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Abstract. By adapting the well-known ‘zigzag’ ray model for use with a
periodic waveguide (i.e. replacing the plane wave rays with Bloch wave rays),
we show that thin films of high refractive index, supported by a low index
substrate and fully etched through with a periodic pattern, can support guided
modes. From the dispersion relation of these guided Block modes, it is shown
that the in-plane modal group velocity can be zero, suggesting applications in
enhanced dipole—field interactions and control of spontaneous emission in
waveguide lasers.

1. Introduction

It is now accepted that, within a band of frequencies known as a photonic band
gap (PBG), all the electromagnetic modes in a volume of dielectric material can
be suppressed by appropriate periodic patterning, i.e. by the creation of a photonic
crystal [1-3]. This permits a single intra-PBG electromagnetic mode (or resonance)
with high quality factor (Q) to be introduced by means of a structural point defect.
At the resonant frequency of this mode there can appear a substantial (depending
on the Q-factor) enhancement in vacuum field intensity. If an electronic dipole
whose transition coincides with this frequency is introduced, spontaneous emission
will be enhanced and low threshold highly efficient lasing achieved [4].

The first such microlaser awaits the realization of a full PBG at optical
frequencies, a task which pushes at the limits of what is possible in state-of-the-art
nanofabrication. In the face of this considerable technological challenge, a number
of groups worldwide are investigating the use of simpler structures supporting
PBGs in two dimensions [5-10]. For example, arrays of closely spaced vertical
cavity emitting lasers are being constructed in which it is hoped to suppress lateral
emission by creating an in-plane PBG [11]. The performance of structures of this
sort will, however, only be attractive if waveguiding is built into the designs, i.e.
if fully trapped transverse resonances are created where the light bounces to and
fro between the upper and lower interfaces of the periodic layer. Only a few of the
published numerical studies of photonic band structure in two dimensions treat
this case [6, 8, 12]. Most do not allow for propagation along the third dimension—
essential if guided modes are sought.
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Figure 1. Comparison of (left) the conventional approach to tackling propagation in a
weakly periodic guide and (right) the approach adopted in this paper in which the
Bloch waves of the periodic layer are used to construct the guided Bloch modes.

Prior analyses on Bragg diffraction in periodic waveguides (e.g. fibre gratings
or DFB lasers) start with the assumption that the refractive index modulation is
weaker than the index step that forms the waveguide [13]. This allows one to
construct a theory based on the coupling of power between a pair of guided modes
satisfying a Bragg condition, the essential approximation being that the ‘strongly’
guided modes are resistant to the weaker periodic perturbation. In this paper,
driven by the PBG requirement for large index modulation, we tackle the case (see
figure 1) where this is no longer a good approximation. Rather than building coupled
mode equations from the guided modes of a film of the same average index, we
construct the guided modes of the fully etched layer from the Bloch waves of the
periodic medium out of which the layer is constructed. The resulting guided Bloch
modes contain all the salient features of propagation in the periodic layer, including
the photonic band structure, dispersion and group velocity. As we shall show,
stationary modes can be found (at particular frequencies) that have zero group
velocity in the guiding plane. These modes will interact very strongly with a dipole
of the correct frequency if it is incorporated into the waveguide.

The generic structure (figure 2) consists of strips of high index dielectric
sandwiched between media of lower refractive index, the cover and the gaps
between the strips being air. This provides an extremely high modulation depth
of the refractive index in-plane. Although there are physical gaps in the wave-
guiding layer, these turn out—under the correct conditions—to be below the
resolution limit of light both in the cover and the substrate, permitting strongly
guided modes to be supported. We shall now obtain the field structure and

low index substiate

Figure 2. The structure analysed consists of lines of high refractive index placed on a
substrate of low refractive index, the other regions being filled with air. Propagation
in the (y, 2) plane only is considered.
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dispersion of the Bloch modes in an infinite periodic stack, and then use a ‘zigzag’
ray picture [14] (in which the ray direction is given by the group velocity of the
Bloch waves) to derive the dispersion relation of the guided Bloch modes in a slice
of this stack placed between two media of lower refractive index.

2. Bloch waves of infinite periodic stack

Our starting point is the standard translation matrix technique for a dielectric
stack formed from alternating layers of high and low refractive index [9, 15]. We
use this to obtain the dispersion relation for the Bloch waves. For completeness
we present the main steps in this analysis, relegating most of the details to the
Appendix.

The dielectric stack consists of alternating layers of refractive index »; and 7,
and widths &, and %, the stack period being A = (h; + h,). Cartesian axes are
oriented with ¥ normal to the layer boundaries and 2z along the layers (figure 2).
No field variation with x is allowed, which allows separation of the fields into
transverse magnetic (TM) and transverse electric (TE) states, with respectively
E,=H,=H,=0and H,=E,=E,=0. In each case, all field components can
be written in terms of the surviving x-component, f, which may be expressed in
the jth layer (j = 1, 2) of the Nth period as:

sin [p(y —y)]
M) =al cos [pfy —y )] + b —-——L= (1)
¢ipiA
where a}v and bJN are constants to be determined, yjN is the value of y at the centre
of the jth layer of the Nth period and p; is the wavevector component of the field
normal to the interface within each medium:

b= (k*n} — pHV? (2)

where B is the propagation constant in the z direction and k is the vacuum
wavevector. The TE and TM cases are selected via the parameter ¢

&=1 (TE) or &=1/n (TM). 3)

The field throughout the stack is completely specified by a two-component state
vector consisting of the constants a]N and bJN. The state vector in one layer is related
to the state vector in the corresponding layer in the previous period by operation
with a 2 x 2 translation matrix, M:

N+1 A A B A
(on) G- 2G5 ®
b b; C A/\b;
See the appendix for the elements of M, and for the elements of the matrix M,,

relating the state vector in layer j = 1 to the state vector in the neighbouring layer
j = 2. The eigenvalues and eigenvectors of M are given simply by:

+B!2
iy =A £ (BO)?, f, = <+C‘/2> (5
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where BC = A%~ 1 and [M| =1, i.e. M is unimodular. This implies that the
product of the eigenvalues is unity and thus, without loss of generality, that:

, arccos A
/li = €Xp (i.]kyA)) ky = —A— (6)

where %, is the Bloch wavevector. For a given polarization state at fixed optical
frequency and f, the complete field in the structure is expressible as a superposition
of two Bloch waves with field distributions:

f1(y) exp [—jBz] = B, (y) exp [—j(Bz + k,¥)] (7)

where the function B.(y) is periodic with period A.

3. The wavevector diagram

The wavevector diagram is a plot of the loci of real wavevectors at fixed optical
frequency in the multilayer stack. It is extremely useful for establishing a clear
graphical understanding of the boundary conditions on either side of the periodic
layer [9]. First the following set of normalized parameters is adopted:

Ny = (nlh] + n2h2)//1

8
v="Fkn, A, ng=mny/n;, T=hy/A ®
where n,, is the weighted average index, v is the normalized frequency, ng the index
ratio and 1 the relative layer thickness. A series of wavevector diagrams, plotted for
a multilayer structure consisting of alternating layers of air and silicon (ng = 3-45)
with 1 =08, is given in figure 3. For a normalized frequency v=2 and TE
propagation, the mode index of the Bloch waves is approximately isotropic and
equal to the average index, n,,.. The circles repeat in the y direction at intervals
of 2n/A as a consequence of Bloch’s theorem. The T'M wavevector diagram on the
other hand is elliptical, expressing the birefringence of the periodic structure. At
a normalized frequency of v = 3 a momentum gap appears within a certain range
of B values. In this gap the Bloch waves are evanescent, i.e. if the stack is infinite
in extent they cannot exist. The group velocity of the travelling Bloch waves is
given by:

v, = Vio(k) 9)

which indicates that v, is oriented normal to the curves in wavevector space,
pointing in the direction of increasing frequency. The points where the momentum
gap is narrowest occur at k,A/n = 1, and will be referred to as the symmetric points;
at these points the group velocity points exactly along the layers. When the
normalized frequency is increased to 4, ellipse-like shapes appear in the momentum
gaps. These give rise to an additiona! pair of symmetric points. We shall refer to
the Bloch waves on the ‘ellipse’ as the fast Bloch waves and those on the outer
branches as slow Bloch waves, a naming convention which relates to the phase
velocity along the layers.

*
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Figure 3.  Series of wavevector diagrams for TE and TM cases at three different
normalized frequencies v in a multilayer stack with n, =1, n, = 345, n, =157,
ne,=1and t=08.
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4. Boundary conditions

At fixed optical frequency, boundary conditions specify that the components
of wave momentum along a planar interface must be conserved as the interface is
crossed. By superimposing the wavevector diagrams for the two adjoining materials,
fulfilment of this condition is easy to visualize graphically. In our case the diagram
for the substrate is simply a circle:

Sy e (10)

which is shown (with dotted curves) on figure 3. To treat phase matching at, for
example, an interface in the (x, y) plane, a horizontal construction line is drawn
on the (8, k,) diagram. For &, A/m close to 1 this line does not intersect the substrate
circle, so that total internal reflection occurs and the Bloch waves are trapped in
the periodic layer. As k,/4/n decreases, the line eventually intersects the substrate
circle, and the Bloch waves radiate from the periodic layer into the substrate.

5. Symmetrical points on the frequency versus f diagram

On this diagram (figure 4), the positions of the momentum gap edges are plotted
as a function of frequency for the same structure as treated in figure 3. In the
regions of the diagram that are not shaded %, is real and the corresponding Bloch
waves propagate freely in the structure. Below the kyA/Tt = 0 line the Bloch waves
are cut-off. In the shaded regions between the k,A/n = 1 lines, &, is complex and
the Bloch waves are evanescent. In the TM case the gap width shrinks to zero at
BA/m = 0-3, which occurs when the rays in each layer are incident on the interfaces
at Brewster’s angle.

(a) TE (b) TM

4 4
3 3
Vv
2 2
1 1
02 04 06 08 1 12 14 02 04 06 08 1 12 14
BA BA
T s

Figure 4. Frequency versus f diagram for the multilayer stack of figure 3 (n; =1,
n, = 345, ng =157, n, =1and t = 08). .
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6. Two-wave approximation for the Bloch waves

To reduce the complexity of the problem, we now take the Fourier transform
of the periodic part B,(y) of the Bloch wave fields, and extract the amplitudes of
the two dominant partial waves in the plane-wave expansion. These are then
matched to the fields with upward (+y) and downward (—y) progressing phase
velocities (evanescent in the z-direction) in the substrate and cover regions. All
the higher order partial plane waves are ignored; as we shall show, the accuracy
of this approximation is such that the solutions compare favourably with the results
of a numerical finite-difference analysis.

Each Bloch wave can be expanded in terms of an infinite set of partial plane
waves whose wavevectors are related by Floquet’s theorem:

k, = pz + (k, + nK)y (11)

where K = 2m/A is the grating vector. This permits us to express the exact solutions
from the translation matrix analysis, B.(y) in (7), in the general form:

By (y) =Y. S; exp (—jnKy) (12)

where the S} are the complex plane wave amplitudes, whose values are easily
found by performing Fourier analysis, yielding:

1 Af2 )
S; = ZJ B .(y) exp (jnKy) dy. (13)
—Af2

Retaining the two dominant partial waves, the Bloch wave fields b .(y, 2) are given
approximately by:

be(y, 2) ~ exp [—i(Bz £ k,3)1(SE + S, exp (Ky)) (14)

where as before the choice of + or — determines the group of Bloch waves that
progresses (or evanesces) in the +y or —y directions.

The percentage errors in amplitude and phase introduced by this approximation
are plotted in figure 5 for normalized frequencies of 3 and 4. For slow Bloch waves
the amplitude error is less than 3% and the phase error less than 0:5% over the
parameter range of interest. For fast Bloch waves the worst case is at the top of
the frequency range and gives an amplitude error between 6 and 7% and a phase
error less than 0-8%.

7. Guided Bloch modes

We are now in a position to obtain the dispersion relation of the guided Bloch
modes. The interfaces are considered to be parallel and separated by a distance A.
The boundary conditions require that all wavevector components in the y-direction
be continuous across the interfaces. The most general case (or four participating
Bloch waves) is illustrated in figure 6, the arrows indicating the directions of the
group velocities in the layer. The upward (U) and downward (D) partial waves in
each of the four Bloch waves (labelled by f (fast) and s (slow) for § > 0, and f (fast)
and § (slow) for 8 < 0) are now matched to the upward and downward evanescent
waves in the cover (co) and substrate (ss). The surviving x components b, b, b
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Figure 5. Percentage root mean square errors in (a) phase and (b) field amplitude
introduced by truncation of the plane wave spectrum to two partial waves. The mean
is averaged over one grating period (n, = 1, n, = 345, n,, = 1-57, n_, = 1 and = = 0-8).

» (2]
At a normalized frequency of 3 only slow waves exist and the errors are less severe.

The size of the errors increase with increasing frequency. The errors for fast and slow
waves are shown for the highest frequency of interest, v = 4.

and b; of the Bloch wave fields (from (14), taking without loss of generality the +
sign and replacing the subscripts + with f or s) are:

be _ b;
Viexp (—jfz)  Vexp (jf¢2)

where f and F are simply replaced by s and S for the slow Bloch waves. The F;
and Fj, are the renamed upward and downward partial wave amplitudes (identical
for f = %|B|) from (14), f; is the value of § on the inner (fast) stop-band branch,

=exp (—jky)(Fy + Fpexp OKy))  (15)
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TE Wavevector Diagram

T

h|

Figure 6. The waveguide modes are found by matching k, at the substrate and air
interfaces and then satisfying a resonance condition. At each interface four Bloch
waves are matched to two evanescent plane waves, i.e. an incident wave of one type
scatters partially into a wave of the other type at the interface. However only the
waves that satisfy the resonance condition will propagate along the waveguide.

B, is the value of § on the outer (slow) stop-band branch and V; are the Bloch
wave amplitudes (to be determined). If the ‘ellipse’ is not present, then f;
is pure imaginary. The Evanescent fields in the cover (E_,, = = k/2) and substrate
(E,,., = < —h/2) regions are given by:

E, exp (jk,y) = Uy, exp [— (k5 — k%) (= — h/2)]
+ D, exp [—[(k, — K)* — K*n, 1" (z — h/2)] exp (JKy)
E,, exp (jk,y) = Uy exp [(k] — K*n)"*(z + h/2)]
+ Dy, exp [[(k, — K)* — K03 )%z + hj2)] exp (jKy)  (16)

where h is the layer width, U, U,, D.,, and D being the upward (+y) and

downward (—y) progressing wave amplitudes in the cover and substrate. Requiring
continuity of the x-components and derivativest of the upward and downward fields

t For the TM case the boundary condition, at the interface between the periodic
structure and the cover orsubstrate, requies continuity of (1/n%(3))(dH,/dz). In the present
analysis it is assumed that, for this boundary condition, n(y) is constant and equal to the
average index, n,,. A more accurate approach would involve finding Fourier components
of 1/n*(y) and incorporating these into the analysis. However, when the results from both
methods are compared, the error is very small, validating the initial approximation.
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at the substrate and cover interfaces yields eight boundary conditions, which are
most conveniently written in the form of a matrix equation:

Fyet? F e ® Sye™@ Syete -1 0 0 0
Fye*? Fye™® Spe™? Spet? 0 -1 0 0
F e™* Fet? Sye*’ Sye™° 0 0 -1 0
Fye™® Fyet® Spe*’ Spe? 0 0 0 -1
BeFye™ —BFye™® —BSye™ BSue™ —ijpu O 0 0
BiFoe™® —fiFpe™® —BSpe™ BSpe’™ 0 —ipup 0 0
BeFye™® —BiFye™ —BSye’ BSye™ 0 0 jpou O
BeFpe™® —piFpe™® —B.Spe™ BSpe™ 0 0 0 JPewp

Vi

5

4

Vi

X =0 (17)

DSS

Ueo

DC

where

¢ =iBch/2, o =]B.h/2,
by = fj(ki - kz”})m, bp= fj[(ky - K)2 - kznjz]l/z, (18)
¢&=1 (TE) or ¢ =nl/n} (TM)

are the definitions of the various parameters and j = co or ss. Real values of &, for
which the determinant of this matrix is zero yield the guided Bloch modes of the
periodic layer. At the symmetric points (k,A/n = £1), the upward and downward
partial waves have equal and opposite wavevectors, which means that the con-
ditions for the upward and downward waves are identical. Since the fast and slow
guided Bloch modes are orthogonal at this point and can be considered separately,
the problem reduces to a much simpler 4 x 4 matrix yielding the following
dispersion equation for the guided modes:

ﬁq(pssU + pcoU) _ ﬁq(pssD + pcoD)
2 Y] (19)
:Bq — PssuPeou ﬁq — PssDPcoD

where q =f or s (for the fast or slow Bloch waves) and m is an integer. This is
very similar to the standard dispersion relation for an asymmetric slab waveguide

[14].

tan (B 7 + mn) =
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8. Results

8.1. Guided Bloch modes at symmetric points
Figure 7 shows plots of normalized frequency v versus h/A for a Si structure
on a glass substrate (n; =1, n, =345, n, =157, n, =1, 1=08, yielding
n,. = 2:96). Since they reside at the symmetrical points on the wavevector diagram,
. these guided Bloch modes have zero group velocity in the direction parallel to the
substrate and are fully confined within the layer. For small values of 4 the modes
are widely spaced in frequency. The upper set of curves (dashed line style) is for

(a) TE Guided Modes at Symmetric Point

T -
\

38t \

36t

34}

 fast myde cutoff
32¢t

2.8}

38}

361

stop band closes

34+
 fast mode cutoff

321

28}

2 4 A 6 8 10

Figure 7. Normalised frequency v versus h/A for the guided Bloch modes at the
symmetrical points in a Si structure on a glass substrate (n; = 1, n, = 345, n,, = 1-57,
n, =1 and 7 =08). The solid lines represent slow modes and the dashed lines
represent fast modes. The fast mode cutoff at v = 3:2996. In the TM case (b) the
modes switch from fast to slow at v = 3-435. This is a result of the definition of fast
and slow modes and the crossing of the k, = /4 lines in figure 4 where the stop band
closes.
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Figure 8.  Plots of k,A/m versus normalized layer thickness i/A for (a) TE and (b)) TM
modes in a structure with n, =1, n, =345 n, =157 n,=1 and 1=08 at a
normalized frequency v = 3. The fast modes are evanescent and the slow modes cut
off when the k,A/n intersects with the substrate circle.

the fast modes. These disappear at normalized frequencies below v = 3-2996, which
corresponds to the disappearance of the ‘ellipse’ on the wavevector diagram. The
lower set of curves (full line style) is for the slow modes. The fast and slow modes
occur in pairs, each pair straddling the corresponding mode that would occur in
a homogeneous slab waveguide of the same average index.

8.2. Behaviour away from symmetric points

Away from the symmetric points, the guided Bloch modes are described by
full solutions of (17). Plots of k,A/n versus normalized layer thickness k/A are
presented in figure 8 for TE and TM modes at a normalized frequency v = 3. At
this frequency only slow modes exist, there being no ‘ellipse’ on the wavevector
diagram, rendering the fast modes evanescent. Note that for small enough layer
thickness only one mode is available over the whole range of k,. The guided modes
cut off when k,A/n intersects with the substrate circle; this condition is indicated
by the horizontal line near the base of the figures.

Figure 9 is a repeat of figure 8 for a normalized frequency v = 4. The set of
near-vertical curves corresponds to slow modes, and the second set of curves
corresponds to fast modes. As the modes move away from the symmetrical point,
increasingly strong anti-crossing occurs at the intersection points of the curves.
This is due to coupling between fast and slow Bloch waves at the interfaces. When,
for example, a fast Bloch wave collides with the cover or substrate interface, it is
split by total internal reflection into a mixture of a strong fast and a weaker slow
Bloch wave.

8.3.  Brillouin diagram

Figure 10 shows plots of v versus k A/n for TE modes for a structure of
thickness 1:54 (n, =1, n, = 3-45, n,, =157, n_,,=1 and 7 = 0-8). The shaded
regions to the upper left and right occur when k, A/n = va,, i.e. when the substrate
circle is touched and there is radiation into the substrate. The lowest curve with
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Figure 9.  Plots of k,A/% versus normalized layer thickness 4/A for (a) TE and (b) TM
modes in the same structure as in figure 8, at a normalized frequency v = 4. Both fast
and slow modes are present, and once again they cut off when the & A/r intersects
the substrate circle.

TE Brillouin Diagram

7 T

Figure 10. TE Brillouin diagram (v versus k A/n) for a structure of thickness 1-54
(ny =1, n, = 345, n,, =157, n,, = 1 and © = 0-8). The shaded regions correspond to
modes that radiate into the substrate. The solid curves are the Bloch wave modes and
the dashed curves represent the zero and first order modes in a homogeneous
waveguide with index n,, = 2:96. The reference points are marked for table 1 and the
field microstructure plots in figure 11.

the point ¢ marked on it corresponds to the zero order slow Bloch wave mode. At
points a, b, ¢, d and e the group velocity of the Bloch wave is zero in the y direction.
The vanishingly small group velocity at the symmetric points will result in an
enhancement in the interaction between the electromagnetic guided mode and an
incorporated dipole of the same frequency. An excitation of finite length will
contain a range of frequencies, with a decay time dependent on the bandwidth;
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energy will leak away via guided Bloch modes that do not lie precisely on
the symmetrical points (see section 9.2). The other two curves on the diagram
represent the first order slow mode and the zero order fast mode. Between
the points d and e the modes display an anticrossing behaviour. At points
a, g and h the mode consists solely of the first order slow mode; at point
b there is the zero order fast mode; finally at points d and e there is a mixture
of the two modes. This is confirmed by the field microstructure in the next
section. An intriguing feature of these plots is the reduction in the number of guided
modes as the frequency rises. This is the reverse of the behaviour in normal
waveguides, where higher frequencies imply a larger number of modes, and is
caused by the encroachment of the momentum gap within the permitted range of
B values. The modes in a homogeneous waveguide with the same average index
are shown as dashed lines on the diagram. In the periodic structure the zero
order mode is suppressed between points b and ¢, and the first order mode is

suppressed above a. In thicker layers this mode-suppression effect is even more
dramatic [16].

(a) Field Intensity at point a (b) Field Intensity at point b

e sa o m et
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1
'
1
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H
1
1
H
I

(c) Field Intensity at point d

Figure 11.  Field intensity distributions of selected TE guided Bloch modes at points a,
b, d and e in figure 10. The substrate is below the horizontal dashed line and three
periods of the high index waveguide layer are shown. (a) a first order slow mode, (b)
a zero order fast mode, (c) a zero-group velocity slow ‘mixed’ mode and (d) a
zero-group velocity fast ‘mixed’ mode.
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8.4. Microstructure of the fields

Figure 11 shows the electric field intensity distribution of the TE guided Bloch
modes at points a, b, d and e on figure 10. Figure 11 (a) shows the first order slow
mode at point a. This is characteristically concentrated in the high index regions
and has a double lobed structure in the z direction. The zero order fast mode
(point b on figure 10) is shown in figure 11 (b); it is guided predominantly in the
air gaps. This very unusual behaviour arises because the field pattern is below the
resolution limit of free waves in the cover and substrate regions. The modes at
points a and b have zero group velocity along the waveguide, as confirmed by the
100% visibility of the modal fringe pattern—no power can flow through regions
where the fields are zero.

It is intriguing that four other points of zero group velocity occur, at
anticrossing points on either side of the symmetrical point (e.g. d and e). The
field intensity patterns of the modes at these points are given in figures 11 (¢)
and (d). It turns out the anticrossing is caused by the simultaneous resonance
of the zero order fast and the first order slow modes, which are then coupled
strongly together at the upper and lower boundaries (see figure 6), creating a
stopband in fB. Since they travel in opposite directions along the guide, a
kind of ‘tug-of-war’ results between the fast and slow modes, giving rise to
zero group velocity at the anticrossing point. The overall modal field distribu-
tions of these ‘mixed’ modes are superpositions of fast and slow modes, whose

relative phase is such that constructive interference occurs near the substrate in
both cases (d and e).

8.5. Comparison with numerical analysis

In order to confirm the accuracy of our simple analytical model, a numerical
calculation was performed based on the method of Pendry and MacKinnon [17].
Our analytical model could be extended by generalization of (17) to include the
contributions of higher order Fourier components and evanescent (imaginary f)
solutions in the expansion of the field within the grating layer. In practice it is
more efficient to recast the equations to relate the Fourier components in the cover
to those in the substrate by means of a transfer matrix. The elements of this transfer
matrix could be calculated by use of the dispersion relation (A9), the Fourier
decomposition (12) and the matching conditions at the substrate and cover
boundaries. In practice, due to its availability and flexibility, a finite difference
algorithm, initiated by Pendry and MacKinnon, was used to calculate the transfer
matrix. This works by discretizing the fields on a real space mesh and has the
added advantage of being able to describe more complex grating geometries, such
as V-grooves and two-dimensional periodicity. These structures will be considered
in future papers.

The condition for appearance of a guided mode is that there be no unphysical
exponentially diverging modes in the substrate and cover. This results in a
determinantal equation, based on the transfer matrix, which is numerically solved.
Table 1 shows a comparison of the resonant frequencies calculated at a number of
points indicated on figure 10. The results for both methods correspond very well,
close to the symmetric point the error is less than 0-5% and it increases to 3:16% .
when k,A/n is reduced to 0-5.
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Table 1. Comparison of numerical and analytic models.

Point k Afm Numerical frequency v Analytic frequency v % error
a 1 3-78827 3-77557 0-33
b 1 3-62286 3:61706 0-16
c 1 2:9912 298968 0-05
d 0-91 3-72836 371371 039
e 091 371143 370417 0-20
f 0-91 2-90133 2-89861 0-09
g 075 344574 341174 099
h 05 2-88822 2-79708 316

9. Discussion

9.1. Resonant tunnelling model

A different and instructive analysis can quite easily be constructed based on
resonant tunnelling (known as the tight-binding model in electronic band theory).
Under the correct conditions, the fields in the air gaps between the high index
lines are evanescent. This means that high index lines support guided modes
that—under the appropriate conditions—bounce to and fro between substrate and
cover. A single isolated line will support strongly confined resonances, the number
being related to the thickness h of the layer. These are not perfectly confined
because the plane wave spectrum (in the substrate and cover) of the field pattern
created by an isolated resonator is continuous, containing wavevectors that carry
energy into the cover and the substrate. In a periodic array of lines, however, the
resonances are perfectly trapped; this is because the plane wave spectrum of a
guided Bloch mode (close to the symmetrical points) consists of an infinite number
of discrete spikes, and therefore contains no wavevectors that can leak into the cover
or substrate. Note that the resonant tunnelling approach is not capable of predicting
the fast modes guided in the air regions.

9.2. Lifetime of localized state

It is interesting to estimate the lifetime of a stationary mode at the symmetrical
points. This will depend on the required physical length Ly of the excitation, since
this determines the spectral spread Ak, of in-plane wavevectors and hence the
frequency spread Av needed; a shorter length Lg implies a larger Ak, and vice
versa. The edges of this spectrum reside on each side of the symmetrical points,
and carry energy away from the resonance at a small but finite rate. Clearly, the
flatter the curve on the v versus k, diagram, the less severe this leakage will be.

For a Lorentzian distribution of amplitude ay(y) at t = 0, with Fourier transform

Alk,):

ao(y) = A(k,) = b exp (—k,b) (20)

1+ (/b)?

it is easy to show that, assuming a quadratic dependence of frequency w on
wavevector k, close to the symmetrical point:

o(ky) = 0o — q(k; — ko) 1)
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(where @, and k4 are the values at the symmetrical point), that the time taken for
the intensity at the peak to drop to one half is:

For the symmetrical point, ¢ in figure 10, at v = 2990, ¢ = 0-027 m? s~ which
yields a half life of 58 ps for b = 1 mm. Viewing the system as a resonator of
period equal to the transit time substrate—cover—substrate, this gives a Q-factor of
approximately 10%. This of course neglects losses due to components in the modal
k, spectrum whose wavevectors are far enough from the symmetrical point to excite
waves in the substrate and cover regions.

9.3. Applications

As is well known, placing a single atom in a high Q-factor single-mode
micro-resonator whose frequency coincides with a radiative atomic transition will
result in quantum electro-dynamical effects such as Rabi splitting [18]. Two
different approaches may be used for producing high Q-factor micro-resonators
in these etched films. The first exploits the zero group velocity at the symmetrical
points, and has been discussed in section 9.2. In the second, a defect state is created
within the in-plane momentum gap of the layer. This could be achieved by
introducing a point defect in the form of a slightly thicker or thinner dielectric
line. The state thus created will not, however, be perfectly trapped. This is because
(as in section 9.2) its plane wave spectrum will contain wavevectors that can excite
free waves in the substrate and cover regions, causing small but significant leakage
and reducing the O-factor.

The field microstructure of the slow mode at the symmetrical points has most
of its energy concentrated in the high index regions, while the fast mode has most
of its energy concentrated in the air gaps. It would make sense to exploit the fast
mode as the basis of a gas sensor or even a gas laser; the zero group velocity would
greatly enhance the atom—photon interaction and increase the sensitivity or the
gain. The slow mode could be excited—as in the currently proposed arrays of
vertical cavity emitting lasers—by introducing gain in the high index regions alone.

If the thickness of a conventional non-periodic waveguiding film is increased,
then more modes are supported. In deeply etched periodic films, however, the
presence of a substantial momentum gap acts to reduce the number of guided
modes that would otherwise appear in a layer of the same average refractive index
(see section 8.3). It may be possible to design a thick waveguide (multi-mode based
on considerations of average index) in which all but the highest order mode are
suppressed, rendering the structure single-mode [16]. This could have applications
in single-frequency waveguide lasers where an increased single-mode volume
would be beneficial.

Consider a layer thickness of 1:54, for which a slow resonance exists at a
normalized frequency of 2:990 (point c on figure 10); this corresponds to a vacuum
wavelength of 6:1994. At a vacuum wavelength of 1550 nm this gives a grating
period, A = 250 nm, the air gaps would have to be 50 nm (0-24) in length within
a layer 375 nm thick. These feature sizes are within the capabilities of current
semiconductor processing technology, as recently demonstrated by Krauss et al.

[10].
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10. Conclusions

Deeply etched high index films support two different types of fully guided
Bloch modes with zero group velocities in the waveguide plane. Viewed as
resonances, these stationary modes have a uniquely high effective Q-factor (com-
pared to any of the other modes guided in the film) and hence are suitable as
micro-resonators for ehancing dipole-field coupling. Although the analysis applies
only to singly periodic layers, its general conclusions are relevant to the more
general case of two-dimensional multiply periodic thin films, in which resonances
that are stationary in all three space dimensions are feasible. The approach used
may be helpful in future studies of the behaviour of arrays of vertical cavity surface
emitting lasers.
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Appendix: Translation matrix elements
The matrix M,, relating the field in the second layer to the field in the first

layer is:
az ai Ayy By \[ay
(e D
(b;> \oY/ \Cy Du/\bY

Azy = 16 — (E1914/82024)515,

By = 516,/(E1014) + €152/ (E2024),

Cy = —&ip1dsicy — Epordesss,

D,y = 165 — (E2024/E1 01 4)815,
det(M,;) =1,

where

(A2)

where the terms 5; and ¢; are shorthand for:
¢; = cos (p;5/2), s;=sin (p;h;/2). (A3)

The matrix M, relating the field in the first layer of the (N + 1)th period to the
field in the second layer of the Nth period is then

N+1
ai a D,y le><a12v>

=M = . (A4)
<b¥“> 12(1,;) <c21 Ay ) \bY

The analysis can either be based on the translation matrix M = M;,M,; (with a
state vector representing the field in layers with index n;) or equivalently on the
matrix M’ = M,;M,, (state vector representing the field in layers with index n,).

Mis
N+1
aj aj A B a{")
=M = , A5
(zﬂy“) (ox) (e )Gy ()



]
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where
A =D =4,D, + B,,Cy, (A6)
B = 2D21B21, C = 2A21C21. (A 7)
A can be re-arranged as
1(p:&1 |, 0255 . )
A = cos (pyhy) cos (pyhy) — = (% + iZ) sin (p;hy) sin (phy)  (A8)
2\p6 1

but B and C are most conveniently expressed as the product of two factors as
above. The elements of the alternative matrix M’ are:

A =D =4, (A 9)
B =24,B,, C' =2DyCy. (A 10)
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