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Condensed matter systems with topological order and metamaterials with left-handed chirality have
attracted recently extensive interests in the fields of physics and optics. So far the topological order and
chirality of electromagnetic wave are two independent concepts, and there is no work to address their
connection. Here we propose to establish the relation between the topological order in condensed matter
systems and the chirality inmetamaterials, bymapping explicitly Maxwell’s equations to the Dirac equation
in one dimension.We report an experimental implement of the band inversion in theDirac equation, which
accompanies change of chirality of electromagnetic wave in metamaterials, and the first microwave
measurement of topological excitations and topological phases in one dimension. Our finding provides a
proof-of-principle example that electromagnetic wave in the metamaterials can be used to simulate the
topological order in condensedmatter systems and quantum phenomena in relativistic quantummechanics
in a controlled laboratory environment.

T
he Dirac equation provides a description of relativistic quantum mechanics for an elementary spin-1/2
particle1,2, which predates the discovery of positron, an anti-particle of electron in high energy physics3, and
also has extensive applications in condensedmatters such as graphene4,5 and topological insulators6,7. Recent

years it is realized that it is a key to understand topological phases from one to three dimensions and from
insulators to superconductors or superfluids8. On the other hand, Maxwell’s equations form the foundations of
classical electrodynamics and modern optics. Modern techniques and material sciences make it possible to
precisely control photonic transport in metamaterials, such as negative refraction9,10, electromagnetic cloak-
ing11,12, structure-induced coherence13–16, and mimicking photonic black holes17. It will be of great interest and
importance to link the metamaterials to topological phenomena in condensed matters and the relativistic
quantummechanics. In fact, several proposals have been reported to generate photonic counterparts of quantum
Hall edge states18–20 and topological insulators21 in photonic lattice structures. In these studies, a hexagonal or
square lattice was designed to obtain the Dirac point, near which an effective Hamiltonian as well as a Dirac
equation was derived in the long wave limit and the topological invariant can be calculated. This demonstrates a
link between the topological insulators and electromagnetic media.

Here we demonstrate an alternative approach to simulate topological excitations by mapping explicitly
Maxwell’s equations to the Dirac equation in one dimension by employing subwavelength metamaterials. The
remarkable property of metamaterials lies in their flexibility to have controllable signs and magnitudes of their
effective permittivity and permeability. If the permittivity and permeability are simultaneously negative, electro-
magnetic waves in such metamaterials show left-handed chirality9,10. So far there is no work to address the
connection between the topological order and the chirality. We find that the one-dimensional (1D) Maxwell’s
equations can be written in the compact form which has the identical mathematical structure of the Dirac
equation, and consequently perform a proof-of-principle photonic simulation of the Dirac equation in metama-
terials by means of the full wave numerical simulation and microwave experiment of transmission line. By
tailoring the electromagnetic responses of metamaterials, we successfully implement the band inversion of the
Dirac equation. It is noted that the band inversion accompanies change of the chirality of electromagnetic wave in
metamaterials from the right-handed to left-handed triad and vice versa, which determines a matter-antimatter
correspondence in the relativistic quantum mechanics. For the first time we establish possible relation of the
chirality of electromagnetic wave and the topological order. Furthermore we utilize designing metamaterials to
observe experimentally the topological phases and excitations in one dimension. This paves the way to investigate
the topological phenomena in condensed matters and the Dirac-like particles in high-energy physics in a
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photonic simulator22. Meanwhile we can also make use of the solu-
tions of the Dirac equation to understand exotic phenomena
observed in metamaterials.

Results
Photonic analog to theDirac equation.A 1Dplane electromagnetic
wave of the frequency v in an optical media can be described by
Maxwell’s equations

{LxEz~ivm0mr(x)Hy, ð1Þ

LxHy~{ive0er(x)Ez: ð2Þ

Here, Ez andHy are the electric and magnetic fields, e0 and m0 (er and
mr) are the vacuum (dimensionless relative) permittivity and
permeability of the media, respectively, which can be functions of
position in artificially designed optical materials. By introducing the

spinor Q~

ffiffiffiffi

e0
p

Ez
ffiffiffiffiffi

m0
p

Hy

� �

, Eqs. (1) and (2) can be written as,

{isxLxzm(x)szzV(x)½ �Q~EQ: ð3Þ

Here m(x)~
v

2c
er(x){mr(x)½ � and V(x)~

v

2c
er(x)zmr(x){½

er(x)zmr(x)h i� are the effective mass and potential, respectively,

E~{
v

2c
er(x)zmr(x)h i is the energy eigenvalue, c is the speed of

light in vacuum, and sx,y,z are the three Pauli matrices. Equation (3)
is equivalent to the stationary Dirac equation in a potential V(x) by
taking the Planck constant �h and c as units. In this way we have
established a one-to-one mapping between Maxwell’s equations and
the Dirac equation, which provides a platform to study relevant
problems of the Dirac equation in metamaterials with engineered
permittivity and permeability.
It is noted that the effective mass in Eq. (3) is given by the permit-

tivity and permeability, which can be tailored controllably by
artificially designed structures inmetamaterials. The signs of permit-
tivity and permeability determine the chirality of electromagnetic
wave in optical media: the electric field, magnetic field and the wave
vector obey the right-handed or left-handed triad. For ordinary
(nonmagnetic) optical materials er . mr 5 1, the electromagnetic
wave obeys the right-handed rule with a positive effectivemassm. 0
while the double-negative or left-handed metamaterials with er, mr
, 09 have a negative mass m, 0 and obey the left-handed rule. On
the other hand, it is known that the sign change of the effective mass
accompanying the band inversion is closely related to the topological
order of amedium23,24. Therefore, the present study is the first one, to
the best of our knowledge, to illustrate the possible relation between
topological order in condensedmatters and chirality feature inmeta-
materials. We believe that this relation will open a new route to
mimic topological phases and excitations of Dirac equation in
designed metamaterials, and to understand some exotic phenomena
in metamaterials from a point of view of the Dirac equation.

Simulation of the band inversion in the Dirac equation. The Dirac
equation demands the existence of anti-particle, the particles with
negative energy and negative mass. The solutions of positive and
negative energy automatically satisfy the Einstein mass-energy
relation as a consequence of special theory of relativity. To
interpret the solutions, Dirac proposed that the negative energy
solution is for a positron with negative mass, an anti-particle of
electron1. According to the Pauli exclusion principle, an electron
cannot occupy the state of negative energy as all the states with
negative energy are supposed to be fully filled. There exists an
energy gap 2mec

2 (me is the rest mass of electrons) between the
positive energy band for an electron and the negative energy band
for positron. As the rest mass of electron is very huge, mec

2
5

0.53 MeV, a positron can only be observed in high energy physics.

However, the mapping between Maxwell’s equations and the Dirac
equation in 1D offers an alternative approach to realize the band
inversion, i.e., the sign change of effective mass in the Dirac
equation, because either the permittivity er or permeability mr in
metamaterials can be manipulated in a controllable way25.
Specifically, to bridge the photonic gap and the Dirac gap, we

calculate the dispersion relation from the perspective of the Dirac
equation as shown in Eq. (3). By treating metamaterials with sub-
wavelength unit cell as an effective media with complex electric and
magnetic responses, we can obtain the dispersion relation,

k2~(V{E)2{m2
~

v2

c2
er:mr: ð4Þ

Here k is real if ermr . 0, corresponding to either the positive-index
band with right-handed chirality or negative-index band with left-
handed chirality. In contrast, k has a purely imaginary value if ermr,
0, which indicates the existence of a band gap. It follows from Eq. (3)
that the gap can be characterized as either positive or negative mass.
Microwave experiments based on transmission-line (TL) meta-

materials are performed to realize the band inversion from positive
to negative mass. The TLs are all fabricated on copper-clad 1.57-mm
thick Rogers RT5880 substrates, whose relative permittivity and tan-
gent loss are er 5 2.2 and tand 5 0.0009, respectively. Two 50-V
subminiature version A (SMA) connectors are used as the input and
output ports. The unit cell of this structure consists of a shunt induct-
ance L in parallel with a capacitance C0 brought by the TL segment
and a capacitance C in series with an inductance L0 attributed to the
TL segment. A circuit model to describe electromagnetic response of
the CRLH TL metamaterials was establsihed in Refs. 26 and 27. The
validity of the model has been studied extensively in metamaterials,
andmany novel phenomena based on CRLHTLmetamaterials, such
as negative refraction and super-resolving lens, are successfully
described by the model as summarized in Refs. 28 and 29. It gives
the effective permittivity and permeability of the CRLH TL in the
long-wavelength limit as,

�er~
1

pes
C0{

1

v2Ld

� �

zi
ce
v
, �mr~

p

ms
L0{

1

v2Cd

� �

zi
cm
v

, ð5Þ

where es and ms are the permittivity and permeability of environment
media, respectively, C0 (L0) is the per-unit-length capacitance
(inductance) of the TL segment, C (L) is the series capacitance (the
shunt inductance) of the loading elements, ce and cm denote the
losses, d is the length of a unit cell, and p is the geometric factor.
We would like to emphasize that these parameters can be tailored
experimentally. For example, we can tune the frequency v or the
length of a unit cell d to change the values of the permittivity and
permeability continuously. The effective loss in a sample can be
deduced from the experimental measurement of transmission and
reflection of a sample. It is worthy stressing that the limitation of this
model is that the size of each unit cell is required to be smaller than a
quarter wavelength. In this experiment, the unit cell has a length of d
5 8 mm (which is less than 1/10 wavelength in the microstrip), and
an electromagnetic wave does not ‘‘see’’ discontinuities of the struc-
ture. Thus the CRLH TL can be considered effectively homogenous.
From the frequency-dependent er and mr the two band edges v1 and
v2 are determined by setting er 5 0 or mr 5 0, respectively. For
simplicity here, we assume ce 5 cm 5 0, and the band edges is
obtained as

v1~
1
ffiffiffiffiffiffiffiffiffiffi

LC0d
p , v2~

1
ffiffiffiffiffiffiffiffiffiffi

L0Cd
p : ð6Þ

The frequency difference between v1 and v2 defines the energy gap
as shown in Fig. 1(a). The gap closing atv15v2 orm5 0 gives rise
to the Dirac point, where some interesting behaviors have been
reported, such as Zitterbewegung30, wave bending and cloaking
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effect31. It is clear that the frequencies can be readily tuned by tailor-
ing C0, L0, C, and L. If we can adjust the band edges fromv1,v2 to
v1 . v2 or vice versa, the band inversion would be achieved.
The band inversion is illustrated in the simulated and measured

density of states (DOS) in Fig. 1. Note that both C0 and L0 are func-
tions of the width of the TL, w. With an increase of w, C0 increases,
but L0 decreases. Consequently, one band edge moves to a higher
frequency, while the othermoves to a lower frequency. Therefore in a
well-designed structure, the band inversion is expected to occur by
adjusting the width w. We designed several samples and calculated
their width-dependent dispersions, and observed the band inversion
illustrated in Fig. 1(a). It is noted that the band structure inversion
accompanies an exchange of the band edges, and the effective mass
also changes its sign. This feature is closely related to the chirality of
electromagnetic wave in the designed sample as shown in Fig. 1(b).
Before band inversion, the edge of mr5 0 locates at higher frequency
and connects to the pass band with right-handed chirality for er. mr
. 0 while the edge of er5 0 locates at lower frequency and connects
to the pass band with left-handed chirality for mr, er, 0, as shown
in Fig. 1(b.i). After band inversion fromm. 0 tom, 0, the two band
edges are exchangedwith each other as shown in Fig. 1(b.iii): the edge
of mr5 0, for example, moves to the lower frequency and connects to
the pass band with left-handed chirality for er, mr, 0. The physical
picture of the band inversion can be understood as an electromag-
netic state (E,H) moving from (v01Dv, k) to (v02Dv,2k) in the
dispersion relation, wherev0 is the frequency of the Dirac point. It is
characterized by the sign change of effective mass accompanied by
the conversion of electromagnetic chirality. Now it is already known
that the sign of the mass in Dirac equation can be used to describe
different topological order in condensed matters23,24. Therefore, the
above picture shows us a clear connection between topological order
in condensed matter systems and chirality in metamaterials: when
the chirality of a band changes, its topological order changes.
To illustrate the band structure experimentally we fabricated a

series of samples with different widths and measured the DOS for
microwaves. Each sample contains 24 units, and each unit has a
length of d 5 8 mm with a series capacitor C 5 3.3 pF and a shunt
inductor L 5 10 nH. Agilent PNA Network Analyzer N5222A was
employed tomeasure the reflection, transmission, and group delay of
the samples. The DOS of a lossless optical system is proportional to

the group delay tg, g(v)~
1

p

dk

dv
!

tg

pD
(whereD is the total length of

the sample)32. In practice, dissipation is inevitable in the transmission
line experiments, and the wave vector k is no longer purely real and
the DOS is not well defined. However the group delay is still mea-
surable. When the imaginary part of the effective mass in Eq. (3) is
comparably small, it is a good approximation to define to DOS by
using the group delay. Meanwhile we also calculated the DOS with a
fitted loss from experimental data. The numerical and experimental
results are presented in Figs. 1(c) and 1(d), respectively. It is clearly
shown that the band gap gradually closes up as w decreases to a
critical point of w0 5 4.5 mm. With a further decrease of w, a gap
re-opens again. It is worth pointing out that the loss is introduced in
the effective permittivity and permeability while the numerical simu-
lation is performed. The values of ce and cm are taken to be 0.24 by
fitting the experimental data. For comparison we also present the
result (see the solid line in Fig. 1c) without the loss, the discrepancies
between the two cases are very clear. Considering the loss in the
sample, the measured data are in a good agreement with the calcu-
lated results. In this way we have successfully demonstrated the band
inversion in the metamaterials experimentally. This provides an
explicit and solid foundation for photonic simulation of the Dirac
equation in metamaterials.

Soliton solution for a domain wall. The Jackiw-Rebbi solution
describes the bound state of a particle to the interface or domain

wall between two media with positive and negative masses33. For
simplicity consider two 1D media with positive mass m1 . 0 and
negative mass 2m2 , 0 forming a domain wall at x 5 0 with a
potential V(x) 5 0. It is found that there exists an analytical
solution of zero energy (E 5 0),

Q(x)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1m2

m1zm2

r

1

{i

� �

exp½{ m(x)xj j�, ð7Þ

which decays exponentially in jxj. It is a solution of 1D topological
excitation or soliton, which is robust even for irregular distribution of
mass near the interface, and has potential application. For example,
the charge carriers in 1D organic conductors are attributed to the
solitons and anti-soliton34,35. However, it is still an experimental
challenge to observe a single soliton in a 1D polymer due to small
lattice spacing36,37. Simulation of the model was also proposed to
realize in other systems, such as an atomic Dirac-Fermi gas on an
optical lattice38. In metamaterials, a solution for a resonant mode at
an interface between two slabs of epsilon-negative and mu-negative
media was obtained by solving Maxwell’s equations explicitly39and
also confirmed experimentally40,41. However, its topological origin
was not recognized so far.
Here we demonstrate that the Jackiw-Rebbi solution can be rea-

lized in the metamaterials by constructing a domain wall with con-
trollable parameters. To this end, we fabricated a sample consisting
of two TL metamaterials, w1 5 2.5 mm and w2 5 8.5 mm. Both
metamaterials have finite gaps, but with opposite masses as illu-
strated in Figs. 1(c) and 1(d). However, when these two TL metama-
terials are connected, it is found that an additional narrow peak
appears at v0 5 11.05 GHz within the gap region in the DOS as
shown in Fig. 2(a). The parameters at v0 5 11.05 GHz are given by
m1 5 211.83, V1 5 0.26 1 0.80i, m2 5 16.65, and V2 5 20.26 1

0.80i. The corresponding energy of the resonant peak is E 5 0.03,
whose nonzero value is caused by the energy loss or the imaginary
part of the potential. Figure 2(b) shows the full-wave simulation of
field spatial distribution in the sample at v0, which was obtained by
using a commercial software package (CST Microwave Studio). It is
clearly seen that the incident field increases to reach a maximal, and
then decays exponentially, indicating a well-defined bound state.
We also carried out microwave experiments in time domain to

investigate the field distribution. The result is presented in Fig. 2(c),
which is in good agreement with the numerical simulation. Note that
in each unit cell, only one position near the shunt inductor is probed,
and thus the LC resonances within a unit are not detected. The
measured peak of the incident field is attributed to the non-linear
or topological excitation described by Jackiw-Rebbi solution. Thus
this measurement provides the direct observation of the Jackiw-
Rebbi solution or the profile of soliton in a photonic simulator made
of metamaterials.

Simulation of a 1D lattice topological phase. The metamaterials
with different effective masses provide building blocks to construct
various artificial optical materials to simulate solid state systems. In
condensed matter, the simplest ‘‘two-band’’ model is the Su-
Schrieffer-Heeger model for polyacetylene34. Consider a 1D
dimerized lattice with bipartite lattice sites A and B. Each unit cell
consists of two sites A and B. The hopping amplitude between two
sites in a unit cell is t1 dt and that between two unit cells is t2 dt.

When dt5 0, the energy dispersion presents E~+2t cos
k

2

�

�

�

�

�

�

�

�

, which

exhibits no energy gap at k 5 p. However at half filling, due to the
Peierls’ instability, the dimerization occurs and dt? 0: an energy gap
opens, and is equal to 4dt. According to the sign of dt, the gap can be
either positive or negative. The inverted band structure is closely
related to topological insulators, such as Bi2Te3 and Bi2Se3

42,43. The
topological property of this 1D model can be also determined by the
Berry phase of the lower energy band, which is given by p[(sgn(t 1
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dt) 2 sgn(dt)]/2 modulus by 2p. The difference of the Berry phases
for dt . 0 and dt , 0 is p, which indicates that the two phases are
topologically distinguished: one is topologically trivial and the other
one is topological non-trivial. The topologically non-trivial phase is
characterized by the presence of end state of zero energy in an open
boundary condition44,45. Though it is believed that the end states
should exist in 1D polymer, it is a great challenge for experimen-
talists to measure them experimentally.
Tomimic such topological phases in a lattice structure, we design a

periodic stack of twoTL blocks withmA. 0 (w5 7 mm) andmB, 0

(w5 4 mm), as shown in Figs. 3 and 4(a). The unit of the samples has
a length of d5 7 mmwith a series capacitor C5 1.0 pF and a shunt
inductor L5 3.3 nH, leading to jmAj. jmBj. This periodic structure
can be used to simulate the Su-Schrieffer-Heeger model. Different
mA . 0 and mB , 0 corresponds to the positive and negative dt. In
the periodic boundary condition, the theoretical calculation shows
that dispersion relation have the similar band structure of the Su-
Schrieffer-Heeger model, which exhibits the presence of an energy
gap dv5 1.46 GHz between two band edges atv15 13.53 GHz and
v2 5 14.99 GHz, as shown in Fig. 4(b).

Figure 1 | Photonic simulation of band inversion in the Dirac equation. (a) Calculated dispersion relation for the band structures with (i)m. 0, (ii)m

5 0, and (iii) m , 0. v0 < 11.34 GHz is the frequency when the band gap closes. k is the wave vector and d is the length of a unit cell. (b) The band

inversion means the exchange of the band edges and change of chirality from the right-handed triad to the left-handed triad. (c) Calculated density of

states for microwave TL samples containing 24 unit cells with fitted losses from experimental data. The solid (red) lines are the DOS spectra for ideal

structures without the losses. (d) Measured density of states for microwave TL samples. The losses ce 5 cm 5 0.24 is adopted in numerical

simulation, which is fitted from experimental data.
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In the present experiment, we fabricated two structures by remov-
ing one block ofmA. 0 ormB, 0 from the loop to simulate the 1D
polymer in an open boundary condition. The photographs of the two
samples are shown in Fig. 3. The measured DOS for microwave

shows that the first case in Fig. 4(c) exhibits a clear gap dv 5

1.92 GHz between band edges at v1 5 13.31 GHz and v2 5

15.23 GHz, whose value is close to the calculated value of the loop.
The non-zero DOS is attributed to the loss of the metamaterials,
which is characterized by the parameters ce and cm in Eq. (5). They
are fitted to be 0.24 from the measured data. The second case in
Fig. 4(d) exhibits a similar band structure as in Fig. 4(c), but presents
an additional peak atv05 14.18 GHz between the two peaks atv15

12.73 GHz and v2 5 16.10 GHz. A more detailed analysis indicates
that the two peaks at v1 5 12.73 GHz and v2 5 16.10 GHz corre-
sponds to the band edges as shown in Fig. 4(b), in which slight shifts
of the position are caused by the finite size effect. The resonant peak
at v0 5 14.18 GHz corresponds to two bound states at the ends,
which can be seen clearly in Figs. 4(e) and 4(f). This indicates that the
topological properties of the two designed chains are topologically
distinguished, although they are constructed by the same blocks of w
5 7 mm and w 5 4 mm. Thus our measurements demonstrate
explicitly the existence of the end states in 1D topological systems.

Discussion
In summary, we have demonstrated an explicit mapping between
Maxwell’s equations and the Dirac equation in one dimension. This
provides a platform to utilize the electromagnetic wave to mimic
quantumphenomena related to theDirac equation fromhigh-energy
physics to condensed matter physics. In the form of the Dirac equa-
tion, the effective mass is determined by the permittivity and per-
meability of themedia.While the absolute sign ofmass has no special
physical meaning, the sign change of themass is closely related to the
topological order of a medium. We can make use of this property to

Figure 2 | Domain wall at the interface between two components with
opposite masses. (a) Calculated (i) and measured (ii) DOS spectra,

exhibiting a bound state within the gap. (b) Full-wave simulation of field

distribution of the bound state, presenting localized fields around the

interface (x5 96 mm). (c)Measured voltage as the field distribution in the

sample. The two components are designed with w1 5 2.5 mm and w2 5

8.5 mm, respectively. The parameters at v0 5 11.05 GHz are given by m1

5211.83, V1 5 0.261 0.80i, m2 5 16.65, V2 520.261 0.80i, and E5

0.03. For simplicity, we take the losses ce 5 cm 5 0.24 in numerical

simulation, which is fitted from experimental data. It should be noted here

that in each unit cell, only one position near the shunt-inductance position

is probed.

Figure 3 | Fabricated samples for the structures with broken periodic
boundary. The two TL blocks have the width of wA 5 7 mm and wB 5

4 mm, respectively, and have the same length of 14 mm. Each TL block

contains two units, and the lumped elements include a series capacitorC5

1.0 pF and a shunt inductor L 5 3.3 nH.

Figure 4 | Topological properties of a lattice structure. (a) Scheme of the periodic structure composed of the components ofmA. 0 andmB, 0. (b)DOS

of the ideal periodic structure. A band gap of dv5 1.46 GHz is present between v1 5 13.53 GHz and v2 5 14.99 GHz. (c) The measured DOS for the

structure with an open boundary condition by removing one block of mA . 0 component. Two band edges appear at v1 5 13.31 GHz and v2 5

15.23 GHz. (d) The measured DOS for the structure lacking of amB, 0 component. Two band edges appear at v15 12.73 GHz and v25 16.10 GHz,

and a resonant peak for the end mode appears at v0 5 14.18 GHz. Inset, schemes of the structures in three cases. (e) Full-wave simulation of field

distribution of the end mode corresponding to (d). (f) Measured voltage as the field distribution in the sample.
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generate photonic counterparts of 1D topological excitations. By
tailoring the permittivity and permeability of metamaterials, band
inversion of the Dirac equation was demonstrated theoretically and
experimentally. It has been found that the band inversion accom-
panies a change of chirality of electromagnetic wave in metamater-
ials. Furthermore, we have designed and fabricated transmission-line
structures to demonstrate some important solutions of the Dirac
equation, such as soliton solution for a domain wall and the Su-
Schrieffer-Heeger model for polyacetylene. Different from the pre-
vious topological excitations in two-dimensional photonic lattice
structures where an effective Dirac equation was derived near the
Dirac point in a long wave limit18–21, we write the 1D Maxwell’s
equations explicitly in the form of Dirac equation and propose to
stimulate topological excitations by engineering the electromagnetic
responses of metamaterials. Our numerical simulation and micro-
wave experiments illustrated a proof-of-principle example thatmeta-
materials are ideal candidates to simulate topological phenomena in
solids, and the behaviors of the Dirac equation.

Methods
The TLs are all fabricated on copper-clad 1.57-mm thick Rogers RT5880 substrates. A
network analyzer (Agilent PNA N5222A) was used to characterize our samples in
frequency domain. Transmission and reflection properties were obtained directly,
and the density of states is calculated from themeasured group delay. Thenwe carried
out microwave experiments in time domain to investigate the field distribution. At
the particular frequency, a monochromatic wave generated from Agilent E8267D is
input to the sample. After that, voltage signals at the different positions along the
sample are picked and recorded, using the high-impedance active probe (Tektronix
P7260) and the oscilloscope (Tektronix TDS7704B). In each unit cell, only one
position which is near the shunt inductor is probed, and thus the LC resonances
within a unit are not detected.

Numerical simulations were obtained using a commercial software package (CST
Microwave Studio). Full methods, specific parameters of the samples, and experiment
measurement are available in the Supplementary Informations.
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