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We formulate the photonic band structure calculation of any lossless dispersive photonic crystal and

optical metamaterial as a Hermitian eigenvalue problem. We further show that the eigenmodes of such

lossless systems provide an orthonormal basis, which can be used to rigorously describe the behavior of

lossy dispersive systems in general.

DOI: 10.1103/PhysRevLett.104.087401 PACS numbers: 78.67.Pt, 42.70.Qs, 78.20.Bh

Remarkable progress has been made over the past two
decades in the study of nanoscale periodic photonic struc-
tures such as photonic crystals and metamaterials. The
ability to accurately calculate the eigenmodes and band
structures of such periodic structures has proven essential
to continued progress in identifying novel optical phe-
nomena and developing devices that exploit them. While
early work in band structure computation focused on
frequency-independent dielectric materials, there is now
significant interest in computing the photonic band struc-
tures of material systems with frequency-dependent per-
mittivities, for applications in optical metamaterials and
dispersive photonic crystals [1–7].

In general, the photonic band structure for any periodic
material system can be determined by solving the follow-
ing equation [8]:
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�
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where " is the material permittivity, H is the magnetic
field, and! is the frequency of the photonic mode. When "
is independent of frequency, Eq. (1) becomes a Hermitian
eigenvalue problem [8]. Such a Hermitian formalism
greatly facilitates numerical calculations [9]. Moreover, it
ensures mode orthogonality across different bands, which
permits a global view of the band structure across the entire
frequency spectrum [8], and enables advanced simulation
techniques such as the Wannier function approach that
greatly speed up the calculation of complex circuit ele-
ments [10,11].

Ideally one would like to perform a similar band struc-
ture calculation for material systems with arbitrary
frequency-dependent dielectric functions, "ð!Þ. The diffi-
culty here is that with the ! dependence in ", Eq. (1) no
longer defines a standard eigenvalue problem. While the
photonic band structures for such dispersive systems have
been obtained by a variety of techniques that solve
Maxwell’s equations in either the frequency or time do-
main [5,12–18], in all these formalisms there are no ap-
parent constraints between solutions at different frequen-
cies. The resulting band structures are therefore of less

utility compared to the standard dielectric band structure,
since many important calculations, including, for example,
the calculations of local density of states [19], rely criti-
cally on the capabilities of expanding the fields on an or-
thonormal basis formed by the eigenmodes of the system.
In this Letter we demonstrate that the band structure of

dispersive photonic crystals and optical metamaterials, in
general, can be obtained by solving a standard matrix
eigenvalue problem. In the case where the material can
be approximated as lossless, the eigenvalue problem is
Hermitian, which directly leads to an orthogonality condi-
tion for modes at different frequencies. For a lossy struc-
ture, the modal loss can be directly solved by a non-
Hermitian eigenvalue problem. Moreover, we show that
modal loss can alternatively be calculated by a perturbation
approach starting from the lossless structure. Thus, the
modes for lossless structures provide an important ortho-
normal basis for understanding dispersive metamaterial
structures in general.
To illustrate this approach we, as an example, consider

photonic crystals made of materials whose permittivities
are described by a Lorentz pole [20]:

"ð!Þ ¼ "1
�
1þ !2

p

!2
0 �!2 þ i!�

�
: (2)

The method we present is, however, generalizable for
systems with arbitrary number of poles, as we will explic-
itly show towards the end of the Letter.
The dielectric response of Eq. (2) arises from the cou-

pling of the electric field E to local mechanical oscillators.
Thus, we explicitly introduce auxiliary fields for such local
oscillators, and couple such auxiliary mechanical fields
with the standard Maxwell’s equations that describe the
E and H fields. To develop this, we begin with the equa-
tions of motion for an electron with mass m, located at a
position r, bounded by a harmonic oscillator potential with
a characteristic frequency !0, and subject to an electric
field E and damping loss rate �:

d2r

dt2
þ �

dr

dt
þ!2

0r ¼
eE

m
: (3)
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Defining the polarization field P ¼ Ner, where N is the
electron density, and plasma frequency, !2

p ¼ Ne2=m"1,
we find an expression for P:

d2P

dt2
þ �

dP

dt
þ!2

0P ¼ !2
p"1E: (4)

Equation (4) is exactly equivalent to the Lorentz model in
Eq. (2). Consistent with the original form of the Maxwell’s
equations, which has a first-order differentiation in time,
we introduce an additional polarization velocity field V
defined by V ¼ dP

dt . We can now present the basic equa-

tions of motion for the electromagnetic field in a dispersive
medium:
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With this established, and further assuming a steady state
with all fields varying as expði!tÞ, this system can be
written as a matrix equation for !:
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We emphasize that all coefficients in Eq. (9) are fre-
quency independent. The entire effect of material disper-
sion has been taken into account through the use of the
auxiliary fields. Moreover, both the E and H fields in this
equation are identical to the physical E andH fields in the
original form of Maxwell’s equations.

Closely related to this approach, we note that similar
auxiliary fields have been employed in standard finite-
difference time-domain simulations for dispersive media
[21], and have been used as a starting point for field
quantization in dispersive media [22]. The original contri-
bution in this Letter is to explicitly demonstrate the use of
such auxiliary mechanical fields for band structure simu-
lation and analysis.

We now apply Eq. (9) towards defining and solving the
band structure for dispersive metamaterials in general. We
consider first the lossless case, by setting � ¼ 0. In this
case, Eq. (9) can in fact be reformulated in terms of a
Hermitian eigenvalue problem. To see this, defining x ¼
ðH;E;P;VÞT, we can rewrite Eq. (9) as!Ax ¼ Bx where

A ¼ diagð�0; "1; !2
0=!

2
p"1; 1=!2

p"1Þ; (10)
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Here, bothA andB are Hermitian matrices. Moreover,A is

positive definite. Defining y ¼ ffiffiffiffi
A

p
x, we get

!y ¼ ð ffiffiffiffi
A

p Þ�1Bð ffiffiffiffi
A

p Þ�1y (12)

where ð ffiffiffiffi
A

p Þ�1Bð ffiffiffiffi
A

p Þ�1 is Hermitian.
The Hermitian formulation of Eq. (12) immediately

leads to an orthogonality condition for the modes. For
two modes at different frequencies !m and !n, the corre-
sponding eigenmodes ym and yn should be orthogonal, i.e.,R
drym � yn ¼ �mn. Using the relation x ¼ ð ffiffiffiffi

A
p Þ�1y, we

find the following orthogonality condition in terms of the
physical fields:

Z
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0P
�
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�
¼ �mn: (13)

Such an orthogonality relation is essential for understand-
ing various features of the band structure across the entire
frequency spectrum. This result also connects directly with
the energy density:

W¼1

2
ð"1jEj2þ�0jHj2Þþ 1

2"1!2
p

ðjVj2þ!2
0jPj2Þ; (14)

where the last two terms correspond to the mechanical
kinetic and potential energy of the electrons. We note
further that the Hermitian nature of our operator ensures
that the eigenfunctions of Eq. (12) form a complete, ortho-
normal basis [23].
The lossy version of Eq. (9) has � � 0 which renders it

non-Hermitian. To solve for the band structure of a lossy
metamaterial, we directly diagonalize Eq. (9) to find the
exact eigenmodes. The imaginary parts of these eigenval-
ues ! ¼ !0 þ i!00 are the inverse lifetimes of the modes.
Furthermore, the orthonormal mode basis for the loss-

less system, as defined in Eq. (13), provides a basis for un-
derstanding lossy systems in general. To see this, we first
define B0 ¼BþD where, in the same notation of Eq. (10),
D ¼ diagð0; 0; 0; i�="1!2

pÞ. Then, we treat the effect of D
with first-order perturbation theory: given solutions!0 and
x0 ¼ ðH0;E0;P0;V0ÞT that satisfy!0Ax0 ¼ Bx0, we find
a first-order perturbative solution to the equation !Ax ¼
ðBþDÞx, where ! ¼ !0 þ!1 with

!1 ¼ hx0jDjx0i
hx0jAjx0i ¼

i�=2"1!2
p

R
drjV0j2R

drW0

; (15)

where W0 is the total energy density for the lossless mode
as defined in Eq. (14). !1 is thus purely imaginary and
defines the loss rate of the modes. Moreover, the form of
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Eq. (15) indicates that the modal loss is directly propor-
tional to the kinetic energy of the electrons.

As a demonstration of this formalism, we consider a
periodic array of plasmonic metal rods in air. This material,
described by the Drude model, is treated in our formalism
by setting !0 ¼ 0. In this case, Eq. (4) can be expressed
entirely in terms of the V field, while the P fields are not
present, reducing the size of our matrix equation. We set
!0 ! 1 and !p ! 0 for the air regions. This ensures that

the V field is not present in the air regions. The systems
considered are two dimensional and are uniform along the
third z dimension. For 2D systems we can completely
separate the problem into calculations for TE and TM
modes, with either the magnetic or the electric field en-
tirely polarized along the z direction, respectively. To
compute the band structure, we implement a finite-
difference spatial discretization of the E and H fields
with a Yee grid [24]. The use of Yee’s grid ensures
divergence-free behavior for the electromagnetic fields
[25]. The equations are written for every cell in the Yee
grid, with the spatial derivatives represented using finite-
difference matrix operators [25]. The resultant matrix is
very sparse and can be efficiently stored for computation
purposes. We note here that our method is not constrained
to 2D periodicity, and can be used for 3D periodic systems.

We start with the lossless case. The Hermitian eigen-
value problem of (12) can be solved efficiently using the
well-known implicitly restarted Lanczos method [26]. The
TE band structure of square metallic rods in air, where each
side of the square has length s ¼ 0:25a is presented in
Fig. 1(a). The material used is defined by "1 ¼ 1, !0 ¼ 0,
!p ¼ 1 for a ¼ 137:6 nm. These calculations are verified

against the band structure calculated by analyzing the

spectrum from a finite-difference frequency domain
(FDFD) simulation of the same structure [27]. We briefly
highlight that the TE band structure presents numerous flat
bands that correspond to surface plasmon modes, one of
which is presented in Fig. 1(c).
For the plot shown in Fig. 1 we used a resolution of 20�

20 grid points. To test the convergence of the method we
have also solved the band structure for higher resolutions.
The band structure in Fig. 1 has a large number of flat
bands, in particular frequency ranges [14]. Increasing the
resolution increases the number of flat bands [16]. The fre-
quency ranges where the flat bands occur, as well as the
bands outside these ranges, are unchanged at higher
resolutions.
To demonstrate the lossy version of the formalism, we

consider the same plasmonic system with � ¼ 0:01!p. (As

a comparison, silver has � ¼ 0:0024!p [28]. Here we have

intentionally chosen a higher damping rate to demonstrate
the utility of our formalism even in the presence of strong
metal loss). We plot in Fig. 2 the inverse lifetime of the
mode, Im½!� ¼ !00, against the real frequency !0. Strong
modal loss is observed in the frequency range where the
flat surface plasmon bands are present.
We now demonstrate the connection between the loss-

less and the lossy band structures using first-order pertur-
bation theory. For our example, we compare the
perturbative solutions !1 against the exact solutions !00
in Fig. 2 for � ¼ 0:01!p and find excellent agreement. The

formalism here further enables us to quantitatively com-
pare modes at different frequencies. We note that the two
modal profiles in Fig. 1 are plotted with the same normal-
ization such that the total energy inside a unit cell is set to
unity. Examining these modal profiles, we note that the
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FIG. 1 (color online). (a) Computed band structure for 2D square plasmonic rods (r ¼ 0:125a) in air for the TE polarization. The
band structure is shown between the � point wave vector (k ¼ 0), and the X point, (k ¼ �=a along the x direction). (b) and (c) are
visualizations of two field components at highlighted points in (a). Specifically, these are the electric and auxiliary polarization velocity
field intensities for the modes.
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mode calculated to have a higher loss [Fig. 1(c)] indeed has
a much stronger mechanical field compared with a mode
with lower loss [Fig. 1(b)]. The lossless Hermitian formal-
ism thus provides important insights into understanding
loss in such periodic material systems for realistic �.

Our method is easily extended to any linear material
system by recognizing that the permittivity of any disper-
sive material can be modeled with several Lorentz poles,
with increasing accuracy as the number of poles N in-
creases:

"ð!Þ ¼ "1 þ "1
XN
n¼1

!2
p;n

!2
0;n �!2 þ i!�n

: (16)

To model such a medium, for each Lorentz pole in Eq. (16)
we introduce separate mechanical fields Pn and Vn.
Equation (9) is then modified to

!E ¼ �i

"1

�
r�H� XN

n¼1

Vn

�
: (17)

All of the discussion above on the formalism then follows
in exactly the sameway. In conclusion, we provide a direct,
rigorous way of solving for the photonic band structure of
any linear, lossy, dispersive periodic system. We also es-
tablish an orthonormal basis set, as obtained by consider-
ing a corresponding lossless case, for understanding lossy
systems in general.
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