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Abstract—It has long been known that photonic communication
can alleviate the data movement bottlenecks that plague conven-
tional microelectronic processors. More recently, there has also
been interest in its capabilities to implement low precision linear
operations, such as matrix multiplications, fast and efficiently. We
characterize the performance of photonic and electronic hardware
underlying neural network models using multiply-accumulate op-
erations. First, we investigate the limits of analog electronic cross-
bar arrays and on-chip photonic linear computing systems. Pho-
tonic processors are shown to have advantages in the limit of large
processor sizes (>100 µm), large vector sizes (N > 500), and low
noise precision (≤4 bits). We discuss several proposed tunable pho-
tonic MAC systems, and provide a concrete comparison between
deep learning and photonic hardware using several empirically-
validated device and system models. We show significant potential
improvements over digital electronics in energy (>102), speed
(>103), and compute density (>102).

Index Terms—Artificial intelligence, neural networks, analog
computers, analog processing circuits, optical computing.

I. INTRODUCTION

P
HOTONICS has been well studied for its role in communi-

cation systems. Fiber optic links currently form the back-

bone of the world’s telecommunications infrastructure, vastly

overshadowing the best electronic communication standards in

information capacity. Light signals have many advantageous

properties for the transfer of information. For one, a photonic

waveguide, with diameters ranging from those in fiber (∼80 µm)

to those fabricated on-chip (∼500 nm), can carry information

at enormous bandwidth densities—i.e., terabits per second—

with an energy efficiency that scales nearly independent of

distance. This density is possible thanks to signal paralleliza-

tion in photonic waveguides, in which hundreds of high speed,

multiplexed channels can be independently modulated and de-

tected. Photonic channels also experience less distortion, jitter,
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and crosstalk between one another compared to their electrical

counterparts.

Photonic technology has traditionally been used for long

distance communication. However, modern bandwidth require-

ments and the standardization of silicon photonic integrated

circuits (PICs) has lead to the proliferation of shorter distance

photonic links. For example, silicon photonic transceivers are

now a pervasive component in data-centers. In addition, the

efficiency of a photonic link, which is dominated by the E/O

and O/E conversion costs between the electrical and photonic

domains, is rapidly encroaching on the efficiency of electronic

links: the cost to move data photonically between nodes at a

data-center (∼1 pJ/bit [1]) is now within order unity from a

modern DRAM memory stack to a processor [2].

At the same time, there has been a substantial increase in the

use of many-core parallel processing systems for a variety of

tasks in high performance computing (HPC). Artificial intelli-

gence (AI), in particular, is growing at an alarming pace: deep

learning models have been doubling in size every 3.5 months,

far outpacing Moore’s law [3]. These systems have much greater

communication overheads than classical von Neumann architec-

tures such as CPUs, resulting in a dramatic increase of both the

area and energy consumption of metal interconnects (see, for

example, Ref. [4]). They are also bottlenecked computationally

by the ability to perform matrix multiplications efficiently, which

represent the most common operations in HPC.

The most computationally expensive task in current AI mod-

els is the implementation of neural networks. Current deep

learning models require dense, low-precision matrix computa-

tions. Digital instantiations of matrix (or tensor) units typically

suffer from high communication overheads, expensive digital

operations, and high latencies. On the hand, photonic linear

operations—such as passive fourier transforms [5] or matrix

operations [6]—exhibit stark advantages in bandwidth density,

latency, and energy. As mentioned in [7], [8], photonic com-

putations are passive, exhibiting favorable energy scaling costs

which are potentially O(N) for O(N2) fixed point operations.

Photonic matrix multiplication occurs in a single step, only

bottlenecked by the periphery of modulation and detection. A

more surprising observation is the computational density of such

an approach: despite the large sizes of photonic devices, such

systems can deliver more operations per second in a given area

than those in digital electronics.

This manuscript analyzes the merits of using photonics

for simulating neural networks. We begin by exploring the
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implementation of multiply-accumulate operations (which take

the form a′ ← a+ w · x) in various platforms in Section III,

discussing the costs and benefits of digital electronics, analog

electronics, and photonics. We provide a comparison of the fun-

damental limits of electronic crossbar arrays and photonic linear

computing systems in Section IV, and analyze the performance

of these models across of metrics such as energy, speed, and

computational density. We consider the general performance of

photonic MACs along these metrics based on practical devices

that are compatible with large-scale silicon photonic foundries.

In the last section, we provide a concrete comparison between

fully-tunable neuromorphic photonic networks based on known

photonic device models and principles with electronic state-of-

the-art deep learning chips.

II. MULTIPLY-ACCUMULATE OPERATIONS

The multiply-accumulate (MAC) operation calculates the

product of two numbers and adds the result to an accumulator.

For a given accumulation variable a and modified state a′, the

operation takes the following form:

a′ ← a+ (w × x) (1)

MACs are constituents of a number of linear mathematical op-

erations, including dot products, matrix multiplications, Fourier

transforms, and convolutions. MACs have traditionally char-

acterized the performance signal processing (DSP) applica-

tions [9], [10], but have become increasingly prominent in

modern HPC.

We are most interested in a specific use case: the simulation

of neural network models. AI applications typically divide into

training, in which models learn to understand a data set, and

inference, in which trained models are deployed on new data to

draw conclusions or extract information. For a set of input vari-

ablesxi and output variables yj , each node j (or neuron) receives

signals from a large number M of other nodes i. The inputs are

combined via a weighted sum of the form yj =
∑

i wijxi. The

input to the next layerx′
j sees yj go through a nonlinear function:

x′
j = f

{
∑

i

wijxi

}

(2)

The function f{x} can represent any nonlinear operation (i.e.,

ReLUs, spiking neurons, pooling, etc.), and can be simulated in

the analog or digital domains. The weighted sum can be broken

down into a series of MAC operations of the form ai = ai−1 +
wixi for i = 1 . . .M . Each neuron requires M parallel MAC

operations. Therefore, a neural network of size N requires M ×
N MAC operations per time step, or one operation per synapse.

In a fully interconnected network with N nodes (M = N case),

the number of MAC operations required per time step ∆t—or

characteristic time constant τ in analog hardware—is N2 per

step. The nonlinear function f{x} can also consume energy,

but since this operation scales with O(N) rather than O(N2), it

does not represent the most costly operation. As the size of the

network N grows large, MACs become the most burdensome

hardware bottlenecks in neural networks [11]. It is therefore

Fig. 1. A typical signal pathway for a modern AI chip. Information is passed
between memory chaches, between MAC processors performing a+ (w × x)
and nonlinear operations f{x}. Moving data (blue arrows) consumes the
majority of the energy in current systems.

no surprise that MACs are the most ubiquitous computations

in deep learning hardware acceleration, both in training and in

inference [12], [13].

A. Data Movement

Fig. 1 illustrates the signal pathway for a typical AI

processor. Tensor or vector data that resides in memory is

retrieved and sent to the processor, which performs MAC

operations (a′ ← a+ (w × x)) and some other nonlinear

functions (encompassed in f{x}) before the result is sent back

to memory and stored. Although MACs constitute the majority

of operations in AI, in practice, most of the energy is lost data

movement [14], [15]. Activations must be shuttled to and from

various memory caches and buffers to the matrix multiplication

units and back. The cost primarily comes from charging and

discharging metal wires, which have a capacitance per unit

length of around 100 aF/µm with charging energy proportional

to ∼CV 2. Since the voltage V is fixed by the fabrication

node, conventional digital electronics must necessarily pay this

cost [16] (see discussion in Section III-A).

It is well known that photonics has the capability of greatly

reducing the data movement problem that currently plagues

electronic chips [17]–[20]. Optical loss is nearly negligible for

intrachip distances (see Section III-C), so instead of paying

an energy cost proportional to the length of each connection,

photonic links pay the cost upfront converting from the electrical
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domain to the photonic domain and back. Waveguides can thus

beat metal wires in efficiency, provided that the cost of E/O/E
conversion is less than that of charging a metal wire over the

same distance.

It is not yet clear whether addressing the data movement

problem alone is worthwhile—we still pay the E/O/E cost

(∼0.1 pJ to 1 pJ [1]) communicating between cores, which

is within order unity of the cost of each MAC operation in

state-of-the-art AI chips (see Section VI). Instead, we can garner

a larger advantage by using photonics for both data movement

and MAC operations simultaneously, interfacing modulators and

detectors in close proximity with both local memory banks

and a photonic neural network processor. Photonic memory

architectures have been studied in depth, having the potential

for significant advantages over their electronic counterparts (see

for example Ref. [21]–[23]). We focus primarily on the MAC

processor in the pages that follow. A key advantage, in this case,

is that the memory I/O cost is amortized over the operations

performed in the processor. This can lead to significant energy

savings, and ultimately, huge performance gains over digital

systems.

B. Precision

Analog operations are far more resolution limited than stan-

dard floating-point operations. For example, representing a

16-bit value on an optical signal at minimum requires de-

tecting 232 photons per time step to stay above the shot

noise limit, which, at typical telecommunications wavelengths

(λ ∼ 1.55 µm), puts us above the energy consumption of cur-

rent digital processors (∼550 pJ per sample, leading to >1
pJ/MAC, see Table II). Since analog systems use physical

representations of real numbers, they lack the dynamic range

to represent different exponents. Their operations are equiv-

alent to fixed point, in which the exponent is fixed during

computation.

Thankfully, empirical research has shown that neural net-

works can operate effectively with both low precision and fixed

point operations. Inference models work nearly just as well with

4-8 bits of precision in both activations and weights—sometimes

even down to 1–2 bits [24], [25]—and training with nearly 8–16

bits of precision per computation [26], [27]. Training can even

work with binary weight evaluations, as long as high resolution

stored weights are applied stochastically during training [28].

There is also evidence that fixed point arithmetic within the ma-

trix core is also effective for both inference [27] and training [29].

This puts deep learning in range of analog photonic processing,

which has been shown to exhibit a tuning accuracy of more

than 4 bits [8], [30], [31]. However, many of these studies have

focused on quantized precision, in which signals are resolved

deterministically via a set of threshold values. Analog systems

are for more stochastic, with both unbiased noise from the signal

pathway and biased noise from fabrication variation. In the

digital domain, there are strict conditions on the number of bit

errors that systems can handle (typically, we want SNR ∼ 10 dB

for a digital channel with forward error correction [32]).

The degree of noise or fault tolerance can vary significantly

across different neural network models [33], but interestingly,

such models can be made robust via proper construction and

training [34]–[37]. In some cases, unbiased noise added during

training results in a more robust model, effectively acting as

a form of regularization [38]. The resulting network becomes

more noise-tolerant with an accuracy that is equivalent to a

network trained without noise [39]. In practice, noise levels can

also approach deterministic precision thresholds: for example,

stochastic rounding across signals and weights has many the-

oretical advantages [40], which is effectively similar to setting

the SNR ∼ 0 dB relative to the quantization level. In this sense,

robustly constructed neural networks can operate with far more

noise than standard digital links.

For the remainder of this manuscript, we characterize our

precision with respect to the analog noise in each channel.

We define a parameter SNR ≡ 2Nb , where Nb represents the

number of bits of noise precision for a given computation. We

will also define a parameter, ρ (see Ref. [41] for an equivalent

definition) which represents the loss of precision in the analog

domain from the digital domain. For ρ = N , we have fixed point

arithmetic, in which the precision is only defined with respect

to the dynamic range of the output after summation
∑

xiwi.

This leads to scaling advantages, as discussed in Sections IV

and VI. For ρ = 1, we guarantee every output wixi maintains

full precision Nb, if even if the weight wi is small. We can also

have 1 < ρ < N where the desired precision is in some way

dependent to the amplitude of the signal: ρ =
√
N represents

an interesting case, guaranteeing that the precision of a signal

in a prior layer maintains the same precision in the next layer

after a 1/N fan-out loss. Importantly, we will consider only the

fixed point case covering the full dynamic range of the output

(ρ = N ), since it leads to great efficiency in the analog domain.

C. Compute Density

Throughout this manuscript, we define a figure-of-merit that

we can use to compare various architectures with one another.

This metric (previously used to benchmark power-performant

floating point operations in digital electronics [42]) will be

referred to as compute density, and is defined as follows:

D =
Speed (MACs/s)

Area per MAC unit (mm2)
(3)

Compute density is related to several other well established

metrics. For example, since it is limited by the ability to commu-

nicate across each MAC unit, its upper bounded by bandwidth

density (bits/s/mm2 in Ref. [18]). It is also affected by energy

efficiency, since we must keep our system within a reasonable

power density (<1 W/mm2 [42]) to prevent thermal runaway.

We analyze these limits in Section IV.

There are a number of reasons why compute density is

useful, particularly when we are comparing different kinds of

architectures that may multiplex signals differently or run at

vastly different clock rates. When we look at crossbar arrays

(such as Ref. [43]) or digital matrix configurations such as
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systolic arrays [12], [44], there are well defined notions of

MAC area, MAC density, memory density, and speed. However,

digital architectures that use time multiplexing strategies (i.e.,

TrueNorth [45]), or photonic strategies that could use either time

or wavelength multiplexing (i.e., those described in Sections

IV and V) do not necessarily have the same clear definitions,

because there are many more MACs being implemented than

the number of physical units. It depends on whether we consider

these “virtual” MACs as part of the density calculation or not,

which can complicate our comparisons.

Defining a compute density metric remedies these ambigui-

ties, providing a grounded way to speak about processing power

that is relatively invariant to the multiplexing or channelization

strategy. We will also see that, like bandwidth density, it is not

necessary to define how we divide the spectrum up into inde-

pendent channels in order to talk intelligently about the limits

of compute density. And ultimately, we are interested in the

total amount of computational power (op/s) that a given system

can exhibit. Microprocessor areas are fairly invariant—they tend

to occupy 100 s of mm2 because of limits in cost, yield, and

reticle size. From this perspective, compute density also acts as

a measure of the compute power of a microprocessor that uses

a given architecture, since chipsets likely occupy areas that are

within order unity.

III. PHYSICAL IMPLEMENTATIONS OF NEURAL

NETWORK HARDWARE

In order to compare electronic and photonic processing with

one another, we will use the multiply-accumulate (MAC) oper-

ation, defined in Section II. Below, we explore the advantages

and disadvantages of implementing these operations in digital

microelectronics, analog electronics, and photonics.

A. Electronic Implementations

1) Digital Electronics: Conventional digital computers are

based on the von Neumann architecture [46] (also called the

Princeton architecture), and are typically implemented in silicon

microelectronics. They include a memory bank that stores both

data and instructions, and a central processing unit (CPU) that

performs nonlinear operations. Instructions and data stored in the

memory unit lie behind a shared multiplexed bus which means

that both cannot be accessed simultaneously. This leads to the

well known von Neumann bottleneck [47] which fundamentally

limits the performance of the system—a problem that is aggra-

vated as processors run memory-bound algorithms. Nonethe-

less, this computing paradigm has dominated for over 60 years,

driven in part by the continual progress dictated by Moore’s law

for CPU scaling—the number of transistors that can be put on

a microchip doubles every 18 months to 24months [48]—and

Koomey’s law—the number of computations per joule of energy

dissipated doubles approximately every 1.57 years [49].

These limitations have lead to the massive parallelization

and specialization of hardware architectures [50]. CPUs used

to be the most common choice for most applications, but in

recent years, many-core architectures such as GPUs and FPGAs

have expanded to encompass general purpose tasks in the high

Fig. 2. Parallel MAC operations (i.e. weighted addition
∑

i
wixi) in different

electronic implementations. (a) A typical MAC unit today includes separate
multiply and accumulate operations, implemented in digital logic. (b) An analog
implementation could use tunable impedance to implement weights, which can
be instantiated in dense crossbar arrays.

performance computing arena. Concurrently, specialized ASICs

are becoming increasingly popular for the implementation of

artificial intelligence algorithms, which require low precision,

high density matrix computations, a notable example of which

is Google’s Tensor Processing Unit (TPU) [12]. Although paral-

lelization can break down tasks that are highly distributable [51],

the performance of this operation eventually leads to diminishing

returns as a result of Amdahl’s law [52]. As a separate issue,

I/O latency and sequential processing capabilities cannot exceed

the time resolution of the processor itself, which is ultimately

bounded by its clock rate. Even MAC units need to serialize the

summands to perform weighted addition (Fig. 2(a)).

Although digital microelectronics continue to increase in per-

formance as lower nodes are introduced, an increasing number

of practical barriers are inhibiting the scaling of processing and

energy densities. As an illustrative example, clock rates have

saturated to around 500 MHz to 4 GHz [53], and chip designers

have been forced to focus efforts on parallelism instead [54].

Attempting to drive processors faster, or with higher compute

density, results in several runaway effects, including:
� Energy Consumption: The scalability of modern micro-

processors is largely limited by power density, or energy

dissipation per unit area (W/mm2). There is a trade-off

between bandwidth and energy consumption in electronic

devices. Ideally, the energy lost is almost entirely due to ca-

pacitive discharging. Dynamic power scales according to:

P = α0→1
1

2
CV 2fs (4)

for node transition activity factor α0→1, capacitance

C, driving voltage V , and switching frequency fs [55].

However, at higher frequencies, secondary effects such as

short circuit current and leakage become more pronounced,
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causing α0→1 to decrease and P to hit a floor value.

Different material structures, device architectures, or

higher driving voltages V can offset these effects, but

typically increase energy consumption. This, in turn,

produces more heat, which can manifest in runaway

thermal effects. These thermal limitations are often the

dominant limiting factor for chip scalability [56].

The largest energy contribution originates from communi-

cation, which primarily involves charging and discharging

many metal wires. Metal lines, like electronic devices, dis-

sipate energy resistively (via Eq. (4)). In many processors

with high communication overheads—such as FPGAs or

deep learning chips—communication can easily occupy

more than half the energy cost [57], [58]. As it stands, dig-

ital architectures are far from optimal: the power efficiency

of biological systems is estimated to be<1 aJ [11] per MAC

operation, which is six orders of magnitude greater than

the power efficiency of current state-of-the-art machine

learning chips at ∼1 pJ (see Fig. 7).
� Signal Bandwidth: Since interconnects are restricted by

geometric constraints, microelectronic circuits typically

rely on some form of temporal multiplexing for

widespread, parallel data distribution between processors.

For example, many neuromorphic architectures employ

a digitization scheme called address event representation

(AER) to communicate events between different neural

processor cores [59], [60]. Unfortunately, electronic con-

nections experience harsh trade-offs between bandwidth

and interconnectivity. Signal bandwidth for both capacitive

and inductive lines scale according to

Bl ∝
A

L2
(5)

for bandwidth Bl, cross sectional area A, and [61], [62].

As a result, metal wires are typically limited to signals no

faster than several gigahertz in frequency. Temporal mul-

tiplexing strategies lead to even harsher trade-offs, since

multiplexing N channels each with channel bandwidths

Bc requires a total bandwidth of at least Bl ≥ NBc per

multiplexed line.

B. Analog Electronics: Spatial Multiplexing

One way to avoid digital bottlenecks is to use an analog

networking configuration in which each connection is repre-

sented by a physical wire. Dense connections can be instantiated

in space-efficient topology such as crossbar arrays [63], [64].

Summation and multiplication can both be performed simultane-

ously using resistive elements together with Kirchhoff’s current

law (Fig. 2(b)). However, closely spaced wires also experience

bandwith-distance trade-offs. As an illustrative example, for a

cluster of adjacent wires with pitch P , width P/2, thickness T ,

length L, RC bandwidth scales according to [61]:

Bl ∝
1

L2

(
1

P 2
+

1

T 2

)−1

(6)

This can become particularly problematic for large L > 1 mm2,

and is responsible for the enormous energy costs seen for off-

chip communication in electronics. That being said, if L is kept

small, the bandwidth can actually be quite high and the energetic

communication cost low [17]. One must be careful to shrink the

cores in a small area to keep the efficiency as high as possible

(this point is discussed in more detail in Section IV).

One of the primary difficulties of analog electronic arrays is

finding a good linear and tunable resistive element—traditional

transistors, optimized for digital operations, do not have the

linear transconductance profiles to make this tenable. New ma-

terials or fabrication approaches are therefore a necessity in cre-

ating efficient analog electronic arrays. To this end, memristive

devices have been explored quite extensively (see Ref. [43], [65],

[66]) along with phase change memory (see Ref. [67] for a good

review), which have yielded a number of interesting approaches

for high-density storage and computing. For example, memris-

tive memory now beat traditional flash memory in performance

along many metrics, including density, reliability, speed, and

endurance (see for example Ref. [68]). Nonetheless, for tunable

resistive elements to take full advantage of the possibilities that

crossbar arrays have to offer (as discussed in Section IV), we

need to see additional performance improvements, and there

needs to be a low-cost way to integrate them into standard

fabrication processes.

C. Photonic Implementations

Photonic signals can support much greater bandwidth den-

sities and consume less energy for longer distances than the

electrical counterparts [16]. This has motivated the development

of fiber optic technology in telecommunication networks and

now, interconnections in datacenters and processors [62]. The

advantages of photonics are especially relevant for systems with

high communication or bandwidth overheads. There are several

unique physical properties that allow optical signals to manifest

these advantages:
� Bandwidth: Optical carrier waves possess different or-

thogonal features, including wavelength, spatial mode and

polarization, which do not interact with each other in pas-

sive devices. The total complex electric field �E(x, y, z, t) in

a waveguide or fiber optic communication channel can be

described as a sum over every optical modem, polarization

p, and wavelength n:

�E(x, y, z, t) =
∑

m

∑

p

∑

n

�epAmp(x, y)Bmnp(t
′)

× cos(ωnt− βiz + φn)

for unit vector �ep, mode profile Amp, time-dependent

term Bmnp, angular frequency ωn, propagation vector βn,

t′ = t− z/vg , and group velocity vg . Each term can be

modulated independently via Bmnp and, in the absence

of interference, can be separated using linear photonic

devices. The optical telecommunication band itself has

∆f ∼ 5 THz of spectral bandwidth, which provides ap-

proximately ∼5 Tb/s of information capacity for every
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Fig. 3. Schematic of analog matrix cores in electronics and photonics. (a) A schematic of an N ×N resistive crossbar array, with a tunable resistive element at
each junction that represents the matrix element being applied for input voltages (or currents) xi and output currents (or voltages) yj . The size of the core scales

with (NP )2 for wire pitch P . (b) A schematic of a hypothetical N ×N evanescent-field-limited wavelength multiplexed optical matrix core, with wavelength
multiplexed inputs Xi,λ and outputs Yj,λ along k wavelengths (labeled by λ) in different waveguides (labeled by i). M applies some linear function to the inputs

to create the output vector, using local operations at waveguide junctions. The size of the core scales with ([N/k]Pλ)
2 for waveguide pitch Pλ.

mode m and polarization p. Unlike in electronics, band-

width and linear separability is an intrinsic property of

the electromagnetic wave, i.e. it is independent of design

constraints such as waveguide length or proximity.
� Impedance: In optical systems, one only needs to match

the refractive index to prevent reflections. In addition,

since electric/optical (E/O) and optical/electrical (O/E)

conversion is an inherently quantum process, electric nodes

which communicate using photonic edges need not be

electrically impedance matched with one another [69]. This

reduces many of the design constraints that typically limit

microwave electronic circuits.
� Energy: Since photonic signals are not subject to Joule

heating, waveguides and fibers can be designed with very

low signal attenuation (i.e.<.1 dB/cm [70] and<.1 dB/m in

some cases [71], [72]), allowing for communication costs

that scale independently of distance. This allows for the

propagation of higher power signals without the associated

contribution to thermal runaway. In addition, communi-

cation or computations in the optical domain could be

performed with minimal or theoretically even zero energy

consumption—especially for linear or unitary operations.

In addition to these physical benefits, there are also practical

ones. While there has been research on photonic integration for

some time, in the past five years, there has there been a paradigm-

shift in photonic integration that could garner the manufacturing

benefits enjoyed by digital microelectronics [73], [74], namely:
� Performance: Shrinking devices reduces their energy

requirements, and allows for continuous performance

scaling. Furthermore, the high yields attainable only in

foundries enable the fabrication of complex photonic

systems.
� Economics: The presence of large markets driving sil-

icon photonics (i.e., data-center transcievers) enables

economies of scale in production, amortizing the cost of

fabrication and packaging.
� Standardization: Every foundry line has a standard library

of heavily optimized device designs through which, smaller

enterprises can effectively utilize the fruits of millions of

dollars worth of industrial research.

Silicon photonics offers a combination of foundry compati-

bility, device compactness, and cost that enables the creation of

scalable photonic systems on chip. Its heavy use for data-center

transcievers have lead to a decrease in overall packaging costs.

Of course, the industry is still new, so photonic chips are not

without their challenges. A prime example is that tunable pho-

tonic devices are currently energetically expensive: microring

resonators and phase shifters currently use heaters for coarse

tuning, which can consume significant energy. This point is

discussed more in Section V-A.

IV. ANALOG MATRIX MULTIPLICATION: A COMPARISON

BETWEEN PHOTONICS AND ELECTRONICS

It’s clear that analog computing in both the electronic and

photonic domains offer many advantages over digital micro-

electronics. So which one will win? To get a better sense of their

performance bounds, we will compare an electronic crossbar

array (the most common architecture for devices in Secton III-B)

with a hypothetical dense photonic matrix core in which MACs

are performed using a resistive approach in electronics and

passive linear approach in photonics. Inputs for the electronic

core are analog voltages and currents, whereas the inputs and

outputs for the photonic core are optically multiplexed signals

with analog light intensities.

We use an example of performing a single, square matrix-

vector operation, consisting of N input channels and N output

channels (N2 MAC operations) with a fixed preconfigured ma-

trix. We implicitly assume that there is a set of devices that

can fully tune resistance or optical loss locally and selectively

without a significant quiescent power overhead. A schematic of

these models is shown in Fig. 3.

A. Bandwidth Density

We first consider how our bandwidth density limits the overall

compute density (see Section II-C) of each approach. A given
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compute core must simultaneously address both processing

within the core (i.e., an efficient implementation of a MAC

operation a = a+ w × x) and data movement across the core

(i.e., each MAC operation requires a result from a prior MAC

unit in order to perform a full dot product
∑

wixi at the end

of each row). As we will see, the data movement constraint can

bound the performance of each of the cores.

We assume that there is a tunable, resistive element at

the interface between metal crossbars, and each tunable ele-

ment emulates a simple resistor associated with a fixed weight

w. Kirchhoff’s current law performs the summation
∑

wixi

with the weights within each matrix, determined by the rel-

ative resistance values along each wire. A standard formula

for assessing the bandwidth of on-chip metal interconnects is

BE ≤ BRCA/L
2 per wire, for constant bit rate BE ,

architecture-dependent constant BRC (typically BRC ∼ 1016

for on-chip RC interconnects [62]), cross sectional area A, and

length L of the wire. Extending this analysis to crossbars, we

make the simple observation that the area occupied by each

resistive element is approximately equivalent to the cross-

sectional wiring area A in two dimensions. Computing over a

N ×N matrix multiply array with L = NPl for crossbar line

pitchPl, this gives us our bandwidth-limited electronic compute

density DE :

DE ≤ BRC

L2
(7)

in units of 1/s/mm2.

In the optical domain, each waveguide has an intrinsic band-

width BO upper bounded by the speed of the wave itself—for

standard telecommunications wavelengths (1550 nm), this upper

bound is in the range of BO ∼ 100× 1012s−1 for multiplexed

signals (from f = 193 THz), but more realistically ∼5 THz

for WDM-multiplexed systems in the 1.3 µm or 1.55 µm wave-

length bands. Photonic waveguides are limited by the evanescent

field coupling overlap between adjacent modes, which is a

function of the wavelength of light. We can thus derive a min-

imum pitch Pλ between waveguides. This leads to a maximum

bandwidth-limited photonic compute density DO of:

DO ≤ BO

P 2
λ

(8)

There is a critical difference here: electronic crossbars de-

crease in bandwidth density as the size of the crossbar (L2) grows

larger, whereas photonic systems maintain their density, inde-

pendent of size. For fairly reasonable values based on the gain

bandwidths in typical III-V devices and preventing crosstalk

between waveguides (BO ∼ 3 × 1012 bits/s, P 2
λ
∼ 2 um), the

crossover point at which DO > DE occurs near L > 100 µm.

Put another way, photonics is expected to exhibit a greater

on-chip bandwidth density limit than electronics for cores that

occupy more than L2 > 0.01 mm2 of area.

There are a number of factors that this analysis did not take

into account. Channel crosstalk becomes a bigger problem for

electronic systems, but this can be greatly reduced placing an

isolating ground wire between each signal wire, keeping the

bandwidth density still within order unity. Also, both optical

and metal crossbar arrays can be scaled vertically with using 3D

stacking technology (see [75] for the optical case), and optical

waveguides can also include mode multiplexing, which may

shrink the effective pitch Pλ. Nonetheless, the analysis above

provides a good first principles look at the bandwidth density,

and shows that they are both capable of enormous compute

densities, with photonics winning in the large L limit.

B. Switching & Driving Energy

Here, we consider contributions from the driving energy—

i.e., the amplitude of the signals required to drive any output

circuitry—and the capacitive switching energy for both analog

electronic and photonic cores. We will assume that the input

and output voltages are compatible with transistors, restricting

values to ∼0.5 V or larger to prevent thermal leakage (see

discussion in Ref. [16]).

Given this voltage condition, the main way through which

electronic crossbar arrays lose energy is capacitance discharge

across the array. Note that it may also be possible to make the

array appear purely resistive in dissipation–using, for example,

inductors to cancel out the capacitance at a given frequency.

This case is not considered here. The energy lost per cycle is
1
2CV 2

l , where C is the capacitance of the array and Vl is the

line voltage. To arrive at a per-operation metric, we consider the

contribution of charging each group of metal wires surrounding

each resistive element: for a wire pitchPl, this isL = 2Pl. Given

standard capacitances of about cl = 200 aF/µm [62] a discharg-

ing according to 1
2ClV

2
r for total capacitance Cl = 2clPl, our

energy consumption becomes:

EMAC(E) = clPlV
2
r (9)

per operation. For a standard line pitch Pl ∼ 80 nm and

Vr ∼0.5 V, we arrive at EMAC(E) ∼ 4 aJ. This is quite low,

and may be brought lower if advanced techniques are employed

to reduce this pitch (i.e., Pl ∼12 nm in Ref. [76]).

The optical case has a potential scaling advantage, because

metal wires need not be charged at each junction. In particular,

photonics only requires chargingN detectors forN2 operations.

However, we must generate enough light to drive the detector

with sufficient charge, which can be significantly limiting [62].

This depends on the amount of light that each detector receives,

which can be affected by the precision loss ρ. For example, in a

conservative estimate, a given signal in anN ×N matrix is split

to 1/N , and we must multiply our light power by N to make

up for the loss if we are to maintain the same input precision

(ρ =
√
N ). In a better case (i.e., fixed point arithmetic with

ρ = N ), we care less about the signal and more about the full

dynamic range of the output. For some power PL driving a laser

with efficiency ηL, some loss through the optical system ηwg,

and detection efficiency ηd, the current we see at the detector is

Id = ηLηwgηdPL/Eph for photon energy Eph = hν. Lumping

the efficiencies into a single quantum efficiency η = ηLηwgηd,

this gives us a minimum energy of:

EMAC(O) ≥
N

ρ2
· CdVr ·

hν

eη
(10)

for photon energy hν and elementary charge e. Note that we also

have capacitive discharge from the detector (scaling according
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Fig. 4. Various scaling laws near the limits for photonic (red) and
electronic (blue) fixed point compute cores (η = 0.2,Vr = 0.5 V, ρ = N,
T = 300 K, Cd = 1 fF, ν = 193 THz). We neglect periphery costs, including
the capacitive charging and discharging of drivers and receivers. Solid lines
represent total energy/MAC, while dotted lines represent the noise power
contribution to this energy.

to (1/N) · (1/2)CV 2
r per operation), although it typically has

a smaller effect on the energy consumption than the driving

condition above.

If we consider deep learning framework compatible with fixed

point arithmetic (ρ = N ), we see that, unlike in the electronic

case, the capacitive charging scales with N rather than N2.

Choosing a high performance detector with Cd ∼ 1 fF [77],

Vr = 0.5 V (bringing the optical link energy to <500 aJ, see

Ref. [16] for further discussion), and assuming a fairly efficient

laser source (η = 0.2), we start to see a difference around N >
500 as shown in Fig. 4. We once again observe optical matrix

multiplication cores gaining an advantage as the matrix becomes

larger—in this case, we have a direct dependence on the N ×N
matrix size. Note that the single digit aJ/MAC bound is still a

factor of 1× 105 out of range relative to current state-of-the-art

technologies (which are >100 fJ/MAC, see Section VI), so it is

a far cry from limits we are seeing in the near term. Nonetheless,

it is clear that both approaches have the potential for very low

energy operations, with photonics exhibiting a greater overall

advantage in the large N limit for capacitively-limited arrays

and fixed point operations.

C. Noise

Noise affects analog precision during computations and has a

strong effect on the energy consumption of each analog core.

Reading values from a resistive crossbar with some SNR is

fundamentally limited by thermal noise [41]. Using ρ and Nb as

defined in Section II, this gives us the following expression for

the energy per MAC operation:

EMAC(E) ≥
N

ρ2
· 4kBT · 22Nb (11)

We again consider the case of full fixed point precision,

where we define the precision with respect to the total output

dynamic range (as discussed in Section II) and set ρ = N . Our

MAC energy numbers become EMAC(E) ∼ 4 aJ/N for 4-bit

operations, and EMAC(E) ∼ 1 fJ/N for 8-bit.

In the case of the optical matrix multiplier, we need to consider

the noise on the E/O and O/E interfaces to and from the input

and output. At the detector, the fundamental limit is shot noise,

resulting from photon fluctuations from the incoming wave.

Considering the total quantum efficiency η, we arrive at an

analogous expression as above, but for shot noise:

EMAC(O) ≥
N

ρ2
· 2hν

η
· 22Nb (12)

Using a fixed point representation (ρ = N ) with an efficient

laser (η ∼ 0.2) in the C-band, this gives us .33 fJ/N at 4-bit and

84 fJ/N for 8-bit.

Comparing these two quantities directly, the optical shot

noise factor 2hν
η

is about an order of magnitude off from the

thermal noise factor 4kBT . If we let our E/O/E efficiency

η → 1 in the best case, the ratio between the energies is still

EMAC(O)/EMAC(E) ∼ 15, which is larger than order unity. So

we see that in the limit of noise power limited operation at high

precision, electrical crossbars have an advantage over photonics.

D. Discussion

We have considered the bandwidth density, switching energy,

and noise at the physical limits of both electronic and optical ma-

trix multiplier cores. We see that photonic cores exhibit scaling

advantages over electronics for large core areas (L > 100 µm) or

large channel counts (N > 500, see Fig. 4), but perform worse,

in the limit, if the system is noise-power limited.

To illustrate performance differences between the two

approaches, let’s set a vector size of N = 1024, which is

within an order of magnitude of current conventions [12]. We

calculate the maximum compute density with both 4 bit and 8

bit operations. For a given energy EMAC, our power density is

DP = EMAC∆f/P 2 and our computational density

(ops/s/mm2) is D = ∆f/P 2 for pitch P between MAC

elements and signal bandwidth ∆f . We restrict the power

density below a critical threshold DP < 1 W/mm2 [42] to

prevent anticipated thermal issues that would otherwise result.

We use the following parameters: a pitch of PE = 80 nm
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Fig. 5. Schematics for incoherent (top) [78], [79] and coherent (bottom) [8] implementations of tunable photonic multiply-accumulate operations. (a) Incoherent
approaches can directly perform dot products on optically multiplexed signals. However, they rely on detectors and O/E conversion for summation. (b) The ability
to multiplex allows for network flexibility, which can enable larger-scale networks with minimal waveguide usage. (c) Coherent approaches can apply a unitary
rotation to incoming lightwaves. This unit can perform a tunable 2× 2 unitary rotation denoted by U . (d) Example of scaling the system to perform a matrix
operation in a feedforward topology, using a U unit at each crossing together with singular value decomposition.

TABLE I
COMPUTE DENSITY PERFORMANCE FOR IDEALIZED ELECTRONIC AND

PHOTONIC MATRIX CORES WITH N = 1024, SUBJECT TO

POWER DENSITY <1 W/mm2

for electronic crossbars, a driving voltage of Vl = 0.5 V,

BO = 5 THz, Pλ = 2 µm, Cd = 1 fF and η = 0.2 (assuming a

fairly efficient laser source). The results are shown in Table I.

For 4-bit operations, switching energy largely dominates over

noise energy for both photonics and electronics. Optical sys-

tems exhibit an advantage here: electronic cores hit the thermal

density limit, but photonic cores are able to saturate their full

bandwidth density limit before that point. In the 8-bit case,

we see noise energy becoming significantly larger. There is a

large jump in the photonic energy consumption as we move to

higher precision, thanks to a quadratic dependence on the relative

noise power of each signal. In cases in which high precision is

necessary, operating in a noise power limited regime results in

electronics crossbars performing better.

Note that although electrical crossbars are less noise-bound

than photonic cores, it is unclear if this increased precision

capacity is important for artificial intelligence. Ref. [27], [28]

have shown that the forward compute step does not need high

precision even during training, as long as the underlying weight

storage and gradient rules maintain granularity. Also, since

shot and thermal noise are unbiased, batching can be used to

average the noise over a given set of training data (where the

effective precision over the batch with M samples is equal to

N ′
b = Nb + log2

√
M ).

The limits discussed here are a far cry away from cur-

rent technology—compute densities in the range of 100 s of

PMACs/s/mm2 are a factor of >1× 105 from the current state-

of-the-art as discussed in Section VI. This shows that both

electronic and photonic arrays have immense computational ca-

pacity, and what may ultimately differentiate them may be short

term technological developments, i.e., cheap, high endurance,

and tunable weight elements, or the efficiency of the nonlinear

periphery surrounding each matrix core.

An interesting note is that optical systems are optically limited

by Pλ, and electrical crossbars can have much smaller pitches

(<100 nm). This means that, in the limit, photonic devices will

be much larger but run at much higher speeds. This can actually a

significant practical advantage: larger photonic devices may not

be as sensitive to device variations or yield in a given fabrication

process. We shall see that this size difference also occurs in

nearer term systems, explored more closely in the sections that

follow.
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V. PHOTONIC MULTIPLY-ACCUMULATE OPERATIONS

Here, we consider the practical performance of photonic

MACs based on existing photonic devices. There are a vari-

ety of methods for implementing photonic multiply-accumulate

operations using tunable photonic elements [8], [78], [80], [81]

and also in many fixed network implementations in reservoir

computing approaches [82]–[85]. We will distinguish between

two primary mechanisms for implementing linear summations:

coherent or incoherent, as defined in Ref. [7]. The former uses

interferometry to implement linear operations via constructive

and destructive interference, changing the relative power levels

of a coherent beam. The second utilizes excited carriers to

perform summations or nonlinear operations, and can potentially

accept multiple wavelengths or modes.

Coherent approaches can implement linear, unitary opera-

tions while only consuming energy resulting from passive loss.

However, operations must be performed within a single wave-

length and mode for a given matrix—or else constructive and

destructive interference would not occur between interacting

lightwaves—and all-optical nonlinearities are generally chal-

lenging to implement at low optical signal intensities. Systems

that fall under the interference-mediated approach include the

passive reservoir [85] and the interference-based processor de-

scribed in Ref. [8].

Incoherent photonic MAC units are capable of operating

across different wavelengths, modes, or polarizations. For dot

product functionality, filter banks (described in [78], [79]), can

apply weights via the partial transmission of signals to one

(or more) detectors. This can greatly increase the information

density on-chip, since many independent channels can coexist

in a single waveguide. Performing a MAC is also passive in

the incoherent approach: for a fixed filter topology, the com-

putations are performed as lightwaves flow to their respective

destinations. Unlike in the coherent approach, semiconductor

devices (and therefore, O/E conversions) are required at each

nonlinear processing stage. Systems that occupy this category

include those described in Ref. [78], [82], [86], [87]. A more

detailed discussion of these relationship is also provided in

Ref. [7].

For both approaches, we will speak broadly about photonic

MAC operations in the context of an N ×N matrix operation.

We consider the energy per MAC, speed (signal bandwidth and

latency), and computation density (i.e., MACs/s/mm2).

A. Energy

Photonic devices, much like their resistive electronic counter-

parts, implement matrix operations passively and linearly. This

leads to a number of advantages—in particular, for an N ×N
matrix, many of the most expensive energy costs scale with the

size of the vectorO(N) rather than the size of the matrixO(N2).
Below, we outline a general framework for understanding energy

consumption in passive N ×N photonic arrays, and provide

some analysis on the trade-offs between various tunable devices.

First, we consider the cost of driving the system with a light

source. An unavoidable, fundamental contribution is from shot

noise, as explored in Section IV-C. We can also have relative

intensity noise (RIN) on each laser input, which can affect our

precision Nb. However, this is typically close to the shot noise

level for sufficiently high modulation frequencies. Secondly,

we must drive the capacitor of the detector with enough light

to switch it (see Section IV-B). The main point to consider is

whether these energies scale with O(N), O(N2) or something

worse, which depends on the precision loss ρ. As mentioned in

Section II, it is likely that deep learning algorithms work well in

fixed point arithmetic, allowing us to recover an O(N) scaling

law for our light input with ρ = N . Therefore, we potentially

have a favorable scaling law for our light source, depending on

the nature of the computations being performed.

Secondly, we consider costs that scale only with O(N) rather

than O(N2), which are those involving the periphery around the

N ×N matrix. Since we must first retrieve data from memory,

modulate N signals on the input and detect N such signals at

the output to place back into memory, we must consider the

intrinsic costs associated with the driving and receiving circuitry,

the modulators, detectors, and memory I/O. These energies are

similar to those in digital photonic links (see Ref. [23], [88]),

which include both driving and tuning the modulating device

and the amplification and the recovery circuitry in the electronic

receiver. Energy per sample can reach in the hundreds of fJ for

co-optimized photonic platforms [88], [89].

Lastly, we consider what can be the largest contribution to

energy: costs that scale with O(N2) with every photonic device.

Although fixed systems can implement a pre-defined weight ma-

trix W passively with low loss, tunable systems require a way of

modifying the weight w. Photonic devices currently use heaters

for coarse tuning, which consume a significant amount of power.

Phase shifters in coherent approaches typically consume 10 mW

to 20 mW per unit for thermal shifting [90], while microring

heaters can consume ∼1 mW [91]. However, given the nature

of passive photonic systems, these limits are not inherent. There

are a variety of device modifications that promise to alleviate

these problems that could see integration into foundries very

soon. For example, phase shifters can be greatly enhanced with

slow light cavities [92], and microresonators can be trimmed to

the desired value using foundry-compatible techniques, negating

the need for a heater [93]–[95].

Considering all these factors, our full energy per MAC equa-

tion is as follows:

EMAC =
N

ρ2
· hν
η

·max

[

22Nb+1,
CdVr

e

]

+
1

N
· (Emod + Erec + Emem/M)

+
Pq

∆τ
(13)

The first term accounts for the optical power supplied to the

system, which may either be noise limited (left) or swing-limited

(right). The second term accounts for the capacitive switch-

ing and driving circuitry for the modulators (Emod), detectors

(Erec) and the memory retrieval cost (Emem) (which includes

DAC/ADC conversion if digital memory is used, which can be

made quite efficient [97]). M refers to the number of compute
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cycles that occur before data is passed back to memory: for

example, in a hardware neural network processor with a feed-

forward topology, M is equivalent to the number of network

layers that have been fabricated onchip. The last term is the

quiescent power use Pq for each element, which includes the

power of coarse tuned heaters and the leakage power across

diode junctions. We operate our system over some characteristic

sampling time window ∆τ with some effective sampling rate

1/∆τ .

In practice, for heater-tuned resonators and phase shifters,

the primary source of energy consumption is from tuning each

element. If we operate the system at 10 GS/s (see Ref. [88]

for various photonic link speeds), this puts the energy squarely

in the range of 150 fJ/MAC to 1.5 pJ/MAC for rese shifters

(on the high end). If we use techniques to remedy this cost

as discussed above, our next primary contributions are the link

energy EL = Emod + Erec + Emem/M—which is typically in

the 100 s of fJ range—and the capacitive charge of the detector,

which consumes several fJ, even with conservative assumptions

on precision (ρ =
√

(N)). The former quantity divides by N ,

so with channel counts in the hundreds, we are quickly brought

to the low fJ/MAC range. This means that with N > 100 and

the eradication of power hungry heaters, the single digit fJ/MAC

range becomes tenable, a >102 improvement over the current

state-of-the-art in energy efficiency.

In order for us to go beyond into the ∼aJ range that we have

explored at the analog limits (Section IV), we rely on the (I)

creation of very low energy optoelectronic devices to reduce

EL significantly as discussed in Ref. [16], and (II) fixed point

operations with ρ = N to reduce the energy cost of the light

source, which reduces both the shot noise contribution and the

light required to drive each detector, and (III) a reduction of the

memory I/O cost via either efficient photonic links or many-layer

physical neural networks. We explore an architecture aimed at

bringing aJ/MAC efficiencies in Section VI.

B. Speed

Photonic MACs can be done at very high speeds, limited only

by the optoelectronic devices that encode and decode the signals

on the input and output. An N ×N matrix only requires one

time step to compute the result. We can divide speed into two

primary components: signal bandwidth and latency. If the system

is bandwidth-limited by multiple parts of the signal pathway

with time constants τ1, τ2, τ3 . . . , we can approximate the total

bandwidth as

τ2 ∼ τ21 + τ22 · · ·

The delay for each component is about half the bandwidth, i.e.,

τ1/2, τ2/2 . . . and the total latency is the addition of all the

delays s.t.

T ∼ τ1 + τ2 · · ·

Several properties of photonic devices lead to their operation

at much higher speeds compared to digital and analog elec-

tronic devices: (1) they do not suffer from data movement

and clock distribution costs along metal wires, reducing the

Fig. 6. Schematic of the neuromorphic photonic models under comparison
with photonically-connected memory [21]–[23]. The abstract neuron model
(above) can be represented using: (A) A hybrid spiking laser neuron, investigate
in Ref. [7], [103]. (B) A co-integrated silicon modulator neuron, based on the
system in Ref. [80], [104]. (C) A sub-λ photonic crystal neuron, running close to
fundamental photonic limits. Photonically connected memory refers to models
such as [21]–[23]. *Note that A does not require the off-chip laser source since
it generates its own light.

thermal barrier and allowing for higher clock rates, (2) a small

number of photonic devices are required to perform the same

MAC operations, greatly reducing latency, (3) photonic devices

have a larger footprint than analog electrical devices and thus

run faster to saturate the available bandwidth density, and (4)

photonic arrays do not suffer from the clock jitter problems that

plague metal wires and cause inconsistent signal arrival times.

With typical bandwidths of >20 GHz per photonic device and

only several photonic devices in a signal pathway for a given

N ×N matrix operation, the signal bandwidth of each input

can readily exceed 10 GS/s. Similarly, a <50 ps delay time for

most photonic components and only several devices per pathway

(see, for example Fig. 6) results in a delay that is <100 ps. In

other words, the entire matrix is effectively computed in less

than a single digital electronic clock cycle. This contrasts quite

sharply with the∼µs latencies and> 1 ns speeds seen in current

electronic approaches [12]. We thus see a stark>103 decrease in
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TABLE II
COMPARISON OF ELECTRONIC ARCHITECTURES (TOP) WITH ESTIMATES FOR VARIOUS PHOTONIC NEURAL NETWORK (NN)

APPROACHES (BOTTOM). DENSITY IS COMPUTED WITH RESPECT TO THE CORE(S) ONLY.

*Latency is Defined as the Time it Takes for a Single Matrix Multiplication Operation to Compute at the Given Vector Size. Speed Is Defined as the Time Between

Subsequent Matrix Multiplies.

latency, meaning that any practical system will be limited more

by the periphery circuitry than the neural network core itself.

C. Compute Density

We use the same compute density metric defined in

Section II-C: the number of operations (MACs) performed in

a given area (mm2) per unit of time (seconds). The underlying

density of a photonic compute core can be quite high using stan-

dard photonic components, which we will illustrate with a simple

example: suppose we took the 512× 512 AWG prototyped in

Ref. [96] and used it to applyN2 linear operations over a vector-

ized set of input light intensities. Suppose that there were mul-

tiple sets of these signals at different wavelengths s.t. they were

multiplexed across the entire ∼5 THz wavelength band. If we

took the number of operations and divided by the area of the chip,

we get the rather large compute density of 6.8 PMAC/s/mm2,

exceeding the state-of-the-art in digital electronics by >104.

This gives a picture for the capacity of photonics—the large

value stems largely from the ability to multiplex both signals and

connections, a technique exploited quite often by optical reser-

voir computing approaches (see for example Ref. [82], [85]).

However, making matrices with adjustable weight values wij

can be more challenging—tunable photonic systems typically

require N2 photonic devices, since there must be a device for

every weight wij . As discussed in Section V-A, there are a

couple tunable approaches that have received significant atten-

tion: the coherent and incoherent approaches, which require

2N2 Mach-Zehnder interferometers (MZIs) or N2 resonators,

respectively. The former currently loses on compute density,

since each MZI requires significantly more area (∼10000 µm2

in Ref. [8]) compared to microresonators (∼250 µm2 or much

smaller). Miniaturizing each MZI relies on some complex mod-

ifications, such slow-light enhanced structures [92] or perhaps

inverse design [98], [99]. whereas resonators can increase in

performance as they are shrunken in size [100].

To get a better sense of whatN2 photonic devices can achieve,

we can look towards prototyped devices that are compatible with

silicon photonic foundry models. Standard microrings of size

50 µm × 50 µm operating at a sampling speed of 10 GS/s results

in a computational density of 10 TMACs/s/mm2. This is a major

improvement over current digital electronic densities, which are

around 580 GMACs/mm2 (see Table II). A key point is that

even though photonic devices are much larger than individual

transistors, a single MAC unit in digital electronics is actually

composed of many hundreds or thousands of transistors, occu-

pying>100 µm in area [101], comparable to the one (or several)

elements that can accomplish the same operation in analog

photonics. With a higher energy efficiency, photonic elements

can be clocked much faster without hitting energy density limits,

leading to the overall larger compute density seen here.

What compute densities will photonics be able to attain in the

near future? This is considered in the last part of Section VI, in

which photonic crystal defect states [102] that occupy close to

2 µm2 per resonator are closely packed together. As shown in

Table II, this can lead to an enormous photonic compute den-

sity (5 PMACs/s/mm2). In conclusion, we can expect photonic

devices will exceed current digital electronic systems by >102

in compute density with miniaturized resonator components. In

the future, more exotic structures (such as PhCs) could reach

>103 as photonic devices reach their fundamental limits in size.

VI. NEURAL NETWORK HARDWARE COMPARISON

This section provides comparisons between neuromorphic

photonic processing models and digital electronic processing

systems. For concreteness, we focus specifically on Broadcast-

and-Weight architectures [78], [103], which have been devel-

oped enough for a comparison to be possible—in particular,

the empirical validation of both tunable weight systems [30],

[105]–[107] and nonlinear processors that have a direct func-

tional correspondence with neuron models [7], [104]. Nonethe-

less, given that photonic architectures are bound by the same

physical constraints and underlying devices, this comparison

provides some insights for the performance of neuromorphic

photonic systems in the more general case. For the photonic

platforms, we choose three models with distinct characteristics:

1) a laser neural network based on an instantiation in a hybrid

spiking III-V/silicon platform [108], [109], 2) a silicon photonics

platform with tight co-integration with digital electronic drivers,

controllers, and amplifiers [80], and 3) a nanophotonic platform

operating close to fundamental noise limits. These hardware

platforms are depicted in Fig. 6. A list of computed values is

included in Table II, and a graph depicting the compute density

and energy efficiency—along with some of the the analog limits

discussed in Section IV—is shown in Fig. 7.

1) Hybrid Laser Neural Network: This model, which is

largely the focus of Ref. [103], uses currently available silicon
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Fig. 7. Comparison of deep learning hardware accelerators with photonic
platforms discussed in Section VI, modified from Ref. [7]. Photonic systems can
support high bandwidth densities on-chip while consuming minimal energy both
transporting data and performing computations. Metrics for digital electronic
architectures taken from various sources [12], [124]–[127]. Also included are
the analog limits for photonic and electronic matrix cores with N = 1024 and
4 bits of precision, from Table I.

photonic technology together with integrated III-V lasers to

emulate biological spiking behavior. It has been proposed

together with the Broadcast-and-Weight networking frame-

work [78], and has also received considerable experimental

validation, both in the tunable weight units [105] and the

nonlinear processors that communicate using such units [7],

[111], [112]. These systems are limited by two primary sources

of energy consumption: the quiescent power of the laser and

amplifier units (which can be as large as 200 mW), and the static

power consumption of the heaters used within each filter bank

(which can be as large as 2 mW each). For the comparison,

we assume an all-to-all network with a channel number of

N = 56, based on limits discussed in Ref. [105]. The precision is

based on experimentally-validated measurements of microring

filters [107]. We assume that, for excitable operation, lasers are

biased close to that threshold. We also consider a semiconductor

optical amplifier on the output port to generate enough out-

put power for the next stage. For an N ×N fully-connected

network, the energy consumption per MAC operation can be

expressed as:

EMAC =
1

N
· Pλ(th) + PSOA

τs
︸ ︷︷ ︸

node energy

+
Ph + Pl

τs
︸ ︷︷ ︸

edge energy

(14)

where Pλ(th) = IthVL represents the laser power consump-

tion at threshold current Ith, PSOA = ISOAVSOA is the power

consumption of each output SOA, Ph = I2hRh is the average

power dissipation of each microring heater, and Pl = IlVMRR

is the current across the junction biased at VMRR. τs represents

the effective sampling rate, determined by the bandwidth of

the real-time signal pathway and I/O (i.e., ∼10 GHz [109])

during operation. We distinguish between power use at each

node (which scales withO(N) forN2 operations) and power use

at each edge (which scales with O(N2) for a MAC performed

at each network edge), and omit the memory I/O cost, since it is

not dominant here.

In this system, energy efficiency is primarily bottlenecked on

the quiescent power consumption of the optical amplifier and

that of the heaters. In practice, the remaining contributions—the

laser threshold power and leakage terms—are negligible in

comparison. In particular, the amplifier must provide enough

energy to drive the next stage, meeting cascadability conditions

as discussed in Ref [7]. With our assumed channel density

N = 56, and other parameters based on current photonic devices

(τs ∼ 100 ps), we arrive at 0.22 pJ shown in Table II. This

system is comparable to deep learning chips and neuromorphic

electronic systems in energy consumption, fan-in, and compute

density. In the following section, we will explore the improve-

ments that can manifest in systems better optimized for higher

energy efficiency.

2) Co-Integrated Neuromorphic Silicon Photonic Network:

This platform (first discussed in Ref. [80], [104]) uses continu-

ous models and can vastly reduce the energy consumption via a

close interface between digital electronic and photonic systems.

This interface allows easy E/O and O/E conversions between

electrical nonlinearities and photonic linear computation ele-

ments. This system also uses silicon photonic technologies that

are currently available in foundries, but its performance depends

critically on several new developments and insights, including:

(I) the use of active electronic amplification to sidestep the gain-

bandwidth trade-off in each nonlinear processing unit, and (II)

the reduction of static power in microring filters by minimizing

the use of heaters. For the remainder of this analysis, we also

assume a close proximity, low capacitance interface between

electronics and photonics (i.e., TOVs with <50 fF [113]), and

low-node electronics (i.e., FinFETs [114]).

One of the first challenges is minimizing the quiescent power

usage that results from each filter (scaling withO(N2)) requiring

a power hungry heater. Note that this is not a problem inherent in

photonic elements, since a pre-fabricated fixed photonic network

performs the same computations without consuming power.

To avoid the immense cost of tuning across the fabrication

variation that occurs across microresonators, we assume that

each element is trimmed to avoid the use of heaters, as discussed

in Section V-A. Integrating these approaches into the fabrication

process would allow for an tremendous reduction (Ph → 0) in

energy consumption.

Next, we consider the limitations imposed by amplitude cas-

cadability. In a passive neuron configuration in which a detector

directly drives a modulator with no intermediate circuitry (i.e.,

Ref. [104], each nonlinear element must replenish the energy lost

from the previous layer. In an all-to-allN -node network withN2

connections, we must assure that the small-signal gain from layer

to layer allows is greater than unity (i.e., g = dPout/dPin > 1).

This puts the following lower bound on the energy consumption

per MAC operation [115]:

EMAC ≥ N

ρ2
· hν

η
︸︷︷︸

quantum
efficiency

·1
e
[2πVs(Cmod + CPD)]
︸ ︷︷ ︸

switching charge
for gain cascadability

(15)
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where η = ηLηwgηd is laser efficiency, photonic link efficiency,

and photodetector efficiency, respectively; Vs is the inverse

slope of the modulator’s voltage-to-transmission curve T (V );
and Cmod, CPD are the joint capacitances of the photodetetor

and modulator. In a typical foundry-model where Vs(Cmod +
CPD) ∼ 70 fC and η ∼ .06 (which includes the passive losses

through the weight banks, which can be made quite small [116]),

even with ρ = N in fixed point systems, we arrive at a floor of

approximately EMAC ≥ 30 fJ/MAC.

Going beyond this barrier requires the use of an active trans-

impedance amplifier (TIA) placed between the detector and

modulator, which can be instantiated using digitally-compatible

circuitry in a number of different configurations. This serves

several functions: it can separate capacitive contributions of the

photodetector and modulator, and it also reduces the impedances

associated with each stage. In a low-node electronics platform

with TOVs, the energy consumption per sample can be quite low

(<100 fJ) for a good TIA, see for example analysis in Ref. [88]

or Ref. [89], [117]. Given that the signal-to-noise ratio must

exceed the given bit precision Nb (i.e., SNR = Ip/σi > 2Nb

for received current Ip and RMS shot noise current σi at each

detector), we arrive at a new energy-per-MAC metric:

EMAC =
N

ρ2
· 2hν

η
︸︷︷︸

quantum
efficiency

· 22Nb

︸︷︷︸

noise and
resolution

+
Elink

N
︸ ︷︷ ︸

switching
energy/MAC

+
Pl

τs
︸︷︷︸

leakage

(16)

Here, Elink includes contributions from the active TIA, the

modulator switching energy per unit of time τs, which is typi-

cally expressed in J/bit, and the energy associated with memory

I/O. We conservatively assume just one neural network layer

[M = 1 from Eq. (13)]. Note that we neglect the effect of

nonlinearity on noise reduction, which can have positive effects

on the resulting precision, as discussed in Ref. [115]. With

fixed point like precision (ρ = 1), power dissipation is domi-

nated by E/O and O/E interfaces together with digital circuitry.

Given the similarity between each modulator neuron and the

E/O/E interface in a standard photonic link—requiring the same

electrical interfaces, amplification, and driver circuitry—we can

use Elink estimates from digital links [88], [118] and those

from photonically connected DRAM memory [21] to arrive at

400 fJ/sample as a relatively accurate proxy for the link energy.

We arrive at our energy consumption of 2.7 fJ as shown in

Table II. We assume an improvement in areal density and channel

density by shrinking the resonators to∼10 µm in diameter [100]

and high fidelity photonic two-pole filters as described in [107].

3) Sub-λ Nanophotonics: Here, we consider the perfor-

mance of photonic devices as they begin to hit their physical

limits in the B&W architecture. The basic principle of operation

of each unit is similar to the co-integrated silicon photonic

network. The platform is assumed to include both low node

electronics and photonics on the same platform (i.e., a variant

of [119]) to avoid additional capacitances at the interfaces.

Additionally, we assume that there are a significant number

of layers in the network (M ∼ 100) before the information

is passed back to memory, further amortizing the energy cost

(400 fJ/sample) of the photonic memory link by the factor 1/M

[as described in Eq. (13)]. Each sub-λ neuron uses (I) a nanopho-

tonic photodetector such as [77] with <1fF of capacitance, (II)

operate in the “near-receiverless” regime discussed in [16], i.e.,

a minimal gain stage, if any, between the detector and modulator

such as a single inverter amplifier (see Ref. [117], [120]), and

(III) the filters and modulators are instantiated efficiently using

more exotic enhancement techniques [121], [122]. We utilize

devices that have been empirically prototyped, but not yet scaled

in foundries. Our metrics are based on several insights:
� Compute Density: Photonic devices can be shrunk signifi-

cantly in size compared to where they are now. The smallest

known resonators are photonic crystal defect states, [102]

which can occupy small footprints—if we pack them very

tightly, they can be as small as ∼2 µm2. A single defect

state can potentially perform a weight multiplication. This

has significant ramifications for compute density (∼103)

compared to microring filter banks, even if the effective

sampling rate is kept constant.
� Channel Number: The number of channels is limited by

the total bandwidth available in the optical spectrum. At

10 GS/s, we can fit about fit about ∼300 channels in a

30 nm spectral gain curve. Although channel number can

be extended further through the use of heteregeneous laser

sources or frequency combs, this goes beyond the scope

of this work. We also assume low precision, fixed point

operations (ρ = N ).
� Energy Consumption: There are many vectors for

improvement in Eq. (16). We will assume the reverse-

biased filter leakage can be brought down from microam-

peres [100] to nanoamperes with better manufacturing. The

O/E/O switching energyEsamp—which shares many prop-

erties with digital links—can be improved significantly

using a variety of techniques to reach the ∼1 fJ level [16].

Modulators, for example, can reach in the ∼100 aJ per bit

range [123]. We also assume that optical losses through

the system are small, which can be optimized via passive

device engineering. With this in place, the system is now

bottlenecked by shot noise at the detector and the cost of

the I/O to memory. limiting precision for a given input

power. With more efficient laser sources, the total quantum

efficiency to as high as η ∼ 20%. All together, this leads

to EMAC = 17.3 aJ + 13.3 aJ (memory) = 30.6 aJ.

VII. SUMMARY AND CONCLUDING REMARKS

Historically, both electronic neuromorphic systems and elec-

tronic emulations of neural networks have been constrained by

the inherent scaling laws of digital systems and metal intercon-

nects. In particular, energy scales with O(N2), where N is the

number of neurons, and for systems of large numbers of neu-

rons, this becomes untenable for modern applications. Photonics

provides a solution, alleviating the energy consumption of both

data movement across metal wires and of multiply-accumulate

(MAC) computation itself, both of which are major bottlenecks

in neural computing.

We have extensively compared the limits of electronic

crossbar arrays with photonics linear compute cores, and have
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shown that photonics exhibits advantages for large processor

sizes (>100 µm), large vector sizes (N > 500), and low

precision (≤4 bits). We have discussed the myriad advantages

that photonic multiply-accumulate (MAC) operations possess

over their digital electronic counterparts in energy (>102),

speed (>103), and compute density (>102). We have analyzed

how they can manifest in practical models, based on empirically

validated, foundry compatible photonic devices. Although we

considered resonator-based methods for networking and linear

operations, the advantages of photonic MACs remain relevant

for many architectures beyond those presented in this work.

Although photonics has traditionally been studied for its role

in communication, there is great potential to address new and

emerging bottlenecks in computing. Artificial intelligence has

brought unique challenges to processor architectures: modern

GPUs and machine learning ASICs now implement high vol-

ume, high density, low precision matrix operations with special-

ized compute cores. These processors are subject to trade-offs

that are significantly more communication bottlenecked than

traditional von Neumann architectures. There are still many

challenges towards seeing functional analog computing systems:

for example, one must consider the cost of the periphery, the cost

of reprogramming weights during training, the cost of A/D and

D/A conversion, and the higher-level communication protocols

between multiple neuromorphic cores. Nonetheless, photonics

has the potential to address the major bottlenecks present in

AI hardware, providing a means to simultaneously move data

across a chip and perform matrix multiplication with little cost.
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