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Photonic crystals possessing multiple Weyl points
and the experimental observation of robust surface
states
Wen-Jie Chen1, Meng Xiao1 & C.T. Chan1

Weyl points, as monopoles of Berry curvature in momentum space, have captured much

attention recently in various branches of physics. Realizing topological materials that exhibit

such nodal points is challenging and indeed, Weyl points have been found experimentally in

transition metal arsenide and phosphide and gyroid photonic crystal whose structure is

complex. If realizing even the simplest type of single Weyl nodes with a topological charge of

1 is difficult, then making a real crystal carrying higher topological charges may seem more

challenging. Here we design, and fabricate using planar fabrication technology, a photonic

crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with

topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D

bulk band gaps for a fixed kz and the associated surface modes. The robustness of these

surface states against kz-preserving scattering is experimentally observed for the first time.
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T
opological matter such as electronic topological insula-
tors1–4 and their classical wave counterparts5–30 have
attracted a lot of attention. Recently, the attention has

shifted towards topological materials that are gapless, exhibiting
Weyl nodal points31–40. Weyl points with topological charge of
1 are nodal degeneracy points where two linearly dispersive bands
intersect in the three-dimensional (3D) reciprocal space. Weyl
point dispersions are governed by the Weyl Hamiltonian
HðkÞ ¼ vxkxsx þ vykysy þ vzkzsz , where vi, ki and si are group
velocities, momenta and Pauli matrices. While Weyl points can
be viewed as a 3D extension of the two-dimensional (2D) Dirac
points HðkÞ ¼ vxkxsx þ vykysy

� �

, important differences exist.
Dirac points can be gapped easily by breaking either their
inversion or time-reversal symmetry. However, Weyl points are
stable against perturbation since all the degrees of freedom are
already exhausted in the Weyl Hamiltonian, so that perturbations
respecting the translational symmetry cannot lift the degeneracy
but can only shift the position of the nodal points. Their
robustness to perturbation stems from the topological invariant
(nonzero Chern number) they carry, which can be calculated as
either c¼ sgn(vxvyvz) or the integral of Berry curvature
(mathematically equivalent to a magnetic field in momentum
space) on a closed surface enclosing the Weyl points. These nodal
points are quantized sources or sinks of Berry curvature and can
be viewed as magnetic monopoles in k-space32. Weyl points are
hence topologically protected and can only be destroyed by
annihilation with another Weyl point of opposite topological
charge. Their topological character also manifests in the
nontrivial surface states connecting the projections of bulk
Weyl points in the surface Brillouin zone due to the bulk-
surface correspondence.

Weyl points are more elusive entities than Dirac points. The
existence of Dirac points is essentially a consequence of the
symmetry of the honeycomb lattice and just about any kind of
wave, be it electronic41, electromagnetic42 or acoustic43, will
exhibit Dirac points at the corner of the Brillouin zone of the
honeycomb system as long as inversion and time-reversal
symmetries are respective. Simply put, Dirac points are
guaranteed if a honeycomb lattice can be made. Such a
simple recipe based on symmetry is not available for Weyl
points, however. Instead, symmetry reveals the circumstances
under which Weyl points cannot exist. For example, time-
reversal symmetry requires a Weyl point at k to have the same
charge as its companion point at � k, while inversion
symmetry requires the pair to have the opposite charge. Such
conflicting symmetry requirements preclude the existence of
Weyl points in a system with both inversion (P) and time-
reversal (T) symmetries. Such nodal points can in principle
exist in various systems with broken PT symmetry, but exactly
what type of structure can give rise to Weyl points is not known
a priori. Nevertheless, in the past few years, theory has
suggested that Weyl points can be found in a number of
systems including cold atoms44, layered systems45 and also
classical wave systems such as photonic46,47, and acoustic48

systems. Many interesting phenomena associated with the
existence of the topological point can in principle be found in
Weyl systems such as topologically protected surface states31,
quantum anomalous Hall effect33 and chiral anomaly49.
However, experimentally realizing Weyl points and their
associated topological characteristics remains challenging. In
particular, the robustness of the topologically protected surface
states derived from Weyl points has yet to be observed. So far,
Weyl points have been shown experimentally in transition
metal arsenide35–37 and phosphide38,39 and a double gyroid
photonic crystal40. For classical waves, the gyroid structure is
very complicated.

In addition, most theoretical discussions of Weyl points focus
on single Weyl points carrying a topological charge of 1 as
described by the Hamiltonian HðkÞ ¼ P

i;j kivijsj. But higher
order Weyl points carrying topological charges of 41 can in
principle exist in certain types of crystals50,51. As nodal points,
most Weyl points have point-like equienergy or equifrequency
surfaces and therefore a zero density of states. However, the so-
called type-II Weyl points52 can also exist and would have a finite
density of states as recently shown theoretically. It is certainly
desirable to create a system that exhibits these more exotic
variations of Weyl points.

Here we designed and fabricated a photonic crystal that
exhibits single, double and triple Weyl points (including type-II
Weyl points). The structure was specifically designed to be
compatible with planar fabrication technology which, in the
microwave regime, can be implemented using printed circuit
board (PCB). This is also the first time that robust surface states
are measured experimentally at the boundary of Weyl systems.

Results
Photonic crystals possessing single and multiple Weyl points.
Periodic systems exhibiting Weyl points in momentum space can
in principle be designed using a nearest-neighbour tight-binding
Hamiltonian48. Its basic idea can be understood in the following
way. It is well known that a honeycomb lattice has 2D Dirac
points at Brillouin zone corners K and K0 and the dispersion can
be described by effective Dirac Hamiltonians near these points.
To achieve 3D Weyl points, one can stack these honeycomb
lattices periodically in the z-direction and introduce chiral
interlayer coupling (see Methods and Supplementary Fig. 1).
Here a tight-binding Hamiltonian is not used as a design tool
per se, but rather as a starting point to guide us to the structures
possessing the correct symmetry to support topological features
such as synthetic gauge flux and associated Weyl points. We first
design the single-layer system with 2D Dirac points. Figure 1a
depicts the unit cell, which when repeated in the xy plane will
form a hexagonal array of perfect electric conductor (PEC)
cylinders embedded in a parallel plate waveguide. The
fundamental mode of this waveguide is Ez-polarized and it has
a conical dispersion at K and K0. This planar waveguide structure
can be realized easily using standard PCB and such PCBs can be
stacked in the z direction to form a 3D photonic crystal (see
Fig. 1b and the detailed geometry in Methods). Then chiral
interlayer coupling is introduced by etching slots on the top and
bottom PEC layers. Figure 1c shows the top view of the unit cell
(dashed hexagon), where the Y slots on the top and bottom
surfaces are shown in blue and red, respectively. These slots form
a chiral pattern and break all the mirror symmetries and
inversion symmetry.

Figure 1d depicts the first Brillouin zone of the photonic
crystal, where a grey hexagon highlights the 2D Brillouin zone for
a fixed kz. The bulk band structure in the kz¼ 0 plane and along
the line from k-point �H to H (passing through the K point) are
shown in Fig. 1e,g, respectively. The first and second bands, and
the fifth and sixth bands intersect at the K point, and the
dispersions near the degeneracy point are linear in all three
directions of the reciprocal space, indicating that they are Weyl
points. The form of dispersion (linear or quadratic) around the
point of intersection can be obtained by either numerical
calculation or symmetry analysis (Methods). The topological
charge of a Weyl point can be calculated either by integrating
Berry curvature on a closed surface enclosing the Weyl point or
by inspecting the rotational eigenvalues of the two touching
bands50. Here we used both methods to calculate the topological
charges and obtained consistent results. The topological charges
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of the Weyl points at 12.25 and 9.94GHz at K are found to be
� 1 and 1. The Weyl points at the K0 point are found to bear the
same topological charges as those at K, as mandated by the
C6 symmetry of the photonic crystal. In addition, we also found
three degeneracy points at G (shown as red or blue solid circles).
Figure 1e,h shows that the band dispersions near these points are
linear along the kz direction but quadratic in the kx–ky plane.
They are double Weyl points50 with charges of ±2, which are the
superposition of two single Weyl points with the same charges of
±1. Their topological charges can be verified by the number of
surface states near these nodal points (see Supplementary Note 1
and Supplementary Fig. 2). To the best of our knowledge, this is

the first time that a real structure has been designed and
fabricated to exhibit double Weyl points with topological charges
higher than 1. Double Weyl points have been predicted to exist in
crystals possessing C4 or C6 point group symmetries50. In our
case, the degeneracy between the two single Weyl points is
protected by C3 symmetry and time-reversal symmetry (see the
symmetry analysis in Methods).

To verify that the C3 symmetry (together with time-reversal
symmetry) is indeed sufficient to protect the double Weyl points,
we considered a photonic crystal similar to the one illustrated in
Fig. 1c, but with the circular rods replaced by triangular rods. As
the triangular rod has a lower symmetry than the circular rod, the
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Figure 1 | Realization of Weyl points in an electromagnetic system by introducing interlayer coupling. (a) Unit cell of a single-layer system built from a

hexagonal array of perfect electric conductor (PEC) cylinders bounded by two PEC slabs. This can be realized with metal-coated PCBs that are pierced

through by a hexagonal array of aluminium rods. PCBs stacked in the z direction form a 3D photonic crystal. (b) Multilayer system built from PCBs stacked

in the z direction. Interlayer couplings are introduced by the Y-shaped slots on two sides of the PCBs. (c) Top view of the unit cell (dashed hexagon) of the

multilayer system. Blue and red areas highlight the Y-shaped slots on the upper surface and the lower surface of the PCBs. (d) Reciprocal space of a

hexagonal lattice. Since the photonic crystal has translational symmetry along the z direction, kz is a good quantum number. The system with a fixed kz has

a 2D band structure in the reduced Brillouin zone (grey plane in d). Chern numbers are well defined for each kz slice. Weyl points can be viewed as the

phase transition points between the kz slices with different Chern numbers. (e) Bulk band structure in the kz¼0 plane. The structure has several Weyl

points with different charges (in different colours). (f) Bulk band structure in the kz¼0.05p/d plane. (g–i). Dispersion along the z direction at K, G and M,

respectively. Bands with different rotational eigenvalues are plotted in different colours. Since a change in rotational eigenvalue results in a change in the

band (gap) Chern number, each crossing point in g or h is a Weyl point whose charge depends on the ratio between the rotational eigenvalues of two

intersecting bands. Four Weyl points between the 4th and 5th bands, which induce the jumps in the Chern number of the 5th band in j, are highlighted in g.

(j) Chern numbers of the 5th gap (red solid line) and the 5th band (black dashed line) as a function of kz, the jump in which implies the topological charge

of associated Weyl points.
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replacement reduces the symmetry of the system from C6 to C3,
while maintaining time-reversal symmetry. Figure 2a is the top
view of the unit cell, showing that the circular cylinder in the unit
cell centre in Fig. 1c is now replaced by a triangular rod, thereby
reducing the symmetry to C3. Figure 2b plots the band structure
in the kz¼ 0 plane. The three Weyl points at G have retained their
quadratic dispersions. Figure 2c shows the dispersions along the
kz direction. The dispersions near the double Weyl points are
linear in the z direction. These calculated band structures are
proof that the double Weyl points persist in the band structure of
the C3 photonic crystal.

If the C3 symmetry is broken, two Weyl points with charges of
±1 will separate and each will form a linear dispersion in all
three directions. Here we give an example of C3 symmetry-broken
photonic crystal. Figure 3a shows the top view of the unit cell,
which is the same as that in Fig. 1c except that the circular
cylinder has been replaced by an elliptical cylinder. Figure 3b,c
plot the corresponding Brillouin zone and band structure in the
kz¼ 0 plane. Each of the three quadratic dispersive double Weyl
points in Fig. 1e at G breaks into a pair of single Weyl points with
the same topological charge. Three of the six single Weyl points
show up as linear dispersive crossing points on the þ kx (along
the G–M direction) or þ ky (along the G–K direction) axis in
Fig. 3c (the degeneracy points between the second and third
bands and the fourth and fifth bands along G-M, and between the
sixth and seventh bands along G-K). These single Weyl points
have linear dispersions in all three directions. For example,
Fig. 3d,e show the dispersions near the crossing point at (0.35p/ a,
0, 0) in the ky and kz directions, respectively. Another single Weyl
point with the same topological charge should lie at (� 0.35p/ a,
0, 0) by applying a C2 rotation. Interestingly, these two single
Weyl points are actually the so-called type-II Weyl points, which
have been discussed very recently in electronic systems52

(for example, in WTe2). Instead of having point-like equifre-
quency surfaces as in the case of conventional type-I Weyl points,
such type-II Weyl points carry conical equifrequency surfaces at
the Weyl point frequencies and their density of states is very
different from that of conventional Weyl points. In addition, the
two single Weyl points with frequency of 9.7 and 11.9GHz have
shifted from the high symmetry point K0 towards the G point due
to the breaking of C3 symmetry. This shifting of Weyl points due
to symmetry reduction reflects the robustness of Weyl points in
the sense that they cannot be gapped easily and a perturbation
simply shifts their positions in k-space.

In addition, our proposed structure in Fig. 1c also possesses
triple Weyl points with a topological charge of 3, each of which is
the superposition of three single Weyl points with the same
topological charge. Figure 4 plots the band structure along the
G–A direction (the C6 axis in our system) in the higher frequency

range (415GHz) where the bands carrying different C6

rotational eigenvalues (Z) are plotted in different colours. The
black band (Z¼ � 1) and the lower grey band (Z¼ þ 1) cross
twice near kz¼±0.1p/d at the frequency of 16.95GHz. These
two crossing points, marked by red open circles in Fig. 4, are
triple Weyl points, whose charges are all calculated to be 3. This is
consistent with the rotational eigenvalue argument that triple
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Figure 2 | Band structure of a C3-symmetric Weyl photonic crystal. (a) Unit cell of the crystal where the PEC cylinder is replaced by a triangular rod,

reducing the symmetry to C3. (b) Band structure in the plane of kz¼0. All three double Weyl points still lie at G. The quadratic dispersions in the kx–ky plane

are also shown near these double Weyl points. (c) Band structure from �A to A, showing the linear dispersion of the double Weyl points in the z direction.
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to symmetry breaking. (a) Unit cell of the crystal breaking C3

symmetry where the PEC cylinder in is replaced by an elliptical cylinder.

(b) Corresponding Brillouin zone. Blue solid line highlights the path of the

k-point when calculating the dispersion in (c). The upper M point, which is

related to the lower M point by a reciprocal lattice vector, lies on the G�K0

direction. (c) Band structure in the plane of kz¼0. Each of the three double

Weyl points at G splits into two single Weyl points. Only three of the six

single Weyl points are shown (the band crossing points between the

second and third bands, the fourth and fifth bands, and the sixth and

seventh bands). The other three single Weyl points can be inferred by

applying C2 rotation about the axis of the elliptical cylinder. (d) and

(e) show the linear dispersions near the Weyl point between the fourth and

fifth bands along the y and z directions, respectively. Interestingly, this tilted

Weyl point at 10.6GHz is in fact a type-II Weyl point having a finite density

of states.
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Weyl points emerge when two modes with opposite rotational
eigenvalues cross each other along the C6 axis in the reciprocal
space. Charges of ±3 are the highest possible topological charges
protected by rotational symmetry50 and the degeneracy of the
three Weyl points is protected by C6 symmetry. Note that C3

symmetry and time-reversal symmetry cannot protect a triple
Weyl point. This is because the two original intersecting bands
with opposite C6 rotational eigenvalues of � 1 and þ 1 will carry
the same representation if the symmetry is reduced to C3 and the
intersecting bands will have avoided crossing along the G–A
direction (the triple Weyl point splits). In addition to triple Weyl
points, there are other crossing points on this C6 axis. They are
single and double Weyl points with their charges indicated by
colour circles. Note that the single Weyl points near 16.5GHz,
marked by light blue circles, are type-II Weyl points. Such exotic
topological features come naturally with the structure shown in
Fig. 1.

The existence of the single Weyl point at 12.25GHz can be
experimentally confirmed by angle-resolved transmission
(Supplementary Notes 2 and 3) and its associated robust surface
state can be demonstrated by surface transmission (see below).
However, the direct detection of the multiple Weyl points in this
system is challenging due to the low excitation efficiency of the
bulk modes near these nodal points. The multiple Weyl points are
protected by rotation symmetry and time-reversal symmetry and
they have linear dispersion in one direction (along the rotation
axis) and quadratic (for double Weyl) or cubic (for triple Weyl)
dispersion in the in-plane directions. The flat in-plane dispersions
near the quadratic or cubic point implies that the impedance of
these bulk modes should be quite mismatched with the
propagating mode in air, making them difficult to excite. On
the other hand, the type-II single Weyl point does not have such
limitations. For example, the crossing point at 10.6GHz in Fig. 3c
(C2 case) is a type-II Weyl point. The two touching bands can in
principle be well separated in vicinity of the nodal point by tuning
the geometric parameters of the structure, which will make the
type-II point experimentally detectable. In this work, our
motivation is to experimentally confirm the robust surface state
in the 2D band gap for fixed kz. We choose to realize the photonic
crystal with C6 symmetry in our experiment, as the higher

symmetry ensures a wider bulk gap, which facilitates surface state
detection.

Chern number of the 2D subsystem with a fixed kz. Since the
crystal has translational symmetry along the z direction, kz is a
good quantum number as long as the translational symmetry is
preserved. If we fix a kz value and consider the dispersion and
transport in the x-y plane, the 2D subsystem would have a 2D
band structure in a constant kz plane (the grey translucent plane
in Fig. 1d). kz is then a parameter that characterizes this 2D
system and the Chern number of a nondegenerate 2D band for a
fixed kz is well defined. For example, Fig. 1f shows the bulk band
structure in the kx–ky plane when kz¼ 0.05p/d. Unlike the band
structure of kz¼ 0, the band degeneracies at G and K are lifted at
nonzero values of kz, opening band gaps so that all the bands for
kz¼ 0.05p/d are separated, and hence their Chern numbers are
well defined. We calculated the Chern numbers by analysing the
rotational eigenvalues at high symmetry k-points53. Specifically,
we have expði2pCn=6Þ ¼ ZnðGÞynðKÞznðMÞ, where Cn, Zn, yn and
zn are the Chern number, and the C6, C3 and C2 rotational
eigenvalues of the nth band, respectively. The corresponding
Chern numbers are labelled in grey near the bands in Fig. 1f. We
found that a nontrivial band gap with a Chern number of 1 opens
near 12.25GHz, which is also observed in our bulk transmission
measurement (Supplementary Figs 3–5). By tuning the parameter
kz, the eigenmodes with different representations or rotational
eigenvalues can swap positions, leading to a change in band
Chern numbers. Figure 1g–i plots the dispersion along the kz
direction at K , G and M, respectively, where the bands with
different rotational eigenvalues are plotted in different colours. It
can be seen from Fig. 1g,h that several band crossings occur
between two bands with different representations. Since these
band inversions induce changes in the band Chern number or
Berry curvature, the crossing points on these rotational axes
should be Weyl points and should carry Berry curvature’s charge,
which is associated with the jump in Chern numbers. For
instance, the black dashed line in Fig. 1j plots the Chern number
of the fifth band as a function of parameter kz. It shows several
jumps, which coincide with the band inversions occurring at
G and K . The jumps at kz¼ 0 and kz¼ p/d arise from the band
inversion at G with the fourth band and the inversion at K with
the sixth band. The jumps at kz¼±0.53p/d and kz¼±0.91p/d
are the result of the band inversions at K with the fourth band,
which are indicated by coloured solid circles in Fig. 1g. The Chern
number of the fifth gap, which is the summation of the band
Chern numbers below the gap, is illustrated by the red solid line
in Fig. 1j. This number is þ 1 (� 1) when kz is positive
(negative), indicating the existence of the surface state
propagating clockwise (anticlockwise) in the x–y plane at the
boundary of the crystal.

Robust surface states on Weyl photonic crystals. Owing to the
topological charges of Weyl points, the existence of surface states
connecting the Weyl points with opposite topological charges is
guaranteed by the bulk-surface correspondence31. To study the
properties of the boundary modes, we consider a Weyl photonic
crystal truncated in the y direction, bounded by a PEC slab, as
illustrated in Fig. 5a. Periodic boundary conditions are applied in
both the x and z directions in our simulation. Calculated surface
dispersions near 12.25GHz are shown in Fig. 5b. Surface states
are plotted in colour, while the projected bulk states are plotted in
grey. Only half of the Brillouin zone (kzA[� 0.5p/d, 0.5p/d]) is
shown for clarity. The Weyl points at K and K0 with frequency of
12.25GHz are projected onto (kx, kz)¼ (2p/3a, 0) and (4p/3a, 0),
respectively. Each of these two Weyl points carries a topological
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charge of � 1. Two linearly dispersive cones of projected bulk
bands are formed near these points. Two sheets of surface states,
which are connected to one of the two Weyl points, are found in
the positive kz region and the negative kz region, where the
colours indicate the frequency of surface states. The surface states
with positive kz always have positive group velocity (that is, in the
þ x direction), which is consistent with the kz-Chern number in
Fig. 1j; the surface states with negative kz have negative group
velocity. When we treat kz as an additional parameter of the 2D
subsystem, Weyl points can be viewed as phase transition points
where the bands in a kz plane change their Chern numbers along
with kz. This can be seen by cutting three kz slices (kz¼ � 0.05p/d,
0, 0.05p/d) in the surface dispersion, as shown in Fig. 5c–e. When
kz¼ � 0.05p/d, the gap Chern number between the fifth and
sixth bands is � 1. The subsystem has an anticlockwise (in the xy
plane) surface state, as shown by the blue line in Fig. 5c. As kz
increases to 0 (Fig. 5d), the fifth and sixth bands touch at K and
K0 and the surface states are symmetric about kx as required by
time-reversal symmetry. As kz increases further to 0.05p/d
(Fig. 5e), the 2D band gap reopens with a gap Chern number
of 1 and the group velocity of surface states changes direction
(now clockwise). Furthermore, the surface dispersion in vicinity
of the projection of Weyl point (Supplementary Fig. 6) forms a
helicoid54 with its winding direction determined by the sign of
the topological charge. In addition, two other Weyl points at
H and H0 lie at (2p/3a, p/d) and (4p/3a, p/d) of the surface
Brillouin zone, which are not shown in Fig. 5b. These Weyl points
carry a topological charge of þ 1. Due to the band dispersion
along the y direction, these two Weyl points are immersed in the
projected band of the bulk state in the surface Brillouin zone. The
sheets of surface states with positive and negative kz will
eventually merge into the bulk state.

Figure 6a–d shows, respectively, the surface dispersions when
kz¼ 0.7p/d, kz¼ 0.8p/d, kz¼ 0.9p/d and kz¼ p/d. The complete
band gap closes as kz increases and the surface band (blue)
gradually blend into the lower projected bulk band. The two Weyl
points at H and H0 are masked by the other bulk modes along the
y direction (see the two pink circles in Fig. 6d). Therefore, the
sheets of surface states, which should connect the K (K0) and H
(H0) points of opposite topological charges, will blend into the
projected bulk bands following the Weyl points.

One characteristic property of these chiral surface states is the
robustness against the kz-preserving scattering. This can be
confirmed by introducing defects, such as removing four PEC

rods near the surface of the Weyl photonic crystal (the missing
rods shown as black solid circles in Fig. 7a). As these line defects
do not disrupt periodicity in the z direction, kz is preserved.
Transmission simulations were carried out with an electromag-
netic wave of 12.6GHz impinging on the photonic crystal from
the left with kz¼ 0.3p/d. kz is set by controlling the phase
distribution of the external current source. The surface only
supports a rightward surface mode for a positive value of kz¼ 0.3
p/d and hence the electromagnetic wave should be able to pass
through these defects without backscattering, as confirmed by
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numerical simulation in Fig. 7a. The figure displays the Ez field
pattern, which shows the propagation of a wave confined to the
edge that can transport energy to the right through the defects
marked by the black dots. The upper surface of the photonic
crystal is bounded by PEC, while the other three surfaces
(left, right and bottom) are surrounded by air where electro-
magnetic wave can leak out. Therefore, a large amount of the
electromagnetic wave will propagate into air after passing through
the upper-right corner. For the sake of comparison, Fig. 7b shows
the field pattern in the case without defects. Figure 7c gives the
simulated field pattern of another example, with a PEC bar
inserted into the bulk of the photonic crystal. An electromagnetic
wave of 12.6 GHz impinging on the photonic crystal from the left
can wrap around this defect and keep moving rightward. The
field patterns in Fig. 7a–c show that the wave propagation is
indeed confined to the edge as expected for an edge mode with
the frequency falling within the bulk band gap. In comparison, if
the frequency of the incident electromagnetic wave falls outside of
the nontrivial band gap, the wave would propagate into the bulk
crystal as shown in Fig. 7d which simulates the case with a
frequency of 11.5GHz and without defects.

We note that the surface state’s robustness against
kz-preserving backscattering is not a generic feature of Weyl

crystals. The topological charge only guarantees the existence of
surface states connecting the projections of Weyl points with
non-vanishing charges on the surface Brillouin zone. The
kz-preserved one-way surface state is protected by the nonzero
Chern number on a fixed kz plane, as plotted in Fig. 1j. The
kz-Chern number can be nonzero only if the in-plane mirror
symmetry (kx–ky plane) is broken. The surface transmission
associated with zero kz-Chern number should be sensitive to the
defect because the surface supports both forward and backward
propagating surface states for the fixed-kz. However, for the chiral
interlayer coupling system, the nonzero kz-Chern number
indicates that the surface only supports the surface state
propagating in one direction (clockwise or anticlockwise) which
is backscattering-immune.

In electronic systems, the angle-resolved photoemission
spectroscopy technique has been used to detect the surface Fermi
arcs of Weyl semimetals35,36. Since vacuum is transparent for
photons and can be considered as gapped for bound electrons,
illuminating the surface with light can excite the surface electron
wave localized between vacuum and a Weyl semimetal (Here for
simplicity, we assume the surface is the xz plane). On the other
hand, for photonic systems, the chiral surface states exist between
the Weyl photonic crystal and another opaque material such as
the PEC in our measurement. And we cannot excite the surface
electromagnetic state by impinging an electromagnetic wave on
the PEC. Hence the angle-resolved technique commonly used for
electronic systems cannot be applied to extract the surface
momentum (kx) of the chiral surface state. However, we can still
observe the chiral surface state without having explicit
information about the kx component while the kz component
can be tuned by controlling the angle of the incident
electromagnetic wave. To confirm the existence of the chiral
surface state, we first measured the transmission of the surface
without any defect in the surface region (Methods). The
experimental set-up is shown in Fig. 8. The black curve in
Fig. 9c plots the result for an incident angle of 35� (relative to the
xoy plane). The 2D band structures for a fixed kz have band gaps
as confirmed experimentally (Supplementary Note 2) and the
bulk cannot transmit in the frequency range of the band gaps.
The high surface transmission in the frequency region of the bulk
band gap (B12 to 12.7GHz for y¼ 35�) implies the existence of
surface states although kx cannot be determined explicitly.

To test experimentally, the robustness of the surface state,
samples with these defects were fabricated. Figure 9a,b shows
photographs of the samples. An electromagnetic wave impinged

a b

c d

Figure 7 | Robust surface states between the Weyl photonic crystal and

the PEC. For a fixed nonzero kz, the surface only supports surface states in

one direction. Hence the surface states are robust against scattering that

preserves kz. (a) Simulated Ez field pattern when four PEC rods (shown as

black solid circles) near the surface are removed. Electromagnetic (EM)

waves with kz¼0.3p/d and frequency of 12.6GHz hit the photonic crystal

from the left. (b) Field pattern for the case without defect. (c) Field pattern

in the presence of a PEC bar. Since both kinds of defects in a and c are

periodic in the z direction and kz is conserved, EM waves can pass through

or wrap around the defects without backscattering. (d) Field pattern when

EM waves with frequency of 11.5GHz hit the photonic crystal. Wave with

frequency outside the band gap can propagate in the bulk crystal. In a–d,

the upper surface of the Weyl photonic crystal is bounded by PEC while the

other three surfaces (left, right and bottom) are surrounded by air where

EM wave can propagate.
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Figure 8 | Experimental set-up for surface transmission measurements.

Two sectoral horns with sample tilted angles of 35� or 50� are used to emit

and receive microwave. The sample has 11, 13 and 60 periods in the x, y and

z directions.
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on the left of a sample at a specific incident angle y. Figure 9c
shows the results for the sample with missing rods hit by an
electromagnetic wave at an incident angle of 35� (kz¼ 0.26p/d for
12.5GHz). We measured transmittances for the cases with one,
two and four missing rods (red, blue and green curves in Fig. 9c).
Compared with the transmittance of the sample without defects
(black curve), we found that the spectra overlap with each other
in the frequency range from 12.2 to 12.65GHz (light cyan box),
where the system has a band gap with a nontrivial Chern number
(see also the transmission spectra with log scale in Supplementary
Fig. 7). The results indicate that the transmission is almost the
same with and without the missing rods and removing the
aluminium rods did not introduce backscattering in the nontrivial
band gap with a nonzero kz. However, the bandwidth of robust
transport is somewhat narrower than the band gap predicted by
the bulk band structure. This is due to the finite beam width of
the incident wave packet, which leads to the spread of the Fourier
components around kz¼ 2pf sin y/c. The purple curve in Fig. 9d
plots the measured transmittance when an aluminium bar was
inserted into the crystal as shown in Fig. 9b. Robust transport was
also observed from 12.2 to 12.65GHz where the system has a
nontrivial gap. Within this frequency range, the transmittance is
almost the same with and without the interrupting metal bar. In
the frequency region below 12.2GHz, noticeable differences exist.
The transmissions with defect are greater than the transmission
without defect at some frequencies (for example, 11.9–12.2 GHz
in Fig. 9c). The reason is that in the frequency region of the
passing band, most of the microwave propagates in the bulk
crystal (Fig. 7d) and the defect can perturb the field pattern at the
right end of the surface where the surface transmission was
measured. The defect near the surface will affect the signal
received by the receiving horn but not necessarily block the signal
because this is a complicated multiple reflection process when the
waves propagate inside the crystal. The transmission in the
presence of the defect can be either larger or smaller than the one
without the defect (black curve) at different frequencies. This is
also confirmed by the calculated transmission (Supplementary
Note 4; Supplementary Fig. 8). In the frequency region
412.65GHz, the transmission difference is not obvious due to
the weak signal (low signal to noise ratio). However, we can still

see the difference at some particular frequencies. For example, the
transmission peak at 13.06GHz for the black curve in Fig. 9c,d.
At this frequency, the transmissions with defects (coloured
curves) decrease in different extent which implies that the defects
do affect the transmission outside the nontrivial band gap.

Due to bulk-surface correspondence, the surface between Weyl
photonic crystal and PEC supports kz-preserved one-way surface
states as long as the crystal has a complete band gap characterized
by nonzero Chern numbers at that value of kz. Figure 1j shows the
nonzero Chern number of the 5th gap (around 12.5GHz) when
kz is not equal to 0 or p/d. This nontrivial complete band gap
remains open when kz is smaller than 0.7p/d although the gap
width will change as kz increases (Supplementary Fig. 4c,h). Since
the wave number in vacuum (maximal kz) is 0.45p/d for
12.5 GHz, robust surface transmission should occur for all the
incident angle except 0�. The gap width will change along with
the incident angle. When kz¼ 0, the 5th and 6th bands touch at
K and K0. The nontrivial band gap opens for nonzero kz. And the
gap width increases as kz increases when kz is smaller than 0.4p/d.
From Supplementary Fig. 4, it can be seen that incident angle of
50� has a bigger gap than that of 35�. To confirm this, Fig. 9e,f
show the measured transmittances for the incident angle of
y¼ 50� (kz¼ 0.3447p/d for 12.5GHz). Similar robust transmis-
sions were observed from 12.3 to 13GHz (see the light cyan box),
which is broader than the range for the case of y¼ 35�. This is
consistent with Fig. 1g–i, which show that the gap width of this
nontrivial band gap increases as kz increases when kzo0.4p/d.
Again, this gap width is narrower than the expected range (from
11.8 to 13GHz) due to the finite beam width. Many other systems
such as 2D photonic quantum (spin) Hall systems5–22 are
immune to backscattering. The Weyl photonic system in this
study is a 3D time-reversal-invariant system possessing immunity
against kz-preserving backscattering.

Discussion
We designed and fabricated a microwave Weyl photonic crystal
that carries both single and multiple Weyl points. The double
Weyl points in our system are protected by C3 and time-reversal
symmetries while the triple Weyl points are protected by C6
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symmetry. The associated topologically protected chiral surface
states between the Weyl photonic crystal and the PEC were also
measured and demonstrated to be robust against kz-preserving
scattering. For a fixed kz, our Weyl photonic crystal can be
regarded as a 2D subsystem where synthetic gauge flux is
introduced by chiral interlayer coupling. Adding in-plane
inversion (C2) symmetry breaking would enable our system to
emulate all the regimes in the phase diagram of the Haldane
model2. Double and triple Weyl points imply a larger Berry flux
than single Weyl points in the neighbourhood, and can induce a
stronger anomalous velocity effect. This enhanced effect
manifests in the deflection of the path of a wave package
propagating inside the bulk material.

Methods
Tight-binding model of AA-stacked honeycomb lattice. To see how the tight-
binding model guides us to the structure presented in Fig. 1, we first consider a
single-layer honeycomb lattice whose Bloch Hamiltonian can be written as

HðkÞ ¼ 0 tnb
tnbð Þ� 0

� �

; ð1Þ

where b ¼ exp � ikxað Þþ 2 cos
ffiffiffi

3
p

kya=2
� �

exp ikxa=2ð Þ, and a is the distance
between the two sublattices, tn is the nearest neighbour hopping and (kx, ky) is the
Bloch wave vector. By applying the k � p method, one can obtain its effective
Hamiltonian (Dirac form) near K point (kx¼ 0, ky ¼ 2p

a
2
ffiffi

3
p
9
)

HðDkÞ ¼ 3

2
tnaðDkxs2 �Dkys1Þ: ð2Þ

where si is the Pauli matrix and Dk¼ (Dkx, Dky) is a small k near K point.
We then consider the effect introduced by the interlayer coupling of a

multilayer system. Supplementary Figure 1 depicts the unit cell of an AA-stacked
honeycomb lattice where hopping is nonzero only between sites connected by the
solid lines. The layer distance is d. Blue lines highlight the chiral interlayer coupling
with a real hopping coefficient of tc. After some algebra, one can obtain its Bloch
Hamiltonian

HðkÞ ¼ tcf ðkzdÞ tnb
tnbð Þ� tcf ð� kzdÞ

� �

; ð3Þ

where f ðkzdÞ ¼ 2 cos
ffiffiffi

3
p

kya� kzd
� �

þ 4 cos 3kxa=2ð Þ cos
ffiffiffi

3
p

kya=2þ kzd
� �

.
Expanding the Hamiltonian near K point (kx¼ 0, ky ¼ 2p

a
2
ffiffi

3
p
9
, kz¼ 0), we have

HðDkÞ ¼ 3

2
tnaðDkxs2 �Dkys1Þ� 3

ffiffiffi

3
p

tcdDkzs3 � 3tcs0 ð4Þ

which implies that it is a Weyl point with charge of � 1. In this sense, the chiral
interlayer coupling between single-layer Dirac systems introduces an additional
Dkzs3 term and the multilayer system forms a Weyl point at K. The tight binding
model results give us a guide to the type of connectivity in real space that can give
rise to Weyl points in the momentum space. This is of course just the starting point
and the realization of such chiral coupling in real photonic crystal depends on
experience and intuition gained in working with photonic crystals and tedious
iterative fine tuning between simulations and design is required. The actual band
structure of the real system must of course be calculated using a full-wave
simulation.

Detailed geometry of the Weyl photonic crystal. Our Weyl photonic crystal can
be realized by stacking the PCBs in the z direction, with copper cladding on both
sides and a hexagonal array of metal cylinders piercing through the stack. The
PCBs were 0.43a thick and they were spaced 0.11a apart in the z direction, where
a¼ 1 cm is the lattice constant of the hexagonal array. The dielectric constant of the
FR4 substrate (yellow in Fig. 1b) was 4.8 and the thickness of the deposited copper
layer (shown in grey and assumed to be PEC in our simulation) was 40 mm. This
structure had a 3D hexagonal lattice with in-plane lattice constant a and out-of-
plane lattice constant d¼ 0.54a. Figure 1d shows its 3D Brillouin zone. Interlayer
coupling are introduced by etching Y-shaped slots on the top and bottom copper
layers. Figure 1c shows the top view of the unit cell (dashed hexagon), where the Y
slots on the top and bottom surfaces are shown in blue and red, respectively. It can
be seen that the slots form a chiral pattern and break all the mirror symmetries and
inversion symmetry. The metallic components (rods and copper layers) in the
photonic crystal form a connected metallic network, which leads to a cutoff
frequency of 9.23GHz for the bulk modes.

Double Weyl points protected by symmetries. To prove that C3 and time-
reversal symmetries can protect double Weyl points at time-reversal-invariant
k-points, we derive an effective theory following the algebra described in ref. 50.
Suppose that a time-reversal-invariant k-point L0 lies on a C3-invariant line
(for example, G point or A point lying on the kz axis), the effective Hamiltonian

near this point can be written as

Heff ðqÞ ¼ f ðqÞsþ þ f �ðqÞs� þ gðqÞsz ; ð5Þ
where q denotes the in-plane k-vector deviating from L0.

We further assume that two bands crossing at L0 are linked by time-reversal
symmetry, which is the case shown in Fig. 2. Then the C3 eigenvalues of the two
bands cannot be 1, otherwise the bands would have avoided crossing. If the first
band’s C3 eigenvalue is exp(i2pp/3) (p¼±1), then the second band’s should be
exp(� i2pp/3) by applying time-reversal. Note that the basis in the above
Hamiltonian are the two eigen states at L0 with different representations. (1, 0)T

represents the eigen state with the C3 eigenvalue of exp(i2pp/3), while (0, 1)T

represents the eigen state with the C3 eigenvalue of exp(� i2pp/3). In this basis,
the matrix representations of C3 rotation and time-reversal symmetry are

C3 ¼ expði 2pp
3

szÞ ð6Þ

and

Y ¼ sxK; ð7Þ
where K represents the complex conjugation. Due to the C3 symmetry, we have

C3Heff ðqÞC� 1
3 ¼ Heff ðR3qÞ; ð8Þ

where R3(qþ , q� )¼ (qþ e
i2p/3, q� e

� i2p/3) and q±¼ qx±iqy.
Substituting equation (6) into equation (8) yields

e� i4pp=3f ðqþ ; q� Þ ¼ f ðqþ e
i2p=3; q� e

� i2p=3Þ;
gðqþ ; q� Þ ¼ gðqþ e

i2p=3; q� e
� i2p=3Þ:

ð9Þ

We can expand f(qþ , q� ) near L0 as follows:

f ðqþ ; q� Þ ¼
X

n1n2

An1n2q
n1
þ
qn2

�
ð10Þ

Equation (9) requires that

An1n2 ¼ 0 if n2 � n1 6¼ 2p mod 3: ð11Þ
On the other hand, due to time-reversal symmetry, we have

YHeff ðqÞY� 1 ¼ Heff ð� qÞ: ð12Þ
Substituting equations (5) and (7) into equation (12) gives

f ðqÞ ¼ f ð� qÞ: ð13Þ
According to equation (10), the linear terms (A10 and A01) must vanish.

Combining these with equation (11) and taking the smallest n1þ n2 reveals that the
crossing point at L0 should carry a topological charge of 2p (ref. 50).

Experimental set-up. All the samples used in bulk and surface measurement
consisted of 60 PCBs (about 32.4 cm thick) stacked in the z direction. The 60 PCBs
were supported by two plexiglass slabs and pierced through by aluminium rods.
Supplementary Figure 3 shows the experimental set-up for bulk transmission
measurement. electromagnetic waves were emitted from the left horn antenna with
the electric field polarized in the xz plane, and received by the right antenna with
the same polarization. When an electromagnetic wave impinged on a sample at an
incident angle y and frequency f as shown in Supplementary Fig. 4b, all the bulk
modes with ky¼ 0 and kz¼ 2pf siny/c were excited as shown by the blue dashed
line in Supplementary Fig. 4a. y could be adjusted by rotating the sample and one
can scan the bulk modes with different kz. Although the samples used in our bulk
transmission measurement had only four or five periods in the propagation
direction (x direction), they still enabled observing the transmission contrast
between the bulk band gap and the passing band (for example, the transmission
below and above 10.3 GHz in Supplementary Fig. 4e,j). It was impractical to
employ more periods in the x direction as a thicker sample in x would mandate
corresponding increases in y and z, which would make the sample unwieldy in the
transmission measurement and the signal reaching the backside would also be
weak.

Figure 8 shows the set-up for surface transmission measurement. The sample
used in surface measurement had 11 and 13 periods in the x and y directions,
which were large enough to decouple the surface states on the top and bottom
surfaces. The sample was supported by plexiglass slabs on two sides and capped by
an aluminium slab with two walls. The slab was assumed to be PEC in the
microwave region. The two walls of the aluminium slab served to block the wave
that was propagating in air from the source horn to the receiving horn. The
zoomed-in areas near the surface are illustrated in Fig. 9a,b. To enhance the
coupling between the input (output) wave and the surface state, a pair of sectoral
horns with tilted angles of 35� or 50� were used to emit and receive microwave.
Figure 9a shows the configuration of four missing rods. For the case of two missing
rods, only the two rods closest to the surface were removed. The measured results
in Fig. 9c–f are plotted in linear scale (see also the results in log scale in the
Supplementary Fig. 7).

All simulations were performed using the commercial solver package COMSOL
Multiphysics v.4.4 (COMSOL Inc., 2013). In the simulation shown in Fig. 5,
periodic boundary conditions were applied in both the x and z directions in our
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simulation. In the simulations of Fig. 7, photonic crystals with infinite height were
considered as periodic boundary conditions were used in the z direction.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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