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We examine the spin-orbit interaction of light and photonic spin Hall effect on the surface of anisotropic two-
dimensional atomic crystals. As an example, the photonic spin Hall effect on the surface of black phosphorus is
investigated. The photonic spin Hall effect manifests itself as the spin-dependent beam shifts in both transverse
and in-plane directions. We demonstrate that the spin-dependent shifts are sensitive to the orientation of the
optical axis, doping concentration, and interband transitions. These results can be extensively extended to other
anisotropic two-dimensional atomic crystals. By incorporating the quantum weak measurement techniques, the
photonic spin Hall effect holds great promise for detecting the parameters of anisotropic two-dimensional atomic
crystals. © 2018 Chinese Laser Press
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1. INTRODUCTION

Two-dimensional (2D) atomic crystals hold great promise in
the application of optoelectronics due to their extraordinary
electronic and photonic properties [1,2]. Therefore, a funda-
mental understanding of the light-matter interaction is essential
to optoelectronics applications. The photonic spin Hall effect
(SHE) manifesting itself as spin-dependent splitting in the
light-matter interaction is considered as a result of the spin-
orbit interaction of light [3,4]. The photonic SHE can be
regarded as a direct photonic analogy of electronic SHE,
which has been extensively studied in 3D bulk crystal [5,6].
The spin-dependent splitting in photonic SHE is generally
on subwavelength scales, which can be observed by the signal
enhancement technique known as quantum weak measure-
ments [7,8].

More recently, the spin-orbit interaction of light and pho-
tonic SHE has been investigated on the surface of 2D atomic
crystals. In general, the interpretation of reflection and refrac-
tion on the surface of 2D atomically thin crystals is treated as a
homogeneous medium with an effective refractive index and an
effective thickness. However, it is not necessary to involve the
effective refractive index to describe the light-matter interaction
[9–11] and spin-orbit interaction [12] on the surface of
atomically thin crystals. The quantized Imbert–Fedorov
effect and Goos–Hänchen effect have been theoretically

predicted in the quantum Hall regime of graphene-substrate
systems [13,14]. Photonic Hall shifts are sensitive to spin-
and-valley properties of the charge carriers, providing an
unprecedented pathway to investigate spintronics and valley-
tronics [15]. The beam shifts on the surface of graphene have
been observed via weak measurements [16,17]. In addition, the
strong spin-orbit interaction and giant spin-dependent
shifts on the surface of graphene have also been predicted
[18,19].

Anisotropic 2D atomic crystals provide an extra degree of
freedom to tailor the light-matter interaction due to the strong
anisotropy [20]. Motivated by the interesting properties, we
attempt to examine the spin-orbit interaction of light and pho-
tonic SHE on the surface of anisotropic 2D atomic crystals.
Black phosphorus, an elemental layered material composed
of layers of atoms, has an atomic structure that resembles gra-
phene. But the atomic rings in black-phosphorus layers exhibit
a puckered structure, which makes it have strong anisotropic
properties [21]. In this paper, a general model is developed
to describe the photonic SHE in reflection on the surface of
anisotropic 2D atomic crystals. Based on this model, both
transverse and in-plane spin-dependent splitting in photonic
SHE can be obtained. We demonstrate that the spin-
dependent shifts are sensitive to the orientation of the optical
axis, doping concentration, and interband transitions.
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2. GENERAL THEORETICAL MODEL

We first establish a general model to describe the photonic
SHE on the anisotropic atomic crystals. This model can be
extensively extended to other 2D anisotropic atomic crystals.
Let us consider a Gaussian wave packet with monochromatic
frequency ω impinging from air to the surface of anisotropic
2D atomic crystals (Fig. 1). The z axis of the laboratory
Cartesian frame (x, y, z) is normal to the surface. A black
phosphorus sheet is placed on top of substrate. In addition,
we use the coordinate frames (xi, yi, z i) and (xr , yr , zr) to
denote the central wave vectors of incidence and reflection,
respectively.

As a strong anisotropic 2D atomic crystal, black phosphorus
has the conductivity tensor, which accounts for both the
intraband electron motions and the interband electron
transitions:
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i � x, y. Here, n is the concentration of electrons, η represents
relaxation time, and mi represents the effective mass of
electrons along the i direction; si represents the different
strength of the interband component, and ωi is the frequency
of the onset of interband transitions for the i component of the
conductivity [22]. We write the conductivity as the matrix
form:

M 0 �
�

σxx 0
0 σyy

�

, (2)

where σxx and σyy denote the transverse and longitudinal con-
ductivities of black phosphorus, respectively. In general, when
the incident plane and the orientation of the crystal axis are not

coincident, the diagonal elements of the conductance matrix
are nonzero. The conductance matrix can be computed as

M � M lM 0M r : (3)

Here, M l and M r are coordinate transformation matrices:

M l �
�

cosϕ sin�−ϕ�
sinϕ cosϕ

�

, (4)

M r �
�

cosϕ sinϕ
sin�−ϕ� cosϕ

�

, (5)

where ϕ is the optical axis angle. From Eq. (3), the matrix
elements of conductivity can be rewritten as

σpp � σxx cos
2 ϕ� σyy sin

2 ϕ, (6)

σps � σsp � �σxx − σyy� cos ϕ sin ϕ, (7)

σss � σyy cos
2 ϕ� σxx sin

2 ϕ: (8)

Here, σpp, σss, and σps denote the transverse, longitudinal,
and crossed conductivity, respectively.

We now consider how conductivity changes with the fre-
quency, as shown in Figs. 2(a)–2(d). In general, two distinct
regimes in the electromagnetic response of the anisotropic
2D material can be identified. If the frequency is sufficiently
low, the conductivity is of a pure Drude type. The anisotropic
properties are attributed to the effective mass of electrons in
different directions. If the frequency is sufficiently high, the
contribution from interband electron transitions may become
dominant, and the imaginary part of the conductivity becomes
negative. When the optical axis angle is chosen as ϕ � 0°,
the conductivity exhibits strong anisotropic properties and the

Fig. 1. Schematic illustration of the wave reflection at a surface
of black phosphorus in a Cartesian coordinate system. A black
phosphorus sheet is placed on the top of a homogeneous and isotropic
substrate. The photonic SHE occurs on the reflecting surface and
exhibits in-plane and transverse spin Hall shifts.
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Fig. 2. Real and imaginary parts of the conductivity of the
2D atomic crystal as a function of frequency. Parameters are set
as η � 0.01 eV, ωx � 1 eV, and ωy � 0.35 eV. The frequency
of interband electron transitions is present at ωy � 0.35 eV.
(a), (b) The optical axis is chosen as ϕ � 0°. (c), (d) The optical axis
is chosen as ϕ � 30°. The doping concentration of the 2D atomic
crystal is n � 5 × 1013 cm−2.

512 Vol. 6, No. 6 / June 2018 / Photonics Research Research Article



crossed competent is absent [Figs. 2(a) and 2(b)]. When the
optical axis angle is chosen as ϕ � 30°, both the transverse
and the longitudinal conductivities are modulated; meanwhile,
the crossed conductivity appears [Figs. 2(c) and 2(d)].

For certain frequency and doping concentrations, the com-
ponents of conductivity can be modulated by the optical axis
angle (Fig. 3). The crossed conductivity σps � 0 when the op-
tical axis chosen is ϕ � 0° or ϕ � 180° [Figs. 3(a) and 3(b)].
For a certain frequency and a certain optical axis angle, we find
that both the real and the imaginary parts of conductivity
components linearly increase as the concentration increases
[Figs. 3(c) and 3(d)]. Therefore, the anisotropic properties
of the 2D atomic crystal can be effectively enhanced by increas-
ing the doping concentration. More importantly, the crossed
conductivity can be modulated by the optical axis. The crossed
conductivity will play an important role in spin-orbit interac-
tion of light and will lead to the in-plane spin Hall shifts.

3. PHOTONIC SHE

To examine the light-matter interaction on the surface of the
anisotropic 2D atomic crystal, we need to obtain the Fresnel’s
coefficients from the boundary conditions. The reflected and
transmitted amplitudes satisfy the following equations:

E s
i � E s
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t , (9)
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Here, θi is the incidence angle, and θr is the refraction angle.
Z 0 is the impedance in air, and Z is the impedance in media.
And in general, σps � σsp. In this case, the Fresnel’s coefficients
are obtained as
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αT�α

L
−
� β

αT�α
L
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, (13)
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γ
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L
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Here, αL� � �kizε� ktzε0 � kizktzσpp∕ω�∕ε0, αT� �
ktz � kiz � ωμ0σss, β � μ0kizktzσ

2
ps∕ε0, γ � 2Z 0kizktzσ

2
ps,

kiz � ki cos θi, and ktz � kt cos θt , where θt is the refraction
angle. ε0, μ0 are permittivity and permeability in vacuum; ε is
the permittivity of the substrate. The occurrence of crossed
conductivity σps and σsp is attributed to the emergence
of r sp and rps. When ϕ � 0 or ϕ � π∕2, we get
σps � σsp � 0, which leads to rps � r sp � 0.

For horizontal polarization (jH �ki,r�i) and vertical polariza-
tion (jV �ki,r�i), the corresponding individual wave-vector
components can be expressed by jP�ki�i and jS�ki�i:

jH �ki,r�i � jP�ki,r�i −
kiy

ki,r
cot θi,r jS�ki,r�i, (16)

jV �ki,r�i � jS�ki,r�i �
kiy

ki,r
cot θi,r jP�ki,r�i, (17)

where ki and kr are the incident and reflected wave vectors,
respectively. After reflection, jP�ki�i and jS�ki�i evolve as
�jP�kr�ijS�kr�i�T � mR �jP�ki�ijS�ki�i�T , where

mR �
�

rpp rps
r sp r ss

�

: (18)

We then obtain
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k0

�

jV �kr�i, (20)

where k0 � ω∕c is the wave vector in vacuum. To accurately
describe the photonic SHE, Fresnel reflection coefficients are
confined to the first order in a Taylor series expansion. The
polarizations associated with the angular spectrum components
experience different rotations in order to satisfy the boundary
condition after reflection.
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Fig. 3. (a) Real and (b) imaginary parts of the conductivity of the
2D atomic crystal as a function of optical axis angles. The parameters
of the 2D atomic crystal are n � 5 × 1013 cm−2 and ω � 0.1 eV.
(c) Real and (d) imaginary parts of the conductivity as a function
of doping concentration. The optical axis is chosen as ϕ � 30°.
Other parameters are the same as in Fig. 2.
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The photonic SHE manifests itself as spin-dependent
splitting, which appears in-plane and in transverse directions.
To reveal the photonic SHE of light, we now determine the in-
plane and transverse shifts of the wave packet. In the spin basis
set, the polarization of jH i and jV i can be decomposed into
two orthogonal spin components:

jH i � 1
ffiffiffi

2
p �j�i � j−i�, (21)

jV i � 1
ffiffiffi

2
p i�j−i − j�i�, (22)

where j�i and j−i represent the left- and right-circular
polarization components, respectively.

We assume that the wave function in momentum space of
the incident wave packet can be specified by the following
expression:

jΦi � w0
ffiffiffiffiffi

2π
p exp

�

−

w2
0�k2ix � k2iy�

4

�

, (23)

where w0 is the width of wave function. Then the total wave
function is made up of the packet spatial extent and the polari-
zation description. From Eqs. (19), (20), and (23), the reflected
wave function can be written as

jΦH
r i ≈

rpp � irps
ffiffiffi

2
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H
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2
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H
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V
y �j−ijΦi: (25)

Here, the boundary conditions krx � −kix and kry � kiy, as
well as the approximations of 1� ikrxδ

H ,V
x, y ≈ exp�i �

krxδ
H ,V
x � are introduced. In addition, the spin-independent

terms have been neglected, and only the spin-dependent ones
are retained. The in-plane spin Hall shifts can be written as

δHx �
rpp

k0�r2pp � r2sp�
∂rps

∂θi
−

r sp

k0�r2pp � r2sp�
∂rpp

∂θi
, (26)

δVx �
rps

k0�r2ss � r2ps�
∂r ss
∂θi

−

r ss
k0�r2ss � r2ps�

∂rps

∂θi
: (27)

The transverse spin Hall shifts can be obtained as

δHy �
�rpp � r ss�rpp
k0�r2pp � r2sp�

cot θi −
�rps − r sp�r sp
k0�r2pp � r2sp�

cot θi, (28)

δVy �
�rpp � r ss�r ss
k0�r2ss � r2ps�

cot θi �
�rps − r sp�rps
k0�r2ss � r2ps�

cot θi : (29)

Note that the spin Hall shifts are complex and can be
written as δH ,V

x, y � Re�δH ,V
x, y � � iIm�δH ,V

x, y �. Here, the real part
is related to the spin Hall shift in the position space, while the
imaginary part is associated with the spin Hall shifts in the
momentum space [23,24].

The photonic SHE is considered as a result of the spin-orbit
interaction of light. The origin of these spin-orbit interaction
terms exp��ikrxδ

H ,V
x � and exp��ikryδ

H ,V
y � in Eqs. (24) and

(25) lies in the transverse nature of the photon polarization, and
the polarizations associated with the plane-wave components
experience different rotations in order to satisfy the transversal-
ity after reflection, hence inducing spin-dependent geometric
phases φG

x � �krxδ
H ,V
x and φG

y � �kryδ
H ,V
y [25]. In general,

the in-plane geometric phase (φG
x ) is absent on the surface of

conventional 3D crystals. In this case, however, the crossed
conductivity plays an important role in the spin-orbit interac-
tion of light. Moreover, the crossed conductivity can be modu-
lated by the optical axis angle. Therefore, the spin-orbit
interaction of light on the surface of an anisotropic 2D atomic
crystal can also be modulated and the in-plane geometric phase
arises.

The in-plane spin Hall shifts of the wave packet at initial
position (zr � 0) are given by

hxH ,V
r� i �

hΦH ,V
r j∂krx jΦH ,V

r i
hΦH ,V

r jΦH ,V
r i : (30)

Substituting Eqs. (24) and (25) into Eq. (30), the in-plane
spin Hall shifts of the two spin components can be written as

hxHr�i � 	 1

k0
Re

�

rpp

r2pp � r2sp

∂rps

∂θi
−

r sp

r2pp � r2sp

∂rpp

∂θi

�

, (31)
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The transverse spin Hall shifts of the two spin components
can be written as

h yH ,V
r� i �

hΦH ,V
r j∂kry jΦH ,V

r i
hΦH ,V

r jΦH ,V
r i : (33)

Substituting Eqs. (24) and (25) into Eq. (33), respectively,
we obtain the transverse spin Hall shifts for two spin
components:

h yHr�i � 	 1

k0
Re

��rpp � r ss�rpp
r2pp � r2sp

cot θi −
�rps − r sp�r sp
r2pp � r2sp
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Re

��rpp � r ss�r ss
k0�r2ss � r2ps�

cot θi �
�rps − r sp�rps
k0�r2ss � r2ps�

cot θi

�

:

To reveal the relation between the photonic SHE and the
parameters of anisotropic 2D atomic crystals, we plot the spin
Hall shifts as a function of the frequency and the optical axis
angle (Fig. 4). It has been shown that the conductivity presents
a transition at the frequency of ωy � 0.35 eV, which is the
frequency of the onset of interband transitions (Fig. 2).
Accordingly, the spin Hall shifts exhibit transition points at
this frequency. Both the in-plane and transverse spin Hall shifts
exhibit a large value (at the wavelength level) [Figs. 4(a) and
4(b)], since the incident angle is chosen as 60°, which is near
the Brewster angle. This interesting phenomenon is similar to
the spin Hall shift on the surface of conventional 3D crystals
[26]. For different optical angles, the spin Hall shifts are
significantly different due to the strong anisotropic properties
of the 2D atomic crystal. We note that the in-plane spin
Hall shifts and crossed conductivity have a similar change
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tendency with the optical axis. While the transverse spin Hall
shifts and the transverse (or longitudinal) conductivity exhibit a
similar tendency, it is demonstrated that the spin Hall shifts are
sensitive to the variance of the frequency and the optical
axis angle.

We next plot the spin Hall shifts as a function of the optical
axis angle and doping concentration, as shown in Figs. 5(a) and
5(b). It has been shown that the conductivities increase linearly
with the doping concentration [Figs. 3(c) and 3(d)]. We find
that the spin Hall shifts have a similar variation tendency with
the real and imaginary parts of the conductivities. When ϕ � 0
or ϕ � π∕2, the longitudinal spin Hall shifts are zero. This
phenomenon can be explained from Eqs. (31) and (32), since
σps � σsp � 0 leads to rps � r sp � 0, and only the transverse
geometric phase arises. In addition, the conductivity will be
enhanced by increasing the doping concentration and thereby
change the Brewster angle [27]. It has been demonstrated that
the large spin Hall shifts can be obtained due to the strong
spin-orbit interaction [28]. As a result, the spin Hall shifts
are sensitive to the change of the doping concentration.
Therefore, the photonic SHE offers a convenient way to

determine the doping concentration and optical axis angle
by a direct optical measurement.

In our theoretical model, only single black phosphorus layer
is considered. It would be interesting to consider the effect of
increasing the number of black phosphorus layers, as it is
known that this results in modifying the bandgap of the
material [29]. As a result, the optical absorption spectra and
conductivity are changed. In addition, the preferred conducting
direction can be rotated with the appropriate biaxial or uniaxial
strain [30]. This will be useful for exploring unusual quantum
Hall effects and exotic electronic and mechanical applications
based on black phosphorus. In our case, we have shown that the
spin Hall shifts are sensitive to the change of the conductivity.
Therefore, increasing the number of black phosphorus layers or
anisotropic strain would certainly impact the photonic SHE
and provide an extra degree of control of the spin Hall shifts.

Weak measurement [7] is an important and convenient ap-
proach for detecting the beam shifts. In the procedure of weak
measurements, the quantum system is first preselected as an
initial state. Then the observable is very weakly coupled to
the pointer state. Finally, the pointer position is recorded when

Fig. 4. (a) In-plane and (b) transverse spin-dependent shifts on the
surface of anisotropic 2D atomic crystal as a function of optical axis
angle and frequency. The incident light impinges on the substrate at
θi � 60°, the refractive index of the substrate is assumed as 2, and the
doping concentration is n � 10 × 1013 cm−2.

Fig. 5. (a) In-plane and (b) transverse spin Hall shifts on the aniso-
tropic 2D atomic crystal as a function of the optical axis angle and
doping concentration. The frequency ω � 0.1 eV. Other parameters
are the same as in Fig. 4.
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the quantum system is postselected at a final state. When the
fidelity between the pre- and post-selections is small, the weak
value can be very large, indicating a large position shift of the
probe [31]. By incorporating quantum weak measurement
techniques, the photonic SHE holds great promise for detecting
the parameters of anisotropic 2D atomic crystals. In addition,
the enhanced SHE should be able to be obtained, due to the
tunable conductivity and surface plasmon resonance [32].

4. CONCLUSION

In conclusion, we have revealed the photonic SHE on the sur-
face of an anisotropic 2D atomic crystal. The photonic SHE
manifests itself as in-plane and transverse spin-dependent split-
ting due to the spin-orbit interaction of light. As an example,
the spin Hall shifts on the surface of black phosphorus have
been investigated. We have demonstrated that the spin Hall
shifts are sensitive to the orientation of the optical axis, doping
concentration, and interband transitions. By incorporating
quantum weak measurement techniques, the photonic SHE
holds great promise for detecting the parameters of anisotropic
2D atomic crystals. We believe that these results can be
extensively extended to other anisotropic 2D atomic crystals.

Funding. National Natural Science Foundation of China
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