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Photonic Bands and Gap Maps in a
Photonic Crystal Slab

Lucio Claudio Andreani and Mario Agio

Abstract—The photonic bands of a two-dimensional (2-D) lat-
tice patterned in a planar waveguide are calculated by expanding
the magnetic field on the basis of waveguide modes. The method
yields both the truly guided modes of the structure as well as the
quasi-guided modes (or guided resonances) which lie above the
light line in the first Brillouin zone. Representative results for the
photonic bands are shown in the cases of strong- and weak-con-
finement waveguides patterned with a triangular lattice of holes.
The gap maps as a function of hole radius are calculated and show
significant differences with respect to the ideal 2-D case. A compar-
ison of the photonic bands with those extracted from the calculated
surface reflectance shows very good agreement, thereby indicating
the reliability of the approach.

Index Terms—Modeling, optical materials, waveguides.

I. INTRODUCTION

T WO-DIMENSIONAL (2-D) photonic crystals embedded
in a planar waveguide, also known as photonic crystal

slabs, are being widely investigated [1]–[27] as they can be
fabricated at optical wavelengths and may allow control of
in-plane light propagation to be achieved. These structures
support two kinds of modes. If the waveguide thickness is not
too small, guided modes exist whose energies lie below the light
line of the cladding material (or lightlines, if the waveguide is
asymmetric). These modes are true stationary Bloch states and
are not subject to scattering losses in an ideal structure without
roughness. Above the light line of the cladding material, there
exist quasi-guided modes, or guided resonances, which lie
within the continuum of leaky modes of the waveguide and
therefore have intrinsic radiation losses related to out-of-plane
diffraction.

The dispersion of guided modes has first been calculated in-
troducing a supercell in the vertical direction and using a three-
dimensional (3-D) plane-wave expansion [6], [19]. Both guided
and quasi-guided modes can be obtained from the position of
resonances in the transmission spectra calculated by the finite
difference time-domain (FDTD) method [15], [25]. Recently, a
nearly-free photon approximation which starts from the guided
modes of the slab taken with a homogeneous refractive index
was formulated by Ochiai and Sakoda [26]; the effect of the non-
homogeneous components of the dielectric tensor is included
within degenerate perturbation theory.
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In the present work, the energies of photonic modes in a
deeply patterned waveguide are calculated by expanding the
magnetic field on the basis of guided modes, where each layer
of the waveguide is taken to have an average dielectric constant.
This method goes beyond the nearly free approximation of [26],
since no perturbative approximation is made and the method is
valid even for a strong modulation of the dielectric constant. The
guided modes of the “effective” waveguide are folded in the first
Brillouin zone and coupled by the inverse dielectric tensor, just
like plane waves in ideal 2-D photonic crystals. The eigenmodes
which fall below (above) the light line are identified with guided
(quasi-guided) modes, respectively, and the energy dispersion of
both kinds of modes is obtained at the same time.

In Section II, we give a short outline of the method, including
some symmetry aspects. In Section III, we discuss represen-
tative results for the photonic bands of two kinds of photonic
crystal slabs: the air bridge (a free-standing layer with a large
dielectric constant) and the GaAs–AlGaAs system (where the
dielectric contrast between the core and cladding is small and
all layers are patterned). We focus on the triangular lattice of
holes, which is the 2-D structure of the utmost technological
interest. In Section IV, the gap maps as a function of hole ra-
dius are calculated and compared with the ideal 2-D case. In
Section V, we test the soundness of the method by comparing
the photonic bands obtained by expansion in waveguide modes
with those extracted from surface reflectance calculated by the
scattering matrix method [10]. Section VI contains a summary
of the results.

II. M ETHOD

Let us consider the second-order equation for the magnetic
field

(1)

where is the spatially dependent dielectric constant. If the
magnetic field is expanded in an orthonormal set of basis states
labeled by the index as

(2)

then (1) is transformed into a linear eigenvalue problem

(3)
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where the “Hamiltonian” matrix is given by

(4)

In the present case of a photonic crystal slab, we have a wave-
guide along and a periodic 2-D patterning in the plane.
The basis set is chosen to consist of the guided modes
of an effective waveguide, where each layeris taken to have
a homogeneous dielectric constant given by the spatial average
of within the unit cell [i.e., the Fourier com-
ponent of the dielectric matrix ]. The index of the
basis states can be written as , where is
the Bloch vector in the plane, is a 2-D reciprocal lattice
vector and is a discrete index which la-
bels the guided modes at wavevector . The matrix ele-
ments of (4) can be calculated by
noting that the integral in each layer yields the Fourier
transform of the inverse dielectric function. This
is the same quantity that appears in the 2-D case and can be
calculated as usual by evaluating and inverting the
resulting matrix [28]. This procedure, which was also used for
metallic gratings [29], [30] and has been given a rigorous math-
ematical basis [31], yields a fast convergence in the number of
reciprocal lattice vectors; moreover, it allows one to compare di-
rectly with 2-D photonic structure calculations performed with
the same wavevector cutoff.

The guided modes of the “effective” waveguide rep-
resent an orthonormal set of states, however the basis set is not
complete since the leaky modes of the waveguide are not in-
cluded. When the guided modes are folded in the first Brillouin
zone, most (sometimes all) of them fall above the light line, i.e.,
in the energy region of leaky modes: these quasi-guided modes
are found here with zero linewidth, since it is the coupling to
leaky modes which gives rise to out-of-plane diffraction and
therefore to a finite linewidth. Coupling to leaky modes may also
produce a shift of the resonance energies of quasi-guided modes,
like in the Fano resonance problem [32]: a comparison with an
“exact” reflectance calculation, to be shown in Section V, indi-
cates that such a real energy shift is small under usual circum-
stances. The present method is therefore suited to calculate the
(real) energies of guided and quasi-guided modes: it is concep-
tually similar to the commonly used plane wave expansion in
the 2-D case. Besides the wavevector cutoff, it is also useful to
specify a maximum number of guided modes of the effective
waveguide; moreover, the present choice of the average dielec-
tric constant in each layer is by no means unique. Both issues
are discussed in the next sections in connection with specific
examples.

The waveguide modes at wavevector can be of the
transverse electric (TE) or transverse magnetic (TM) type,
where “transverse” refers to a vertical plane containing the
wavevector. TE and TM waveguide modes at different wavevec-
tors are coupled to each other by the off-diagonal components
of the inverse dielectric tensor, thus both must be included
at the same time in the basis set. In the case of a symmetric
waveguide, mirror symmetry with respect to a horizontal

plane bisecting the waveguide is a symmetry operation of
the system, and the solutions of Maxwell’s equations can be

Fig. 1. Upper panels: triangular lattice of circular air holes in a photonic
crystal slab. (a) Slab waveguide of thicknessd patterned with a triangular
lattice. (b) Definition of lattice constanta and hole radiusr. (c) The
2-D Brillouin zone and symmetry points. Lower panels: side view of the
patterned waveguides considered in this work. (d) Strong-confinement
symmetric waveguide consisting of a self-standing dielectric slab (air bridge).
(e) Weak-confinement symmetric waveguide made of three patterned layers
(e.g., AlGaAs–GaAs–AlGaAs system). (f) Asymmetric waveguide consisting
of air/patterned core/unpatterned lower cladding (e.g., SOI system). In this
paper, we present results for the structures (d) and (e).

classified as even or odd with respect to specular reflection.
The same symmetry exists in the ideal 2-D case for in-plane
propagation, where even solutions are referred to as-modes
(nonzero field components ) and odd solutions
are called -modes (nonzero components ). For
some special symmetry directions in the Brillouin zone (e.g.,
the – and – directions in the triangular lattice), a
vertical plane containing the Bloch vector is also a
mirror plane of the system: the photonic modes along these
symmetry lines may also be classified as even or odd with
respect to specular reflection . A more general approach
which contains all symmetry aspects is the group-theoretical
formulation, as performed in [25].

III. RESULTS FORPHOTONIC BANDS

In Fig. 1, we show schematically the triangular lattice of
holes in a dielectric slab (a)–(c) and different kinds of patterned
waveguides (d)–(f), with the assumed values of the dielectric
constant. Fig. 1(d) shows theair bridge, which represents the
typical strong-confinement waveguide. Taking for the
dielectric material is appropriate for a GaAs or Si membrane.
Fig. 1(e) exemplifies a weak-confinement waveguide, which
is realized, e.g., in the GaAs–AlGaAs system. In both cases,
the waveguide is symmetric. An asymmetric structure is shown
in Fig. 1(f), which represents a silicon-on-insulator (SOI)
waveguide where only the Si layer is patterned. In all cases, the
cladding layers are assumed to be semi-infinite. In this paper,
we treat only the structures of Fig. 1(d) and (e). Experimental
and theoretical determination of the photonic bands of SOI
photonic crystal slabs is reported in [27].

Fig. 2 shows the photonic bands of the air bridge for a hole
radius (air fraction 0.21) for and ,
compared with the bands in the ideal 2-D case. These and the
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(a) (b) (c)

Fig. 2. Photonic bands for the air bridge structure of Fig. 1(d), for a hole radiusr = 0:24a: (a) waveguide thicknessd = 0:3a; (b) waveguide thicknessd = 0:6a;
and (c) ideal 2-D case. Solid (dashed) lines represent photonic bands which are even (odd) with respect to the horizontal mirror planexy. Dotted lines in (a) and
(b) represent the dispersion of light in air and in the effective waveguide material with the average dielectric constant.

following results were obtained using 109 plane waves and up
to four guided modes at each wavevector for both even
and odd states. Convergence in the number of plane waves was
carefully checked in the 2-D case, where a much larger cutoff
can be used: 109 plane waves are found to give stable photonic
bands up to a dimensionless frequency over
the whole range of hole radii from zero to the close-packing
condition . Keeping four guided modes in each parity
sector also gives very good convergence, except in the case of
thick waveguides with several higher order modes.

The 2-D bands of Fig. 2(c) display well-known features
[33]–[37], notably a gap between the first and second bands
for even (or ) modes. The photonic bands of the patterned
waveguide fall partly into the guided mode region, where they
agree with those calculated in [6], and partly in the leaky mode
region above the light cone where they must be viewed as
resonances. For [Fig. 2(a)] the lowest bands are
qualitatively similar to their 2-D counterparts, but they are
strongly blue-shifted due to confinement in thedirection
produced by the waveguide. The gap in the even modes opens
between 0.29 and 0.34 [in terms of the dimensionless frequency

], while it lies between 0.2 and 0.23 in the 2-D case.
The confinement effect is stronger for odd modes. This is
interpreted as follows: the dielectric tensor of the waveguide
in the long-wavelength limit is that of a uniaxial medium,
with given by the spatial average of the dielectric
constant and being larger than [38]. In the
2-D case, odd modes have the electric field alongand feel
the largest of the dielectric tensor components; hence, they are
better confined in the waveguide and have a larger blue shift
compared to even modes. The six photonic modes at the
point in each polarization can be interpreted as the fundamental
waveguide mode at the lowest nonzero reciprocal lattice
vectors, which are folded in the first Brillouin zone and split
by the dielectric matrix. Note that, in the patterned waveguide

with , the photonic modes up to
can be put in one-to-one correspondence with the bands of the
2-D case [Fig. 2(c)], thereby indicating that the waveguide is
monomode. A second-order waveguide mode appears above

. Analogous considerations can be made for
the case of waveguide thickness [Fig. 2(b)], where
the confinement produced by the waveguide is less pronounced.
Moreover, a second-order waveguide mode starts already at

and the bands at higher frequencies become
more complex.

This example allows us to discuss the trend with respect to
waveguide thickness: for a small value of , the waveguide
is monomode over a wide frequency range and the photonic
bands can be interpreted as 2-D bands which are strongly blue-
shifted, waveguide-induced confinement being stronger for odd
modes. When increasing the ratio , the blue shift is reduced
and a second-order waveguide mode appears with a decreasing
cutoff frequency. For (at a fixed hole radius

), the second-order mode falls into the gap of even modes,
thereby contributing to losses when linear defects or cavities are
present. In view of achieving guided-wave propagation with the
lowest possible losses, it is advisable to employ structures with
no quasi-guided modes in the photonic gap; for the air bridge
system, small values of are more favorable.

Fig. 3 shows the photonic bands in the weak-confinement sit-
uation [structure of Fig. 1(e)] for three different values of the
waveguide thickness. Due to the small dielectric contrast be-
tween the core and cladding, there are no truly guided modes
and all photonic modes lie in the radiative region. The dispersion
of quasi-guided modes is very similar to the 2-D case [Fig. 2(c)]
and confinement in the waveguide is much less pronounced than
for the air bridge. However, it is interesting to observe that the
gap in the even modes isincreasedcompared to the 2-D case.
The three patterned waveguides are monomode in the whole fre-
quency range shown in the figures, except for where a
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(a) (b) (c)

Fig. 3. Photonic bands for the weak-confinement structure of Fig. 1(e), for a hole radiusr = 0:24a: (a) waveguide thicknessd = 0:3a; (b) d = 0:6a; and
(c) d = 1:0a. Solid (dashed) lines represent photonic bands which are even (odd) with respect to reflection in the horizontal planexy. Dotted lines represent the
dispersion of light in the effective core and cladding materials.

(a) (b) (c)

Fig. 4. Gap maps for the air bridge structure of Fig. 1(d): (a) waveguide thicknessd = 0:3a; (b) waveguide thicknessd = 0:6a; and (c) ideal 2-D case. Solid
(dashed) lines represent the edges of photonic bands which are even (odd) with respect to specular reflection� . The dotted line in (b) represents the cutoff of
the second-order waveguide mode.

second-order mode appears at . Similar to the
previous example of the air bridge, the results of Fig. 3 suggest
that in order to maximize the even gap it is more convenient to
use small values of waveguide thickness.

IV. RESULTS FORGAP MAPS

Fig. 4 displays the gap maps as a function of hole radius for
the air bridge structure of Fig. 1(d) (waveguide thickness

and 0.6) and in the 2-D case. The purpose of Fig. 4(c) is to
set a reference for the gap maps in a waveguide and to show
that the calculation with 109 plane waves is well converged.

Indeed, the 2-D gap map of Fig. 4(c) agrees with well-known
results for the triangular lattice of holes [35]–[37]; in particular,
a bandgap common to even and odd modes is present for a hole
radius . In the plots of Fig. 4(a) and (b), on the other
hand, there is no gap in the odd modes for any hole radius and
therefore no complete bandgap. The bandgap for even modes
occurs at higher frequencies than in the 2-D case, again due to
vertical confinement in the waveguide.

It should be remarked that the upper edge of the gap lies in the
radiative region for a hole radius larger than about [it can be
seen from Fig. 2(a) and (b) that the upper edge is at the K point,
where the light line in air has a frequency ];
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(a) (b) (c)

Fig. 5. Gap maps for the weak-confinement structure of Fig. 1(e): (a) waveguide thicknessd = 0:3a; (b) d = 0:6a; and (c)d = 1:0a. Solid (dashed) lines
represent the edges of photonic bands which are even (odd) with respect to specular reflection� .

thus, the even gap is formed partly in the guided mode region
and partly in the radiative region. The bandgaps obtained here
are larger than those calculated by Johnsonet al.[6], where only
the guided mode region was considered. Moreover, in [6], it was
concluded that the optimal waveguide thickness for a gap in the
even modes is around and that the bandgap would
decrease for smaller thicknesses. By considering both guided
and leaky mode regions, we find instead that the even gap of
the triangular lattice of holes remains large even for waveguide
thicknesses and below.

The dotted line in Fig. 4(b) represents the cutoff frequency
of a second-order waveguide mode [which can be seen in
Fig. 2(b)]. Strictly speaking, the even gap exists only between
the lower gap edge and the second-order cutoff; for
(not shown), the second-order cutoff falls below the lower
gap edge and there is no even gap altogether. However, it
should be remarked that in the present method it is difficult to
calculate higher order cutoffs very accurately and that cutoff
frequencies may be underestimated. This is due to the choice of
the “effective” waveguide for the basis states. Although most
features of the photonic band structure (e.g., the gap edges)
are rather insensitive to the assumed value of the effective
dielectric constant, cutoffs of higher order modes do depend on
this parameter. Since the patterned dielectric slab is a uniaxial
medium with , higher order cutoffs calculated
considering the dielectric anisotropy will be larger than those
estimated using only. Thus, it is quite possible that the even
gap for is larger than that deduced from the position
of the dotted line in Fig. 4(b). In any case, in order to avoid
possible complications related to a multimode waveguide, it is
more convenient to employ values of smaller than 0.6.

In Fig. 5, we show the gap maps for the weak-confinement
waveguide of Fig. 1(e) (waveguide thickness , 0.6
and 1). They are rather similar to the 2-D map of Fig. 4(c),
again because the confinement effect in the waveguide is much
less important than for the air bridge. Two observations must

be made. First, the weak-confinement waveguide has no truly
guided modes in the considered range of waveguide thicknesses:
all photonic modes are resonances in the radiative region and
the photonic gap lies entirely in this region. A 2-D photonic gap
and defect modes in GaAs–AlGaAs waveguides have been ob-
served and are very promising in view of achieving guided wave
propagation [3]–[5], [20], [21]. This lends support to the point
of view adopted above, that a bandgap should be defined by the
absence of photonic modes in both the guided and radiative re-
gions. Second, on decreasing the waveguide thickness the gap
for odd modes opens at smaller values of the hole radius and
still overlaps the even gap: a full band gap common to even and
odd modes can exist even for hole radii of the order of ,
provided waveguides with are employed.

V. COMPARISONWITH REFLECTANCE

It is known from grating theory (see e.g., the review paper
[39]) that the bands of fully periodic waveguides can be derived
theoretically by solving the diffraction problem, i.e., by calcu-
lating the Bragg reflection spectra to all orders. On the exper-
imental side, photonic bands of deeply patterned waveguides
can be measured by the surface coupling technique employed
in [8], [9], and [11]: optical reflectance from the surface of the
photonic crystal slab displays a series of sharp features with
a well-defined dispersion as a function of the incidence angle
. These resonances correspond to the excitation of photonic

modes which are matched in frequency and wavevector to the
incoming beam. Each resonant feature marks a point of
the photonic band dispersion, the wavevector component par-
allel to the surface being given in modulus by .
By rotating the sample around its normal, all directions in the
2-D Brillouin zone can be mapped. This technique allows one
to probe the photonic bands above the light cone, i.e., in the re-
gion of quasi-guided modes. The photonic bands of patterned
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Fig. 6. Calculated surface reflectance of a TM-polarized plane wave incident
along the�–K orientation of the air bridge [waveguide structure of Fig. 1(d)],
with thicknessd = 0:3a and hole radiusr = 0:24a. The angle of incidence is
varied from� = 0 to � = 60 with a step of 5.

SOI waveguides have been recently measured by the surface
coupling technique [27]. A scattering matrix formalism to cal-
culate the reflectance was developed in [10]; this approach is
essentially an exact numerical solution of Maxwell equations
(apart from the presence of a wavevector cutoff) for the pho-
tonic crystal slab in the presence of a plane wave incident from
the surface.

Here we calculate the surface reflectance by the method of
[10] and we extract the photonic band dispersion in order to
compare with the dispersion calculated by the expansion in
waveguide modes. This allows for the assumption of neglecting
leaky modes in the expansion to be tested. In Fig. 6, we show
the reflectance of a TM-polarized plane wave incident along
the – orientation on the surface of an air-bridge photonic
crystal slab [Fig. 1(d)], for a hole radius and a
thickness . Sharp resonance features are readily
apparent on the reflectance curves and may have the form of
maxima, minima, or dispersive lineshapes.

In Fig. 7, we show the photonic band dispersion which is de-
termined from the curves of Fig. 6 (and the analogous ones for
other orientations and polarization, not shown) by taking the ap-
proximate central position of each resonance. Solid (open) cir-
cles in Fig. 7 represent the points extracted from the reflectance
curves for TM (TE) polarization with respect to the plane of
incidence. They are compared with the photonic bands of the
air bridge, which were already given in Fig. 2(a), but for the

– and – directions are now classified in terms of parity
with respect to specular reflection (see Section II)—the ver-
tical plane containing the Bloch vector coincides with the
plane of incidence. Modes which are even with respect to
(indicated by solid lines) couple only to TM polarized incident
light, while odd modes with respect to (dashed lines) couple

Fig. 7. Photonic bands of the air bridge [waveguide structure of Fig. 1(d)],
with thicknessd = 0:3a and hole radiusr = 0:24a. The lines represent the
bands calculated from the expansion in waveguide modes, while the points are
extracted from the calculated reflectance. Solid lines and closed circles: even
modes with respect to a vertical mirror plane(k; z), probed by TM-polarized
light. Dashed lines and open circles: odd modes with respect to a vertical
mirror plane(k; z), probed by TE-polarized light. The dotted line represents
the dispersion of light in air.

to TE polarized light. Notice that a linearly polarized plane wave
incident from the surface couples to both even and odd modes
with respect to . There is very good agreement between the
photonic bands calculated by the method of Section II and those
deduced from reflectance, when the proper parity with respect
to is taken into account. This shows that the expansion in
waveguide modes of the slab is a reliable method for calculating
the energies of quasi-guided modes above the light line, and that
the choice of the effective dielectric constant as the spatial av-
erage of in each layer is appropriate.

Other symmetry aspects of the reflectance calculation and
of the photonic bands are worth a comment. First, notice that
there are a few bands which are even with respect to
along the – direction and become odd along the–
direction, or vice versa. They correspond to photonic states
which have a three-fold, but not a six-fold, symmetry at the
point. Second, most resonance features in reflectance become
vanishingly small at normal incidence, except for a structure at

(see Fig. 6) which remains strong at
and which splits into two at oblique incidence. Since the only
photonic modes which can be excited are those which have
the same symmetry of the electromagnetic field, and the latter
belongs to a two-fold degenerate representation of the point
group at the point, nondegenerate bands must be optically
forbidden at . The two-fold degenerate photonic mode
at is optically allowed and its energy can
be determined from normal-incidence reflectance. The same
argument implies that nondegenerate bands have zero radiative
linewidth at [25].
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VI. CONCLUSION

The photonic bands below and above the light line of photonic
crystal slabs can be calculated by expanding the electromag-
netic field on the basis of waveguide modes, where each layer
of the effective waveguide is defined to have a spatially aver-
aged dielectric constant. The method is conceptually analogous
to the usual plane-wave expansion for 2-D systems. Photonic
bands and gap maps of strong- and weak-confinement waveg-
uides have been presented and compared to their 2-D counter-
parts: a photonic gap is defined here by the absence of pho-
tonic bands in both the guided and radiative regions. In the
strong-confinement (air bridge) structure, photonic bands are
strongly blue-shifted with respect to the 2-D case due to confine-
ment in the waveguide, the blue shift being stronger for modes
which are odd with respect to the horizontal symmetry plane.
The gap maps of the air bridge display only a gap for even
modes (not for odd modes). The even gap remains large even
for small waveguide thicknesses, while it tends to be eliminated
by a second-order waveguide mode for . In the weak-
confinement (GaAs–AlGaAs) waveguide, the photonic bands
are relatively similar to the 2-D bands; however, the gap maps
show quantitative differences. In particular, a complete bandgap
opens for smaller values of the hole radius compared to the 2-D
case. Comparison of the photonic bands with those extracted
from calculated surface reflectance shows good agreement, pro-
vided the proper parity with respect to a vertical mirror plane
(coinciding with the plane of incidence) is taken into account
in the classification of the bands. Thus, thereal part of the en-
ergy shift due to coupling with leaky modes is not an important
effect, at least for the lowest lying bands. Theimaginarypart
of the energy shift is, of course, important, since it describes
propagation losses due to out-of-plane diffraction; calculating
these losses will require an extension of the present formalism.
The expansion in waveguide modes in its present form can also
be used to calculate the dispersion of linear defects in photonic
crystal slabs within a full three-dimensional treatment.
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