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Synchronization in oscillatory systems is a frequent natural phenomenon and is becoming an important

concept in modern physics. Nanomechanical resonators are ideal systems for studying synchronization

due to their controllable oscillation properties and engineerable nonlinearities. Here we demonstrate

synchronization of two nanomechanical oscillators via a photonic resonator, enabling optomechanical

synchronization between mechanically isolated nanomechanical resonators. Optical backaction gives rise

to both reactive and dissipative coupling of the mechanical resonators, leading to coherent oscillation and

mutual locking of resonators with dynamics beyond the widely accepted phase oscillator (Kuramoto)

model. In addition to the phase difference between the oscillators, also their amplitudes are coupled,

resulting in the emergence of sidebands around the synchronized carrier signal.
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Synchronization is a ubiquitous phenomenon where the

phase difference between free-running oscillators remains

constant due to the mutual coupling. Besides its well-

accepted importance in biological sciences, today synchro-

nization is becoming a powerful tool for many engineered

systems [1]. For instance, synchronization is desirable in

situations where high oscillating power, strong coherence,

or low phase noise are needed, such as lasers [2], phase-

locked loops [3], Josephson junction arrays [4], and spin-

torque resonators [5]. Synchronization also promises to

improve the accuracy of time-keeping devices [6]. Since

the observations of synchronization in pendulums [7] this

concept has found its bearings in science and engineering

due to its potential applications in generating low-noise

stable oscillating signals. Nanomechanical oscillators, on

the other hand, are very appealing as they simultaneously

offer high quality factor resonances, excellent scalability

[8,9] and are ideal systems for synchronization studies due

to their highly engineerable nonlinearities [10].

However, achieving reproducible and strong coupling

in nanomechanical devices remains difficult due to the

unavoidable device nonuniformity and weak mutual cou-

pling. This can be circumvented by coupling nanomechan-

ical resonators to an optical cavity [11]. Recently,

synchronization between two closely spaced microme-

chanical resonators was demonstrated using a hybrid

optical mode of two coupled disk resonators and the

synchronization phase space was predicted using the

Kuramoto model [12]. Here we experimentally demon-

strate the first synchronization of two spatially separated

nanoscale radio-frequency oscillators integrated inside

an optical racetrack cavity. We show that this leads to a

limit cycle in the reduced three-dimensional mechanical

phase space (the two mechanical resonators’ amplitudes

and their phase difference [13]) and that the dynamics of

two mechanical modes coupled via a common optical

mode cannot be captured by the standard Kuramoto model

[14]: as a result of the additional degrees of freedom of the

coupled system, slow dynamics appear on top of the limit

cycle, and sidebands emerge. These sidebands are true

signatures of synchronized motion in the mechanical

domain and are not to be confused with simple nonlinear

intermodulation oscillatory modes. Their presence is

important for the phase noise performance of synchronized

optomechanical oscillators, and could counteract the com-

mon perception that synchronized states should always

improve phase noise performance.

We investigate the interaction between two nanome-

chanical resonators that are linked in an optical racetrack

[Fig. 1(a)]; they are mechanically isolated, due to their

large separation (� 80 �m), ensuring that any coupling

between them is through the optical field. The fabrication

of these integrated photonic devices is readily scalable [15],

making this an ideal platform for synchronization studies

[11,14]. The silicon beams are slightly buckled [15] and

they may end up in the up or down state [Fig. 1(a)].

The measurement setup shown in Fig. 1(d) consists of a

strong pump laser to create cavity backaction and a weak

probe to detect the motion [13]. When the two resonators

are both in the buckled-up state [Fig. 1(b)] their resonance

frequencies are close, with a small difference due to fab-

rication imperfections (6.53 vs 6.61 MHz). However, when

one resonator is displaced from the up state to the down

state, its mechanical resonance frequency drops to

4.05 MHz [Fig. 1(c)] due to asymmetries of the double-

well potentials [13].

Single resonator optomechanical oscillators (OMOs)

have been the subject of intense studies in recent years

[16–18]. However, when multiple oscillators are embedded

in a single cavity new phenomena will appear due to the
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mutual coupling via the cavity field. Figure 2(a) displays

the evolution of the rf power spectrum of the transmitted

probe laser light (the pump laser is blue detuned at�0=� ¼
0:3, where �0 is the detuning between the laser and cavity

frequency, and � is the cavity linewidth). At the lowest

pump powers the thermomechanical motion of each reso-

nator is visible as two lines at 4.0 and 6.5 MHz, respec-

tively. Upon increasing the pump power in this first regime,

the backaction amplifies their Brownian motion. Also, the

optical spring effect [19] is visible as an increase in

the resonance frequencies. Both effects are stronger in

the 4 MHz resonator since it is in the buckled down state

[15]. The difference in backaction confirms that optical

backaction is stronger than photothermal effects as the

latter would be the same on both resonators [20].

When the pump is increased beyond �2:7 dBm, the

optomechanical gain fully compensates the mechanical

damping of the resonator with lower threshold, which we

will label as "1", which starts to self-oscillate. This demar-

cates the onset of regime II, which ranges from �2:7 to

0.2 dBm. Yet, even though the oscillation amplitude of

resonator 1 increased dramatically, the thermal motion of

resonator 2 is undisturbed and is still clearly visible in

Figs. 2(a) and 2(b). Note that the frequency difference

between the two resonators (2.5 MHz) is much larger
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FIG. 2 (color online). (a) The evolution of the rf power spec-

trum of the transmitted light as the pump power increases.

(b)–(e) Cuts through panel (a) at the indicated pump power

when both resonators are in a thermal state regime I, (b);

(c) one resonator is in thermal motion while the other resonator

experiences regenerative oscillations (regime II); (d) the chaotic

regime (III) and (e) the two resonators are synchronized (regime

IV). The insets schematically show the energy of resonators 1

(left) and 2 (right); dots correspond to small thermal motion, and

lines to large oscillations.
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FIG. 1 (color online). (a) Micrograph of a racetrack cavity

with two 110 nm� 500 nm� 10 �m suspended portions as

nanomechanical resonators. Insets show scanning electron mi-

crographs of the mechanical resonators in buckled down (left)

and buckled up (right) state. (b),(c) thermal noise spectra in the

up-up (b) down-up state (c). (d) The measurement setup with a

weak probe laser, and a pump.
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than the spectral width of resonator 2, so the cavity occu-

pation oscillation induced by OMO 1 cannot efficiently

drive the other resonator. Regime II thus corresponds to

the single oscillator system that we studied previously.

One might expect that resonator 2 simply starts to oscillate

when the power is increased beyond the second threshold

which is higher due to its lower gom. Instead, different
dynamics is encountered (regime III) where the power

spectrum displays a large magnitude over a wide range

of frequencies. Here, the motion is chaotic and the phase,

amplitude, and frequency of the transmitted probe light

change on short time scales. This chaotic behavior only

exists for a limited power range and vanishes beyond

0.7 dBm.

Above 0.7 dBm the two oscillators start their synchro-

nized motion, as evidenced by a dramatic change in the

mechanical displacement spectrum. In regime IV the

detected photocurrent contains a strong narrow tone and,

more importantly, the thermomechanical motion of reso-

nator 2 is now no longer visible. The single strong peak in

the RF spectrum indicates that both resonators are oscillat-

ing at the same frequency. We have thus synchronized the

two resonators despite the extremely large frequency

difference: the second mode, originally at 6.7 MHZ, was

almost twice as fast as the oscillations of the first mode at

3.9 MHz, indicating the extremely strong optomechanical

interactions and the tunability of the double-well potential

in our system.

The spectra in regime IV also reveal another surprise:

Sidebands emerge around the carrier peak. A close

inspection of Figs. 2(a) and 2(e) shows that the spectra

contain two equally spaced sidebands �100–500 kHz
from the carrier. Their presence implies a deteriorated

signal phase noise at that particular sideband offset fre-

quency [21]. These weak (� 20–35 dBc), but clearly

defined, sidebands are not transient phenomena as they

persist during the entire data-acquisition time, which is

much longer than the damping time of the resonator ��1.

Also, in regime II [Fig. 2(c)] with only a single OMO

present, sidebands are absent, ruling out low-frequency

thermal instabilities [22] interfering with optomechanical

oscillations.

To understand the origin of synchronization and the slow

dynamics in the cavity-coupled oscillators, we theoreti-

cally analyze this system [13]. Multiple uncoupled oscil-

lators will each oscillate at their own frequency, but the

cavity field couples the oscillators enabling synchroniza-

tion, as will be shown. When the frequency difference

between the resonators � � ��, the equations of motion

for their complex amplitude Uk ¼ gom;khðuk þ _uk=i
��Þ�

expð�i ��tÞi ¼ Ak expði�kÞ in the frame rotating at the

average frequency �� ¼ 1
2
ð�1 þ�2Þ become [14,23,24]

_U1;2 ¼ �i
�

2
U1;2 �

�1;2

2
U1;2 � i ��com;1;2�ðtÞ; (1)

where uk are the displacements of the two resonators

(k ¼ 1, 2) and �ðtÞ describes how the photon occupation

responds to a dynamic displacement [24]. com;k ¼

"nmaxg
2
om;k=mk

��3 are the coupling strengths and nmax is

the maximum number of photons in the cavity. The same

reasoning as for a single OMO shows that for multiple

resonators coupled to the same cavity the latter only feels

their combined effect, and the cavity response is �ðtÞ ¼
�½AþðtÞ�, where Aþ is the magnitude of the summed

complex amplitudes UþðtÞ¼
P

kUkðtÞ¼AþðtÞexp½i�þðtÞ�.
Aþ depends on the phase difference between the individual

oscillators, but not on the overall phase �þ. The equations
of motion for the two OMOs are thus coupled

together via Uþ and the cavity response function �ðAþÞ.
Synchronization implies that they rotate at the same fre-

quency ��þ �. Hence, U1;2ðtÞ ¼ Y1;2 expði�tÞ must be a

solution to Eq. (1): if no such solution exists, synchroni-

zation cannot take place. Inserting U1;2ðtÞ into Eq. (1)

yields

�ðAþÞ ¼
1
��

ð�
2
Þ2 � �2 þ i� ��þ i���

4
þ ð ��

2
Þ2 � ð��

4
Þ2

2� �com þ � �com
2

þ i �com
2

��
2
� �i� �com

; (2)

where �com (�com) and �� (��) are the average (difference in)
coupling strengths and damping rates, respectively. Solving

Eq. (2) is illustrated in Fig. 3(a); the left-hand side is a curve

in the complex plane parameterized by Aþ (for a given

detuning and decay rate), whereas the right hand side

depends only on the oscillators’ properties and is parame-

terized by the unknown frequency �. Intersections of the
two curves are thus solutions to Eq. (2). Equation (1) then

gives the individual contributions Y1 and Y2 including their

phases relative to the carrier Yþ ¼ Y1 þ Y2. Figure 3(b)

shows that they have a similar, but not identical, magnitude

and oscillator 1 moves ahead of the second. Finally, for

sufficiently asymmetric oscillators, the two curves can

intersect more than once, leading to multistability [23,24],

even in the unresolved sideband regime where a single

oscillator always has a unique amplitude.

Equation (2) thus yields the fixed points with synchro-

nization. However, to understand the dynamics around the

corresponding limit cycle, Eq. (1) can be expanded for

small excursions and the eigenvalues can be found. There

are three independent degrees of freedom: the two oscil-

lation amplitudes and the phase difference between them.

The fourth degree of freedom, the overall phase �þ, is not
fixed, yielding a zero eigenvalue. Depending on the values

of the other three eigenvalues, the coupled system can

return to the fixed point with oscillations (underdamped).

In this case, any displacement of an oscillator, e.g., due to

the thermal force, will return back to the fixed point in an

oscillatory fashion, which shows up as sidebands in the

frequency domain. For a single oscillator the eigenvalue is

real [24] and no sidebands appear as it overdampedly

returns to the limit cycle.
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The analytical model thus hints that the observed side-

bands are due to the thermal force noise acting on the

oscillators. To further analyze the synchronization dynam-

ics, the full equation of motion of the resonators and that of

the cavity field are integrated numerically [with mechani-

cal nonlinearities included, see Eqs. (S1) and (S2) in the

Supplemental Material [13]]. We chose to simulate a con-

ceptually clear situation with nearly identical resonators

(5% frequency difference and identical gom). The effect of
force noise is accounted for by kicking the resonators away

from their steady state oscillations (see the Supplemental

Material [13] for a simulation with a stochastic force

instead of kicks). Figure 3(c) shows the evolution of the

light field power spectrum as a function of nmax (i.e., the

pump power). Similar to the experiment (Fig. 2), at low

power two weak upward-tuning peaks are visible. Around

nmax ¼ 30 the oscillations start, but now the two resonators

immediately oscillate simultaneously [25]. As expected

from our analytical theory of synchronized motion, side-

bands appear in the spectrum, but only when force noise

(i.e., kicks) is included. As illustrated in [13] the oscillators

are truly phase locked in this regime, indicating full syn-

chronization. When further increasing nmax the oscillations

grow towards the top of the potential barriers and hence the

frequency goes down. When the barrier is crossed at

nmax ¼ 134 the detuning suddenly changes dramatically

and the oscillations stop. However, they reappear at higher

powers and above the barrier, just as in the experiment, the

oscillation frequency increases with increasing power [see

also Fig. 2(a)]. Also note that the sidebands start out far

from the carrier at the onset (nmax ¼ 335) of the oscilla-

tions in this regime and that, just as in Fig. 2(a), they

converge towards the carrier with increasing power. Also,

the stochastic simulation [13] shows sideband strengths of

the same magnitude as observed experimentally, confirm-

ing their thermal origin. Finally, the simulations also repro-

duce bands with chaotic behavior with broad spectrums

similar to the one in Fig. 2(d). The simulations thus

qualitatively reproduce most of the features observed in

the experiment, including the correct tuning, the appear-

ance of the sidebands of the synchronized resonators due to

thermal force noise with the correct strength, and chaos.

We have also studied the dynamics of a single mechani-

cal oscillator in the presence of an external oscillator

encoded in the light field. This is extremely important in

the context of synchronizing a remote oscillator to an

external clock and also further validates our model for

optomechanical synchronization. To this end, the pump

power is set between the oscillation thresholds of the first

and second resonator (so that the latter does not play a role)

and is modulated at frequency �0 ¼ 6:800 MHz. When

the modulation index (m) is zero, resonator 1 oscillates

freely in the up state at 6.804 MHz as shown in the bottom

spectrum in Fig. 4. However, when the modulation is

switched on the oscillations jump to �0, synchronizing

FIG. 4 (color online). Measured rf power spectral density of

the detector output with a free running oscillator (black) and

oscillations in the presence of an increasingly larger modulation

depth of the pump (red to dark blue) for constant average power.

The curves are offset for clarity.

FIG. 3 (color online). (a) Complex plane representation of the cavity response �ðAþÞ (black) and the right-hand side of Eq. (5) for

two identical oscillators (red) and two oscillators with �� ¼ 0:001 ��, �com ¼ 20, � ¼ 0:01 ��, �� ¼ 0:0018 ��, and �com ¼ 0 (blue).

The curves intersect at Aþ ¼ 132:0 and � ¼ 0:0438 �� (b) Complex amplitudes of the individual oscillators for the solution shown in

(a). (c) Color plot of the Fourier transform of the photon number on a logarithmic scale. The carrier tone and its sidebands are indicated

by red and white arrows, respectively. The parameters are Q1 ¼ Q2 ¼ 6000, � ¼ 526 ��, �0 ¼ 0:493�, gom;1 ¼ gom;2 ¼ 1.
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the OMO to the external clock. Interestingly, sidebands

appear again. A prominent feature is that the location of the

sidebands is not constant: the offset frequency increases

with m. All of this is reproduced in the numerical simula-

tions [13], showing that many of the phenomena observed

in the two-OMO case can also be understood in the con-

ceptually simpler injection-locking experiments [26].

Our technique of coupling mechanical oscillators via a

single photonic bus creates a whole new platform for non-

linear studies. It will enable synchronization of large arrays

of individual optomechanical elements with interesting

new collective phenomena [27] and allows synchronization

over arbitrarily long distances. Finally, by exploiting the

memory storage capabilities of the double well resonators

we envision combining the information of the mechanical

bits with synchronization. This could, for example, be

used to perform conditional coupling of oscillators, an

interesting future direction enabled by our cavity field

coupling.
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