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Photonic machine learning with on-chip
diffractive optics

Tingzhao Fu1, Yubin Zang1, Yuyao Huang 1, Zhenmin Du1, Honghao Huang1,
Chengyang Hu1, Minghua Chen1, Sigang Yang 1 & Hongwei Chen 1

Machine learning technologies have been extensively applied in high-
performance information-processing fields. However, the computation rate of
existing hardware is severely circumscribed by conventional Von Neumann
architecture. Photonic approaches havedemonstrated extraordinary potential
for executing deep learning processes that involve complex calculations. In
this work, an on-chip diffractive optical neural network (DONN) based on a
silicon-on-insulator platform is proposed to perform machine learning tasks
with high integration and low power consumption characteristics. To validate
the proposed DONN, we fabricated 1-hidden-layer and 3-hidden-layer on-chip
DONNs with footprints of 0.15 mm2 and 0.3 mm2 and experimentally verified
their performance on the classification task of the Iris plants dataset, yielding
accuracies of 86.7% and 90%, respectively. Furthermore, a 3-hidden-layer on-
chip DONN is fabricated to classify the Modified National Institute of Stan-
dards and Technology handwritten digit images. The proposed passive on-
chip DONN provides a potential solution for accelerating future artificial
intelligence hardware with enhanced performance.

Concomitant with the substantial progress made in semiconductor
technologies and novel computing architectures1–9, artificial neural
network (ANN)-related machine learning applications are being
extensively utilized inmany fields, including computer vision10, natural
language processing11, emotion detection12, speech recognition13,
medical image analysis14,15, and decision-making16,17. However, to solve
complex tasks in a timely manner, ANNs require massive amounts of
resources, both regarding computing speed and energy consumption.
In recent decades, optical neural networks (ONNs) have garnered
tremendous interest, because of their advantages of low power con-
sumption and ultrahigh computing bandwidth, which are unrivaled by
their electronic counterparts18–33. Several implementations of ONNs
have been proposed, including a coherent approach based on an
integrated Mach‒Zehnder interferometer (MZI) mesh18,24,25,31, wave-
length division multiplexing (WDM) processing with microring mod-
ulators, and programmable routing enabled by a phase-change
material (PCM)20. However, these architectures are burdened by their

limited computational scales, which are significantly restricted by their
large footprint and energy consumption.

Recently, diffractive optical neural networks (DONNs) have gar-
nered increased amounts of attention for their abilities to increase
optical computing capacities and decrease power consumption levels
by leveraging large-scale computations with the inherent parallel nat-
ure of optics32,34–36. This approach can map numerous neurons and
connections onto optics, providing an even larger computational
capacity than the conventional ONN architecture. However, main-
stream DONNs are bulky because they are established on discrete
diffractive components, causing significant difficulties integrating
them into compact systems. In addition, complex calibrations between
discrete devices may introduce additional errors.

In thiswork, we address the drawbacks ofDONNsby proposing an
on-chip DONN architecture based on an integrated one-dimensional
(1D) dielectric metasurface. The 1D dielectricmetasurface consists of a
series of silicon slotsfilledwith silicondioxide; it represents the hidden
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layer (HL) in on-chipDONNs. To ensure that the pretrained parameters
canbemapped accurately ontophysical structures, a silicon slot group
filled with silicon dioxide is used as a single neuron22. To demonstrate
the capabilities of on-chip DONNs, we have fabricated an on-chip 1-
hidden-layer DONN (DONN-I1) and an on-chip 3-hidden-layer DONN
(DONN-I3) based on a silicon-on-insulator (SOI) platform to resolve the
classification task on the Iris plants dataset37. The spacing between the
adjacent HLs is set as 250μm, and the footprints of the on-chip DONN-
I1 and DONN-I3 are 0.15 mm2 and 0.3 mm2, respectively. The on-chip
DONN-I1 and DONN-I3 yield accuracies of 86.7% and 90% for the blind
test sets, respectively. Additionally, we propose an algorithm that is
implemented through additional phase and power calibrations that
compensates for the system errors caused by the chip fabrication and
experimental implementation stages, which can increase the system
noise resistance. In addition, to further verify the performance of the
proposed on-chip DONN, we have designed a 3-hidden-layer DONN
(DONN-M3) for the Modified National Institute of Standards and
Technology (MNIST) classification task and obtained blind test set
accuracies of 96.3% and 86.0% in numerical calculations and experi-
mental tests, respectively. The aforementioned method for designing
and fabricating on-chip DONNs, provides a solution for large-scale
computation and overcomes the problem of complex alignment
among the discrete components; these effects potentially pave the
way for implementing future optical artificial intelligence accelerators,
and they promote the potential application of photonic integrated
devices inmany other fields. The on-chip DONN architecture based on
the standard complementary metal-oxide semiconductor (CMOS)
process may realize low-cost mass manufacturing, providing a more
realistic prospect for the large-scale commercialization of DONN chips
in various applications.

Results
On-chip DONN model
The proposed on-chip DONN model consists of on-chip electro-
magnetic propagation, forward and error backward propagation, and
a neuron-mapping process. The on-chip electromagnetic propagation
model is modified based on the Huygens-Fresnel principle under
restricted propagation conditions. It is an indispensable part of the on-
chip DONN model, and can be described by Eq. (1):
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represents the distance between the q-

th neuron in layerm� 1 and the p-th neuron in layerm, nslab represents
the effective refractive index (ERI) of the slabwaveguide, η represents a
specific coefficient of the amplitude and Δϕ represents a fixed phase
delay22. The electric field evolution of the input signal propagation
based on Eq. (1) is highly consistent with the simulation results of the
2.5D variational finite-difference time-domain (FDTD) solver (Supple-
mentary Note 1.1).

By using an analytical expression of the on-chip electromagnetic
propagation, the network structure parameters of the integrated
DONNs can be pretrained via forward and error backward propagation
algorithms (Supplementary Note 1.2). Once the parameters of the on-
chip DONNs are determined, these parameters can be mapped onto
physical structures, such as waveguides, grating couplers, multimode
interferometer beam splitters, and silicon slot filled with silicon

dioxide (SSSD). Among the pretrained parameters, the physical
neuron-mapping process is the most critical. To ensure the reliability
of the mapping process, the pretrained phase value of a neuron is
approximated by a slot group filled with silicon dioxide composed of
more than two identical SSSDs. The length of the SSSDs in each group
is calculated using Eq. (2):

Lslot�i =
Δφi

ðneff � nslabÞ � k0
ð2Þ

whereLslot�i is the lengthof the SSSDs in the i-th group,neff is the ERI of
the slot group filled with silicon dioxide through which light passes,
nslab is the ERI of the slab waveguide, k0 = 2π=λ is the wavenumber of
light propagating in a vacuum, andΔφi is the phasedelay generated by
the i-th slot group filled with silicon dioxide22,38.

DONN device architecture and design
In on-chip DONNs, as depicted in Fig. 1a, the trainable parameters are
the phase values, which must be physically implemented by the dif-
fractive units. Each diffractive unit (DU) is a slot group filled with sili-
con dioxide composed of three identical SSSDs; we record this slot
group as a single neuron. For on-chip DONNs, the weight W ðkÞ con-
necting each hidden layer is fixed, and trainable phase values on dis-
tinct HLs are achieved by designing the sizes of the DUs.

Iris flower classifier
The on-chip DONN-I1 and DONN-I3 were designed and verified via a
classification task on the Iris plants dataset. First, the input features
weremodulated onto the phase of the input light, and then the dataset
coded in the optical phase was used to train the parameters of the on-
chip DONNs by adopting the adaptive moment estimation (Adam)
optimizer. Then, the pretrained parametersweremapped onto silicon-
based structures (Supplementary Note 1.3). Additionally, to maximize
the accuracy of the neuron-mapping process, the distances between
the HLs were considered22.

In this work, the proposed on-chip DONNwas all-optical and used
to solve complex tasks through the interference of transmitted light.
The working wavelength of the laser was 1.55 µm. By fixing the width
and thickness values of the SSSD to 200nm and 220 nm, respectively,
free control of the phase delays caused by the SSSDs were achieved
within the range from 0 to 2π by changing the lengths of the SSSDs
from 0 to 2.3 μm.

For the optimized on-chip DONNs in a classification task on the
Iris plants dataset, the lengths of theHLswere 280μmalong the Y-axis;
each HL contained 186 neurons and had 558 rectangular SSSDs. The
distances between two successive HLs were 250 µm along the X-axis.
The input signal was loaded onto the corresponding input waveguides
and propagated 1010 µm through the inverse taper into the slab
waveguide; then, the signal was propagated 250 μm through the slab
waveguide to reach the first HL. After light exited the last HL, it pro-
pagated 250 µm until it reached the output layer of the network, with
three detector regions (D1, D2, and D3) arranged in a linear configura-
tion. Each detector region was assigned a specific category. The width
of each detector region was 8 µm, and the distances between the
centers of two neighboring detector regions were 70 µm.

A schematic of the on-chipDONN-I3 is shown inFig. 2. Theon-chip
DONN implemented inference and prediction mechanisms in a light-
speed and passive manner; additionally, it could be applied in many
fields, including computer vision, natural language processing, and
image recognition. A conceptual diagram of the on-chip DONN appli-
cation scenario is shown in Fig. 3.

Numerical calculation and simulation
Based on the on-chip DONNmodel, the on-chip DONN-I1 and DONN-I3
were optimized and utilized for classification on the Iris plants dataset.
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The dataset was divided into a training set and a testing set at a ratio of
8:2. The classification accuracies of on-chip DONN-I1 and DONN-I3 by
numerical calculationswere 86.7% and 90%, respectively. In addition, a
2.5D variational FDTD was used to verify the performance of the on-
chip DONN-I1; the classification accuracy of the simulation result was
86.7%. The matching score of the classification predictions between
the 2.5D variational FDTD and the numerical calculation was 100%.
Figure 4 shows the simulation prediction process for the iris species
and the corresponding output waveforms of the FDTD simulation.
These theoretical studies included additional numerical calculation
processes, relevant key parameters, and calculation results (Supple-
mentary Note 2.1).

Experiment
As a proof of concept, for the irisflower classifier, on-chipDONN-I1 and
DONN-I3 were fabricated based on the SOI platform, and the micro-
graphs are shown in Fig. 5a and Fig. 5c, respectively. After processing
and testing, the chips were packaged to facilitate subsequent experi-
ments (Supplementary Note 4.1). Experimental tests were performed
on this basis (Supplementary Note 4.2). A laser with a working wave-
length of 1.55 μmwas coupled into the waveguide via an input grating
coupler, and then the input signal was loaded onto the phase of the
light through four phase shifters (PS). Finally, the modulated light
interfered with the diffractive layers and was detected by the optical
power meters at the output interface. The detected light was then
transmitted to the central processing unit (CPU) through analog-to-
digital conversion, as shown in Fig. 5d. Results of the numerical cal-
culation and experimental implementation for on-chip DONN-I1 and
DONN-I3 are listed in Table 1.

For the iris flower classifier, the testing accuracies of on-chip
DONN-I1 and DONN-I3 without compensation were 56.7% and
60.0%, respectively, which were significantly different from the
theoretical calculations of 86.7% and 90%, respectively. Phase
errors are generated during the fabrication process, and error
accumulation during light propagation significantly affects the
performance of on-chip DONNs (Supplementary Note 3). Of course,
in addition to the errors brought by the chip fabrication process,
system errors could also be brought by the input signal loading and
output signal detection stages during the experiment. Therefore, an
algorithm compensationmethod consisting of phase compensation
and power compensation was exploited to reduce the negative
impacts of the errors (Supplementary Note 5.1 and Note 6). More-
over, the phase compensation stage was implemented based on the
online in situ training procedure, during which a set of candidate
voltage values can be obtained, and the output power was detected
and recorded at this point. Here, the input signals were applied to
the phases of light via the input voltages. After phase compensation,
a traversal search method was adopted to find a set of optimal
power compensation factors ðα1,α2,α3Þ to maximize the prediction
accuracy of the dataset. Consequently, when external algorithm
compensation was employed, the experimental testing accuracy of
on-chip DONN-I1 and DONN-I3 was improved to 86.7% and 90%,
respectively. Figure 6 shows the experimental testing results of on-
chip DONN-I1 and DONN-I3 before and after the introduction of the
error compensation algorithm. From the compensated results, it
can be observed that the compensation method is significantly
effective, and the compensated results are consistent with the
theoretical calculations.
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Fig. 1 | Schematic and logic diagram of on-chip diffractive optical neural net-
work (DONN). a Schematic of an on-chipDONN, each diffractive unit on a given layer
acts as a secondarywave source, the amplitude and phase of which are determined by
the product of the input wave and the complex-valued transmission at that unit. Each
diffractive unit (DU) is a slot group composed of three identical silicon slots that are
filled with silicon dioxide; each DU represents a single neuron in the on-chip DONN.
b Logic diagram of Fig.1a that mathematically describes the physical calculation
process of the on-chip DONN. The formula shown between Fig. 1a and Fig. 1b is the

mathematical expression of DONN, where “T” represents matrix transposition;
diag e jϕ11 , � � � ,e jϕ1n

� �
, diag e jϕ21 , � � � ,e jϕ2n

� �
, anddiag e jϕ31 , � � � ,e jϕ3n

� �
refer to a diagonal

matrix, that is, a matrix in which the elements outside the main diagonal are all 0,
where the phase values ϕ11, � � � ,ϕ1n,ϕ21,� � � ,ϕ2n,ϕ31, � � � ,ϕ3n

� �
are generated by the

corresponding DUs; W ðkÞ represents the k � th diffraction matrix derived from the
on-chip electromagnetic propagation model (Eq. (1)); x1,x2,x3,x4

� �
represents the

input; and y1,y2,y3
� �

represents the output.
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Further experimental verification
Based on the same design principle of the iris flower classifier, a more
complicated dataset—theModified National Institute of Standards and
Technology (MNIST) handwritten digit images—is used to validate the
functionalities of our proposed on-chip DONNs. The MNIST dataset is
split into training (60,000 images) and testing sets (10,000 images). In
this work, for the handwritten digit classifier, the input 28 × 28
grayscale image is reshaped into a 784 × 1 vector and compressed into
10 features through a full connection layer network.

For the optimized on-chip DONN-M3, the lengths of the HLs
were 105 μm along the Y-axis; each HL contained 70 neurons
(consisting of 210 rectangular SSSDs). The distances between two
successive HLs were 250 µm along the X-axis. The ten input fea-
tures were loaded onto the ten corresponding input single-mode
waveguides and propagated directly into the slab waveguide, and

then propagated 250 μm through the slab waveguide to reach the
first HL. After light exited the last HL, it propagated 250 µm until
it reached the output layer of the network; the output layer fea-
tured ten detector regions Di (i= 1,2, . . . ,10) arranged in a linear
configuration. Each detector region was assigned a specific cate-
gory. The width of each detector region was 8 µm, and the dis-
tances between the centers of the two neighboring detector
regions were 8 µm.

The numerical calculation accuracy of on-chip DONN-M3 for
the 10000 blind testing sets was 96.3%. We randomly selected
100 handwritten digits from the 10,000 blind testing sets for
experimental verification, achieving a classification accuracy of
86.0% under the external error compensation scenario. The
relevant pictures during the packaging process of the on-chip
DONN-M3 are shown in Fig. 7a–c. The micrograph of the on-chip
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Fig. 3 | Conceptual diagramofmultichannelon-chipDONNs forvarious tasks.The features of different signals are extracted andencodedonto thephase, amplitude, or
polarization of light. Then, the input signals containing optical information are fed into the on-chip DONNs for subsequent calculations.
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Fig. 2 | Schematic of the on-chip DONN-I3 structure. The schematic includes
three hidden layers, and each neuron in the hidden layer consists of three identical
silicon slots filled with silicon dioxide representing a complex-valued transmission
coefficient. The transmission coefficients of each layer are trained by using deep
learning to perform a function between the input andoutput planes of thenetwork.
Then, following the fabrication of the on-chip DONN, the DONN performs the
learned function at the speed of light in a passive manner. The center distances

between the adjacent slotsd are 500nm, the periodsof the silicon slot groupsfilled
with silicon dioxide are 1.5 μm, the width of the slot w is 200nm, the thickness of
the slot h is 220 nm, and the length of the slot L is determined by the pretrained
phase values based on Eq. (1), and the thickness of the light propagation layer t1 is
220 nm. The distances between adjacent HLs are 250 μm along the X-axis, and the
lengths of each HL are 280 μm along the Y-axis.
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DONN-M3 structure is shown in Fig. 7d, and the close-up taken by
scanning electron microscopy (SEM) of the diffractive units is
shown in Fig. 7e. The confusion matrix of the experimental test-
ing result is shown in Fig. 7f. The recognition results of hand-
written digits 3, 5 and 9 after system error compensation are
shown in Fig. 7g–i, respectively (more details are described in
Supplementary Note 2.2 and Note 4.3).

Discussion
According to the experimental results, Table 1 indicates that the pre-
diction accuracies of the on-chip DONN-I1 and DONN-I3 without
algorithm compensation on the Iris plants dataset are 56.7% and
60.0%, respectively; these values are quite different from the numer-
ical calculation results of 86.7% and 90%, respectively. By assuming
that the differences between the experimental and numerical calcu-
lation results are attributable to the errors caused by the fabrication
process, the working processes of the on-chip DONNs are analytically

expressed by Eq. (3) and Eq. (4):

Y cal =DcalX ð3Þ

Y chip =DchipX ð4Þ

where Y cal is the theoretical calculation result of the product of input X
and the transfer matrix Dcal, Dchip is the transfer matrix of light pro-
pagating in the slab waveguide, and Y chip is the output electric field of
the product of input X and the transfer matrix Dchip. Due to inevitable
machining errors, the error transfermatrixDerr will exist naturally after
fabrication, andmathematically,Derr is the difference betweenDcal and
Dchip. Furthermore, Derr results in the difference Perr between the
theoretically calculated power Pcal and the detected power Pchip; that
is, Perr =Pcal � Pchip. External algorithm compensation aims to find a
set of input voltage values and power compensation factors α that
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minimize the difference Perr; that is, the algorithm seeks to minimize
the absolute value ∣Pcal � α � Pchip∣ (where � indicates multiplication
with the corresponding element); for example, the optimal solution
∣Perr∣= ∣Pcal � α � Pchip∣≈ð0, . . . ,0ÞT . In this experiment, after compen-
sation by the algorithm, the prediction accuracies of the on-chip
DONN-I1 and DONN-I3 were improved to 86.7% and 90%, respectively,
which are well consistent with the theoretical calculation results. In
addition to the error brought by the chip fabrication stage, the
additional errors in the systemwould also be caused in the input signal
loading and output signal detection stages. Therefore, an effective
external compensation algorithm is significant for the overall system

error correction and compensation. (Supplementary Note 5.1 and
Note 6). It is worth noting that when the system error is more
complicated, the higher error correction capability of the error
compensation algorithm is needed; for example, in the further
experimental verification (for the handwritten digit classifier), a
10× 10 full connection layer after the DONN-M3 chip is trained to
realize the system error compensation (Supplementary Note 5.2).

The error in the system mainly comes from three aspects: the
signal loading, chip fabrication, and signal detection stages. In
future work, several methods can be used to reduce system
errors. First, through using more advanced machining equipment,
which can fundamentally reduce the error caused by chip pro-
cessing. Second, the random phase offset with uniform distribu-
tion within the interval, such as (0,0.5π), can be introduced to
each part during the training stage, such as the signal loading and
fabrication stages, to improve the system’s robustness against
nanofabrication variations and phase fluctuations in
measurement33. Last but not least, it is extraordinarily significant
to further improve the resolution of the testing instrument and
the stability of the testing environment to ensure that the error
caused by the testing process is minimized.
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lens. d Experimental compensation testing process, where Vi +ΔVi is the input
voltage used to load the input signal and compensate for system errors. Vi is the
loading voltage corresponding to the original signal of the dataset, ΔVi is the
compensation voltage found through the optimization algorithm in the phase
compensation process, and αi is a compensation factor for the output power to
compensate for the system errors. e Diagram of the chip after packaging.

f, g Experimental testing results for a sample in the testing sets before (f) and after
(g) compensation. The input features of the sample belong to Versicolor; thus, its
correct prediction result is that the power of D2 should be the largest. f and g show
that after compensation, the prediction result is corrected, from the wrong result
being (f) to the correct result being (g); where, the unit of the normalized power
‘a.u.’ is the abbreviation of ‘arbitrary unit’; CPU is the abbreviation of central pro-
cessing unit; DAC is the abbreviation of digital to analog convertor; PS is the
abbreviation of phase shifter; P1, P2 and P3 represent the optical power detected by
different output ports respectively.

Table 1 | Numerical calculation and experimental testing
results for on-chip DONNs

Accuracy\--- Numerical
calculation

Experimental test

Uncompensated Compensated

On-chip DONN-I1 86.7% 56.7% 86.7%

On-chip
DONN-I3

90.0% 60.0% 90.0%
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To illustrate the effectiveness and importance of the pretrained
parameters of HL, 10 groups of HL parameters for different on-chip
DONN-I1 and DONN-I3 are randomly generated, and the Iris plants
dataset is used to test the performance levels of these on-chip DONNs.
The prediction accuracy results are shown in Fig. 8a and Fig. 8b. The
prediction results of the on-chip DONNs with pretrained HL para-
meters (serial number 1) are significantly higher than those of the on-
chip DONNs with randomly generated HL parameters (serial numbers
2–11). The results prove that the pretrained parameters are impera-
tively significant and effective.

For computation speed and energy efficiency, when handling
complex tasks, such as automatic driving and real-time missile track-
ing, ANNswith high speed and low energy consumption are necessary.
Our on-chipDONNarchitecture takes advantageof processingbigdata
at high speeds and low power consumption. Once all the parameters
have been trained and mapped onto physical structures, forwards
propagation computing is performed optically on a passive system.
Assuming that our on-chip DONN has N neurons at each HL, imple-
menting m layers of N × N matrix multiplication and operating at a
typical 100GHz photodetection rate39,40, the number of floating-point
operations per second (FLOPS) to match the optical network is
obtained using Eq. (5):18

R =2m×N2 × 1011FLOPS ð5Þ

whereR is the number of operations per second (the time it takes from
receiving input signals to computing an inference result, without
considering the time spent in the signal loading stage), this value is
related to the number of N ×N matrix, the number of neurons on each
HL, and detection rate of the photodetectors. Therefore, for the on-
chip DONN-I3, the computation speed is approximately 1:38× 1016

FLOPS, as calculated by Eq. (5), this value is four orders of magnitude
higher than the performance levels of modern graphic processing
units (GPUs), which typically perform at 1012 FLOPS25. Moreover, in the
optical calculation process, the calculation delay was approximately
27.56 ps (Supplementary Note 7.1). Regarding energy consumption,
the input power of the laser under 1.55μm is 32mW. The input signal is

loaded by the thermo-optic phase shifters, and the average energy
required to set each phase shifter to 2π rad is approximately 30mW.
The calculation process of the computing part is fully passive, thus the
energy consumed to complete one calculation for the proposed on-
chip DONN-I3 system is approximately 1:1 × 10�17 J/FLOP. (Supplemen-
tary Note 7.2).

To date, the scalability of on-chip neural networks is an obstacle.
For example, interference ONNs based on MZIs18 and pulse ONNs
based on microring resonators (MRRs)20 cannot dramatically expand
the number of neurons due to the large footprint of each device. The
on-chip DONN is a feasible method for solving this problem. In this
work, we design an on-chip DONN-I3 with three HLs; each HL includes
186 neurons. Through the recent designmethod, approximately 2000
neurons can be designed per square millimeter. Once the neuron
mappingmethod further improves, the number of integrated neurons
can significantly increase. For the reconfigurability of on-chip DONNs,
PCM materials are candidates for future studies. For example, related
works on PCM material for realizing reconfigurable networks have
been reported20,41.

For the performance of the proposed DONN framework, Table 2
shows a comparision of the designed on-chip DONN-I3 with other
integrated ONNs. The matrix dimension is a key parameter for hand-
ling complex tasks; the size of the matrix dimension depends on the
number of integratedneurons. Formore complicated tasks, the energy
demand in the calculation process is greater. Therefore, a passive
calculation process is imperative. From a comprehensive perspective,
our proposed on-chip DONN architecture is a notable choice.

To conclude, fully optical on-chip DONNs based on the SOI
platform are proposed and fabricated in this work. On-chip
DONNs can perform complicated functions at faster speed and
with lower latency and power consumption levels than conven-
tional ANNs. Inference tasks are used to demonstrate the per-
formance levels of the on-chip DONNs; the results are excellent
after introducing a compensation algorithm. Note that, nonlinear
activations are only used in the output layer in this study, and the
results for inference tasks will improve if nonlinear activation
functions are considered in each hidden layer of the on-chip
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DONN system. Consequently, we will consider the implementa-
tion of nonlinear functions on-chip in combination with PCM in
future works. Furthermore, relative to other ONNs, the proposed
on-chip DONN has the advantages of a simple structure design,

all-optical passive operation, and massive-scale neuron integra-
tion. This on-chip DONN architecture is a potential solution for
accelerating future artificial intelligence hardware with enhanced
performance levels.
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Methods
Device fabrication
The entire on-chip DONN was fabricated on an SOI (100 substrate)
platform with a 220 nm thick silicon (Si) top layer and a 3 μm thick
buried oxide. For the on-chip DONN-I1 and DONN-I3, slots were cre-
ated by etching the 220 nm Si film layer; then, a 2 µm thick silicon
dioxide (SiO2) upper cladding was deposited on the Si film layer. Next,
a thin layer of titanium nitride (TiN) was deposited as a resistive layer
for the heaters, and ametalfilm of AlCu (Cu:0.5%)was patterned as the
electrical connection to the electrodes and heaters. Finally, a 2 µm
thick silicon dioxide (SiO2) protection layer was deposited on the
device layer. For the on-chip DONN-M3, slots were created by etching
the 220 nm Si film layer, and then a 2 µm thick silicon dioxide (SiO2)
upper cladding was deposited on the Si film layer. Furthermore, a thin
layer of titanium (Ti) was deposited as a resistive layer for the heaters,
and a metal film of aluminium (Al) was patterned as the electrical
connection to the electrodes and heaters. Finally, an 800nm thick
silicon dioxide (SiO2) protection layer was deposited on the
device layer.

Optical measurements
A continuous-wave tunable semiconductor laser with a polarization
controller was used to launch light onto the chip (15 dBm). The fiber-
grating coupler loss was optimized to 5 dB per input/output facet for
the on-chip DONN-I1 and DONN-I3 chips, and 6.5 dB per input/output
facet for the on-chip DONN-M3 chip. The outputs were monitored
using the multichannel optical power meters; the minimum power
detection limit was −75 dB. An external auxiliary circuit was provided
by a DC dual-tracking voltage-stabilizing source (DH1718E-5, 0–35 V).

Numerical simulations
The training process of the iris flower classifier and the handwritten
digit classifier were conducted in PyTorch, which is a package for
Python. The light diffraction connection in the process of forward and
error backward propagation followed the modified Huygens-Fresnel
principle. The input features were encoded into the light phase, ran-
ging from 0 to 2π. A 2.5-dimensional variational FDTDmethod (http://
www.lumerical.com/tcad-products/fdtd/) was used to simulate the
optical field distribution and the on-chipDONN-I1 system. A conformal
mesh with a spatial resolution of less than 1/10 of the smallest feature
size was applied.

Data availability
The data that support the findings of this study are available from the
corresponding authors on request.
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