales as
1/d. For d = 5.65 IMm, the first two gaps are roughly at
1.1x10 and 2.2x10 GHz. However, as one can clearly
see from Fig. 3, once the frequency dependent dielectric
constant given by Eq. (8) is used, the positions of the
gaps are strongly modified. Notice that for the d = 7.54
pm case the first two gaps are now centered at around
0.65x10 GHz and 0.95x104 GHz, while there is also a
strong dip in the transmission coefficient just below cdT.
Similar behavior can be seen for the d = 5.65 pm case.

We now turn to the calculation of the transmitted
power versus frequency for the cases where one or more
cylinders have been removed from the otherwise peri-
odic array of 2D dielectric cylinders. It is clearly seen
experimentally ' '~ that the removal of a single scatterer
produces a highly localized EM defect mode. Experi-
mental studies of Ref. 2 have followed the evolution of
the defect states created by randomly removing an in-
creasing number of cylinders from a square until 50% of
the cylinders are removed. In Fig. 4, we present a se-
quence of transmission calculations of a periodic lattice
with 162 sites (9x 18) with an increasing number of cylin-
ders removed. The dotted line in Fig. 4 shows the peri-
odic case with no cylinders removed. This transmitted
power versus frequency agrees with the results presented
in Fig. 1(a) for the E polarization. The results presented
in Fig. 4 were calculated by iterating Eq. (4) with the
introduction of a Green's function as was done for the
electronic case. As the number of cylinders removed
increases, one starts seeing an impurity state inside the
photonic band gap, which broadens to form an impurity
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FIG. 4. The transmitted power vs frequency for a 2D
square lattice consisting of 162 (9x 18) cylinders with
f = 0.449 and a=9 surrounded by air; the dotted, solid, and
dashed lines correspond to the perfect lattice, 11, 24, and 40
cylinders removed, respectively.
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FIG. 5. The transmitted power vs frequency for a 2D
square lattice consisting of 50 (5 x 10) cylinders with f = 0.449
and a=9 surrounded by air; the solid and dotted lines corre-
spond to the perfect lattice cylinders and the two neighboring
(a) and non-neighboring defects (b) lattice, respectively.

band. This is clearly seen in Fig. 4, where a total of 11
then 24 cylinders and finally 40 out of the 162 cylinders
are removed. Notice that in addition to the broadening
of the impurity band in the photonic band gap (with two
distinct peaks), there is an overall decrease in the trans-
mitted power for all the frequencies studied. Another
interesting result of our calculations is that the band
edge moves outward as more defects (i.e. , more cylinders
are removed from the periodic structure) are introduced.
This is sixnilar to the behavior of the density of states
in the electronic disordered systems. The slope of the
transmission coefFicient versus &equency might be used
to obtain the Urbach tail for these disordered photonic
band-gap structures. Our transmission coefFicient studies
agree reasonably well with the microwave experiments of
Schultz et al.

It is interesting to see what happens when we remove
two cylinders. We chose to work in a periodic lattice
with 50 (5x10) cites because the number of removed
cylinders is much sxnaller coxnpared with the previous
cases. %'e present the results in Fig. 5. Two sharp peaks
[Fig. 5(a)] appear when we remove two second-nearest-
neighbor cylinders which are located close to the center
f th lattice. the first peak is located close to the upper

ofedge of the gap, while the second one is in the middle o
the gap. These results are in excellent agreement with
the experimental results of Refs. 2 and 12 (Fig. 6). Com-

panng igs. aF' 5(a) and 6 one sees that there is some small
difference between theory and experiment about the ex.—

act positions of the peaks. We feel this is due to the
fact that in theory we considered a square lattice with
(5xl0) cylinders, while the experiment was performed
with (9x18) cylinders. In the case of third-neighbor de-
fects [Fig. 5(b)], we also have two peaks which are located
in nearly the same &equencies as in the previous case, but
the second peak in the middle of the gap is much smaller.
It seems that the impurity state which corresponds to
that peak is xnore delocalized in the second-neighbor de-
fect case as a result of the interaction of the two defect
states. The overall agreement between the transmission
coeKcient studies and the microwave experiments sup-
ports the statement that these numerical studies of trans-
mittance can be used reliably for predicting the behavior
of yet untried structures.
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FIG. 6. The experimental power vs frequency for a 2D
square lattice consisting of (9x18) cylinders with f = 0.449
and a=9 surrounded by styrofoam (e=l.04). Two cylinders
are removed from near the center of the lattice. [Expenments
by Schultz et al. (Ref. 12)].

IV. CONCLUSIONS

In conclusion, we have presented a systematic study of
the transmission coefFicient versus frequency for 2D peri-
odic and/or random arrangements of dielectric cylinders.
The transfer-matrix technique, so often used in electronic
tight-binding models, has been applied to the propaga-
tion of EM waves in dielectric structures. The method
treats periodic dielectric arrangements, even when the
dielectric constant is either frequency dependent or has a
nonzero imaginary part. In addit;ion, the transfer-matrix
technique gives accurate results for the impurity modes
created by either removing one or more cylinders from the
otherwise periodic structure. The computer time needed
for the calculation of the transmission coefFicient for the
states is much less than the supercell method used so
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far. Finally, this method can be easily extended to stud-
ies of 3D systems, with or without impurity modes.
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