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Abstract: Conventional optical fiber has excellent perfor-

mance in guiding light, which has been widely employed 

for long-distance optical communication. Although the 

optical fiber is efficient for transmitting light, its function-

ality is limited by the dielectric properties of the core’s 

and cladding’s materials (e.g. Ge-doped-silica and silica 

glasses). The spot size of the transmitted light is diverging 

and restricted by the diffraction limit of the dielectric core, 

and the numerical aperture is determined by the refractive 

index of the fiber materials. However, the novel techno-

logy of metasurfaces is opening the door to a variety of 

optical fiber innovations. Here, we report an ultrathin 

optical metalens directly patterned on the facet of a pho-

tonic crystal optical fiber that enables light focusing in the 

telecommunication regime. In-fiber metalenses with focal 

lengths of 28 µm and 40 µm at a wavelength of 1550 nm 

are demonstrated with maximum enhanced optical inten-

sity as large as 234%. The ultrathin optical fiber metalens 

may find novel applications in optical imaging, sensing, 

and fiber laser designs.

Keywords: metasurfaces; photonic crystal fibers; plas-

monics; fiber optics components.

1   Introduction

Optical fiber is a well-established efficient platform used 

to guide light and allow high bandwidth optical transmis-

sion for long-distance communication with low attenua-

tion. Besides, conventional optical fibers also have been 

widely employed for fiber lasers [1, 2], remote and optical 

sensing [3], fiber imaging [4] and endoscope [5], and 

fiber laser surgery [6, 7]. However, the optical properties 

of fiber waveguide, such as phase, amplitude, polariza-

tion state, and mode profile, cannot be altered after the 

fiber drawing fabrication. In addition, the spot size of the 

transmitted light is divergent and restricted by the diffrac-

tion limit of the dielectric core. Attempts have been made 

to fabricate periodical plasmonic nanostructures (i.e. 

slits, holes, bars, etc.) on the optical fiber facets to alter 

the optical properties and to extend the functionalities 

of the fibers, as elements of these plasmonic nanostruc-

tures can interact directly with well-guided modes of the 

optical fiber. Compact optical fiber components such as 

diffraction grating [8, 9], amplifier [10], nanotrimmer [11], 

optical tweezer [12], and plasmonic sensors [13–15] have 

been realized with periodical nanostructures on facets of 

the optical fibers. A method to apply a metallic structure 

to a polymeric membrane on the facet of a hollow core 

optical fiber has been functionalized as a nanoplasmonic 

filter [16]. Realization of an in-fiber focusing lens via plas-

monic nanostructures has also been studied in recent 

years [17–19]. However, these in-fiber plasmonic lenses 

with concentric annular slits suffer from relatively short 

focal length (<10 µm), narrow operation bandwidth, and 

side band caused by high-order diffraction, thus limiting 

their potential practical applications.

The emergence of metasurfaces provides the opportu-

nity to tailor optical properties for advanced light manip-

ulation and to develop novel ultrathin optical devices 

[20–22]. By producing a specific phase profile using 

spatially varied nanoantenna elements, metasurfaces 

can control the wavefront of the transmitted, reflected, 

scattered light and enable novel ultrathin optical com-

ponents such as flat metalenses [23–26]. With the ability 

to control the optical phase via metasurfaces, several 
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in-fiber metasurface optical components [27] have been 

demonstrated, for instance, an in-fiber modulator [28]/

linear polarizer [29] and an in-fiber beam element [30]. 

However, to date, no direct integration of metasurface-

based lens onto the optical fiber has been demonstrated 

without relying on a prism or flat substrates. In this work, 

we developed the first optical fiber metalens with engi-

neerable focal length by directly patterning a geometric 

phase (i.e. Berry phase) altering metasurface onto the end 

facet of a large-mode-area photonic crystal fiber (LMA-

PCF). To integrate the sufficient area and phase profile of 

the metalens, instead of using conventional single-mode 

step index fiber, a LMA-PCF was employed as the platform 

to guide the light in large core diameter while maintain-

ing the single mode property (endlessly single mode) 

via the modified total internal reflection mechanism. We 

experimentally demonstrated that the circularly polarized 

incident beam can be focused after exiting the fiber in the 

telecommunication wavelength regime with considerable 

focusing efficiency. Our work shows a first proof-of-princi-

ple demonstration for developing an efficient in-fiber met-

alens, which will find practical applications for in-fiber 

optical devices with unique functionalities.

2   Design and fabrication

The required distribution of phase retardation for a metal-

ens typically follows:

 

2 22
( , ) ( ),r r f f

π
ϕ λ

λ
= − + −  (1)

where r is the distance from current location on the metal-

ens to the center, f is the focal length, and λ is the opera-

tion wavelength. With such a phase profile, the incident 

plane wavefronts are transformed into spherical ones, 

which converge at the focal length. At a fixed focal length 

f and an operation wavelength λ, the phase modula-

tion ϕ(r, λ) can be achieved by geometric phase method 

of the resonant elements in the metasurfaces (Figure 1). 

The circularly polarized light transmitted through a unit 

element with the rotational angle θ acquires an additional 

phase ±2θ, i.e. geometric phase, where the sign indicates 

the handedness of circularly polarized incidence [31]. 

Our metalens is designed on LMA-PCF (LMA-25), which 

is made of pure silica with a core diameter of 25 ± 1 µm 

(Figure 1A and B). Compared to conventional single-mode 

fiber (SMF-28) with the core diameter of 8.2 µm, the larger 

core area of PCF allows more unit elements (total 1261) 

to be fabricated on the core, thus providing the essential 

phase profile for achieving focusing functionality than 

conventional single-mode fiber.

The simulated fundamental mode profile (i.e. electric 

field intensity distribution) of the LMA-PCF is shown in 

Figure 2A (see Methods for more properties of the LMA-

PCF). Endlessly, single-mode guiding is maintained in 

the LMA-PCF with a broad wavelength range, and the 

light is confined mostly within the core region [32, 33]. 

The designed metalens is the same size as the core to 

ensure that the guided core mode interacts with the entire 

metasurface. With the dimension of the LMA-PCF, we per-

formed theoretical simulations to determine the required 

rotational angle of each individual resonant element with 

respect to the center to achieve the convergent effect for 

certain circularly polarized incident light. A single etched 

gold nanorod was considered as a unit element. The simu-

lated conversion efficiency of the optimized unit element 

(with length of 500  nm, width of 150  nm, periodicity of 

600 nm, thickness of 40 nm) for constructing the metal-

enses is shown in Figure 2B. Its resonant wavelength is 

located at 1482.6 nm with maximum efficiency of 17%. The 

electrical field intensity distribution at resonant wave-

length is shown in the inset of Figure 2B. The rotational 

angles θ of the unit elements as a function of their radial 

positions that are required for constructing the metal-

enses are shown in Figure 2C. The designed focal lengths 

are 30 µm and 50 µm with numerical apertures (NAs) of 

0.37 and 0.23, respectively, at an operating wavelength of 

1550 nm (see Supplementary S1 for the required rotational 

angles for two PCF metalenses and Methods for details of 

the simulation).

To experimentally realize the PCF metalens, we first 

deposited a gold layer with a thickness of 40 nm on the 

end facet of the LMA-PCF by magneton sputtering. The 

Figure 1: Photonic crystal fiber metalens.

(A, B) Schematics of in-fiber metalens on LMA-PCF and (C) unit 

element of PCF metalens.
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metalens pattern was fabricated by focused ion beam 

(FIB) milling with an acceleration voltage of 30  kV and 

current of 1.5 pA. Special care was taken to align the 

center of the fiber such that the metasurface pattern com-

pletely covered the core of the fiber. The scanning electron 

microscope (SEM) images of the fabricated PCF metal-

ens are depicted in Figure 3 (Figure 3A and B: NA = 0.37, 

Figure 3C and D: NA = 0.23). The simulated transmissions 

of the fabricated samples using the dimensions obtained 

in SEM show that the resonant wavelengths are located 

at 1499.3  nm and 1490.3  nm with maximum efficiencies 

of 16.9% and 16.5% for metalens with NAs of 0.37 and 

0.23, respectively. (See Supplementary S1 for details of the 

experimental structural parameters, the simulated trans-

mission of the unit cells, and the electric field intensity 

distributions of the corresponding elements.)

3   Results and discussion

To verify the focusing effect of the in-fiber metalens, we 

captured the light intensity distributions by imaging the 

mode intensity along the light propagation direction with 

Figure 2: Characterization of optical fiber and designed metasurfaces.

(A) Simulated fundamental mode profile (i.e. electric field intensity distribution) superimposed with a SEM image of the LMA-PCF. (B) RCP to 

LCP efficiency of optimized unit element (l = 500 nm, w = 150 nm, p = 600 nm, t = 40 nm) in the PCF metalens in simulation. The wavelength 

region highlighted between gray dash lines marks the experimental bandwidth. Inset: electric field intensity distribution of the PCF metalens’ 

optimized unit elements at corresponding resonance wavelength of 1482.6 nm. (C) Required rotational angle θ of unit element along the fiber 

core for PCF metalens for NA of 0.37 (designed focal length of 30 µm) and 0.23 (designed focal length of 50 µm) at a wavelength of 1550 nm.

Figure 3: SEM images of fabricated PCF metalens for NAs of (A, B) 0.37 and (C, D) 0.23. 

The core diameter of the LMA-PCF is 25 ± 1 µm, providing the area for sufficient metasurface unit elements to ensure smooth phase 

distribution (see Supplementary Table S1 for parameters of the structural parameters of the unit elements for the two LMA-PCF metalenses).
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a z-scan setup that consists of a quarter waveplate, linear 

polarizer, high NA objective, and near-infrared (NIR) 

camera (see Supplementary S2 for details of the experi-

mental setup). Using the designed geometric-phase-based 

metalenses, the incident right-hand circular polarized 

(RCP) light was launched into the PCF metalens, and 

the left-hand circular polarization (LCP) component was 

collected as output light. The stitching mode intensity 

profiles on the x–z plane for these two PCF metalenses 

at wavelengths from 1500 nm to 1600 nm with a step of 

50 nm are shown in Figure 4A and C. It can be seen that 

the light density increases as the distance increases from 

the end facet of the PCF metalens to the focal plane, thus 

demonstrating the focusing effect. The observed focal 

lengths are 30 µm and 40 µm, respectively. The measured 

light distributions show good agreement with the output 

intensities of the LCP components obtained from the sim-

ulation (Figure 4B and D). The actual size parameters of 

the unit elements obtained from the SEM images of two 

PCF metalenses are utilized in the simulation (see Sup-

plementary S3 for more experimental and simulated light 

intensity distributions of PCF metalenses with NAs of 

0.37 and 0.23 from an operation wavelength of 1500 nm 

to 1630 nm with a step of 10 nm). To confirm the focusing 

effect from the metasurfaces, the RCP components from 

the output were collected in the same way as LCP compo-

nents. We extracted mode intensity distributions along the 

core diameter from NIR camera images for two PCF metal-

enses correspondingly. The mode intensities were fitted 

by Gaussian function and normalized to the maximum 

mode intensity of RCP-LCP at corresponding operation 

wavelengths. The mode intensity distributions of both the 

RCP-LCP and RCP-RCP input/output combinations at cor-

responding focal planes for two metalenses at 1500 nm, 

1550 nm, and 1600 nm were recorded and are depicted in 

Figure 4E and F, respectively. It is clear from the figure that 

a focusing effect of the metalens is observed only for the 

input/output combination of RCP-LCP. The slight amount 

of light measured in the RCP-RCP combination is attrib-

uted to the imperfect filtering/alignment of the input and 

output polarizers and the unmaintained RCP light within 

the PCF (see Supplementary S4 for more experimental 

mode intensity distributions of PCF metalenses with NAs 

of 0.37 and 0.23 for operation wavelength from 1500 nm to 

1630 nm with a step of 10 nm). No focusing was observed 

from the RCP output component, which is consistent with 

the theoretical design of the Berry-phase-based metalens 

[23, 24, 34, 35].

Figure 4: Intensity distributions of PCF metalenses. 

Measured intensity and simulated intensity profiles of PCF metalenses with (A, B) NA = 0.37 and (C, D) NA = 0.23 along the light propagation 

direction at various incident wavelengths. Experimental intensity distributions of each mode at corresponding focal planes for RCP-LCP and 

RCP-RCP input/output combinations of the PCF metalens with NA of (E) 0.37 and (F) 0.23 at different wavelengths.
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We further analyzed the optical performance of met-

alenses. Figure 5A shows the analysis of the depend-

ence of focal lengths and full-width at half-maximum 

(FWHM) of the focal spot on the operation wavelength. 

For the PCF metalens with NA of 0.37, the measured focal 

lengths varied from 26.7 µm to 28.0 µm between wave-

lengths of 1500 and 1630  nm, which are in good agree-

ment with the simulated results (i.e. focal length of 28.5 

µm within the same wavelength range). For the metalens 

with NA of 0.23, the experimental focal lengths are varied 

from 40.0 µm to 41.3 µm between operation wavelengths 

of 1500 and 1630  nm, closely resembling the simulated 

results of 40.0 µm to 41.0 µm. However, this focal length 

shows larger offset from the theoretical calculation (i.e. 

the designed focal length, 50 µm), which is mainly from 

the implemented phase distribution only divided in the 

first Fresnel zone. This can be effectively addressed by 

either increasing the core size or the NA of metalens. The 

measured and simulated focal lengths at the wavelength 

of 1550 nm are 28.0 µm and 40.0 µm for the two PCF met-

alenses, which are close to our simulation. The FWHM is 

defined as the beam waist of half-maximum light intensity, 

which is obtained by fitting the measured cross-section 

of light intensity at the focal spot with the Gaussian func-

tion. The measured FWHM values are 2.40–2.63 µm and 

3.44–3.65 µm in the measured wavelength range for the 

PCF metalens with NAs of 0.37 and 0.23, respectively (see 

Supplementary S5 for a comparison of spot sizes between 

two PCF metalenses and LMA-PCF without gold metalens).

The operating efficiency and enhanced optical inten-

sity of the PCF metalenses are shown in Figure 5B. Oper-

ating efficiency (i.e. the focusing efficiency from incident 

RCP to output LCP) is defined as the ratio of the light inten-

sity integrated over the whole beam spot at the focal plane 

of PCF metalens to that at the endface of a reference PCF 

without gold coating. The maximum efficiencies of 16.1% 

and 16.4% were measured for these two PCF metalenses 

at wavelengths of 1530  nm and 1540  nm, respectively. 

The decrease in the operation efficiency with wavelength 

is in accordance with simulated RCP-to-LCP conversion 

efficiency from the unit element (Figure 2B). It should 

be noted that the operation efficiency can be further 

enhanced by optimizing the configuration or employing 

dielectric metasurfaces [20, 36]. Operation efficiency as 

high as 91% could be obtained with optimized parameters 

of Si nanoantennas (see Supplementary S6 for details). 

Those Si nano-antennas could be implemented onto the 

fiber with similar nanofabrication techniques such as FIB 

milling and electron beam lithography [11].

We also defined the enhanced optical intensity of the 

PCF metalenses as the ratio of averaged light intensity 

over the whole beam spot at the focal plane to that at the 

end-facet of the LMA-PCF without metalens (Figure  5B). 

The enhanced optical intensity is 234% larger at the wave-

length of 1540 nm. Even though the focusing performance 

is limited by operation efficiency, the light intensity of 

the PCF metalens is more intense than that of the refer-

ence fiber. The demonstrated efficient in-fiber metalens 

provides an engineerable NA and FWHM with enhanced 

optical intensity. It could enhance the development of 

novel and ultracompact in-fiber optical imaging, sensing, 

and communication device applications such as in-fiber 

lenses [37, 38] for laser surgery and optical fiber endo-

scopes [26], a focusing element for optical fiber laser and 

spectroscopy, and an efficient fiber coupling for optical 

interconnects. The optical metalens could further be 

extended to hollow core optical fibers by integrating with 

a flexible membrane on the hollow core [16], providing 

a unique focusing element for a fiber gas laser. Further 

integration of electrically tunable materials such as 

Figure 5: Characteristics of PCF metalenses.

(A) Measured, simulated focal lengths and FWHM and (B) operating efficiency and enhanced optical intensity of PCF metalenses with 

NA = 0.23 and NA = 0.37 at corresponding focal plane versus wavelength.
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transparent conducting oxide materials into the in-fiber 

metalens [39, 40] could potentially enable tuning of the 

focusing effect or focal length, which would be significant 

for novel fiber optical trapping and active sensing.

4   Conclusions

We experimentally demonstrated an in-fiber metalens 

enabled by ultrathin geometric phase metasurfaces with 

thickness of 40  nm fabricated on the end-facet of the 

photonic crystal fiber. The ultrathin metalens provides a 

phase gradient and focuses light from the fiber as a refrac-

tive converging lens at telecommunication wavelengths. 

The focal lengths 28 µm and 40 µm at the operating wave-

length of 1550 nm were measured, providing light focus-

ing with NAs of 0.37 and 0.23, respectively. The maximum 

operating efficiency is 16.4%, which approaches the theo-

retically predicted level for flat metallic metasurfaces. The 

maximum enhanced optical intensity is as large as 234%. 

This integration of metalens and optical fiber will pave the 

way for in-fiber optical imaging and sensing applications 

and be significant in the miniaturizing of optical fiber 

devices with advanced multifunctionalities.

5   Methods

5.1   Numerical simulation

Simulations of the LMA-PCF were carried out using the 

MODE Solutions software from Lumerical Solutions, Inc. 

The pitch and hole diameters of LMA-PCF (LMA-25, NKT 

Photonics, Inc.) are 16.4 µm and 4 µm, respectively. The 

material of the photonic crystal fiber used is pure silica 

glass. Simulations of the metalens’ intensity distributions 

were performed using Computer Simulation Technology 

Microwave Studio. For the design of unit elements, a unit 

cell boundary condition is employed for the simulation 

of transmission spectra in an array configuration (see 

Supplementary Table S1 for details of the structural para-

meters of the unit elements for two PCF metalenses). For 

simplicity, cylindrical lenses are simulated to numerically 

predicate the focal length of designed metalenses, where a 

perfectly matched layer and periodic boundary conditions 

were employed in the x and y directions, respectively. The 

simulated dimension of the metalens in the x direction 

is set to 25 µm, which is the actual core diameter of the 

LMA-PCF. The permittivity function of silica is modeled 

with the standard Sellmeier expansion [41]. The complex 

frequency-dependent dielectric function of gold in the 

NIR regime is described by the Lorentz-Drude model with 

a damping constant of 0.07 eV and a plasma frequency of 

8.997 eV.

6   Supplementary material

The supplementary material is available online on the 

journal’s website or from the authors.
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