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Abstract

Wedemonstrate that topologically nontrivial states of light can be engineered in periodic photonic

structures containingmediawith a Tellegen-type bianisotropic response.Whilst in such bianisotropic

materials the time-reversal symmetry is broken, they are characterized by an intrinsicmagnetic order

which does not requiremacroscopicmagnetization. Our design can therefore be considered as a direct

analog of the solid state Chern insulator which exhibits a topological order in the absence of an

external bias. Numerical simulations of such Tellegen photonic crystals reveal the existence of one-

way edge transport at domainwalls and perfectly conducting boundaries not sensitive to structural

imperfections such as local defects and disorder.We demonstrate a scheme for achieving robust

steering of the edgemodes by controlling the phase and amplitude of the source.

1. Introduction

The past three decades havewitnessed the discovery of condensedmatter systems characterized by topological

order, in particular topological insulators [1–4]—a development which has significantly enriched our

understanding of wave phenomena in numerous branches of physics [5–10]. Topological insulators are

characterized by the simultaneous presence of suppressedwave propagation in the bulk and gap-traversing edge

states which exhibit immunity to backscattering in the presence of defects and disorder. In the last few years a

number of studies have demonstrated that analogs of the topological insulators can be realized in

electromagnetic systems, which has provided a newmeans for achieving robust transport in photonics [7–24].

Systemswith topological order can be classified into twomain categories, according towhether or not time-

reversal (TR) symmetry is broken. Photonic structures with brokenTR symmetry, such asmagneto-optical

photonic crystals (PCs) [25]with gyrotropic permittivity and permeability were thefirst to be investigated both

theoretically [11–13], and experimentally [14, 26]with a view to creating topological insulators for photons.

However, gyroelectric and gyromagnetic activity do not exhaust the class of electromagnetic responses which

violate TR symmetry. Indeed, the introduction of gain and loss, as well as some forms of bianisotropic response

also allow the removal of TR symmetry and it is therefore natural to investigate these in the context of realizing

topological order for light.

Here we demonstrate that non-trivial band topology can be realized in PCswith bianisotropic inclusions of

the Tellegen type, referred to hereafter as Tellegen photonic crystals (TPC). The Tellegen response is defined by

constitutive relations of the form D E Hˆ ˆ c= + and B H Eˆ ˆm z= + [27, 28]where ẑ and ĉ are real valued
tensors, and therefore breaks TR symmetry, setting it apart from the conventional bianisotropic responses in

electromagnetics (exhibited by for example by split-ring-resonators and chiralmeta-molecules)which do not

[19, 24]. Although exotic, this kind ofmagnetoelectric response can be found in certain naturally occurring

compounds [29] such asmultiferroics [30–32], anisotropic antiferromagneticmaterials such asCr2O3

[27, 33, 34], electronic topological insulators [35], as well as in composite electromagnetic structures [36]where

particularly strong Tellegen responses can be achieved, albeit at low frequencies.
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One of themain advantages of considering TRbroken systems stems from the fact that the resulting

topological protection is extremely robust [7, 14, 26]. This is in sharp contrast to the alternative approach based

on realizing symmetry protected topological phases (photonic analogs of the quantum spinHall effect),

including that found in bianisotropicmeta-crystals, where topological properties exist only to the extent that

ˆ ˆ m= or similar constraints can be engineered [19, 24], a constraint which ensures pseudo-spin conservation in

the structure. This crucial difference between electronic and photonic insulators follows from that fact that

bosonic TR symmetry is not sufficient to protect any nontrivial topological phases in three or less dimensions

[7], unlike fermionic systemswhich can support robust topological phases protected by TR symmetry alone in

two and three dimensions. In practice both approaches to creating a topologically non-trivial PC suffer from

frequency limitations, due to the challenge ofmatching ˆ ˆ m= over a significant range in the pseudo-spin

conserving systems, and to the difficulty of attaining awide topological band gap in TR-broken systems.

2. Theoretical approach

We follow the standard procedure of studying a PCwhich possesses point degeneracies within its photonic band

structure in the absence of any symmetry-breaking perturbation. For this purpose we employ a 2D triangular

lattice structure that exhibits linearDirac-like dispersionwith 2-fold degeneracies at theK andK′ points of its

Brillouin zone in the absence of the bianisotropy. Such degeneracies are guaranteed at these locations by the

simultaneous presence of rotational and PT symmetry.We then introduce a Tellegen-type response into the

systemwhich couples in-planemagnetic fields to out-of-plane electricfields (and vice-versa), and is described by

the constitutive relations D E H H ,z z xz x yz y c c= + + B H Ex x xz zm c= + and B H E ,y y yz zm c= + inwhich

ẑ was eliminated by invoking the conservation of energy ẑ = Tĉ [37]. Such a responsemixesmodes of like

polarization and can therefore be expected to immediately open a gap at the degenerate Dirac points, whereas

the alternative choice of a diagonal ĉwouldmixmodes of opposite polarization and therefore give zero splitting

tofirst order in the coupling strength.Whilst our choice to retain just two non-zero elements in themagneto-

electric tensor implies that its effect will only be felt in the TMpolarization, one could also consider the dual

choice of having 0,xz yzz ¹/ 0zx zyc ¹/ and for the TE polarization, or any combination of the two. Inwhat

followswe also assume 1m̂ = .

When substituted into theMaxwell’s equations, the above constitutive relations lead to awave equation of

the form:

E r E

E E

k r r r r

k r r r ri 0, 1

r0
2 T

0{ }

ˆ( ) ( ) ˆ ( ) ˆ ( ) ( )

ˆ ( ) ( ) ˆ ( ) ( ) ( )
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where k c0 w= / is themagnitude of the free-spacewave-vector.

One can simplify equation (1) by introducing an in-plane vector r r, , 0yz xz{ }( ) ( )c c c= - constructed

from the components of the bianisotropy tensor xzc and .yzc With the use of this notation equation (1) reduces

to scalar equation for Ez :

k E k E k Ei i , 2z z r z0

2

0 0
2( ) ( ) ˆ ( )c c + +  ⋅ =

which is reminiscent of the Schrodinger equation for an electron in presence of amagnetic potential. Inwhat

followswe assume an effective Coulomb gauge 0c ⋅ = by employing a uniformly azimuthal distribution of

the vector viz.χ(r)=χf̂within the rodwith constantχ. This particular choice, although by nomeans unique,

ensures that PT symmetry (the product of time-reversal with in-plane inversion) is broken aswell as TR, a

necessary condition for the nucleation of non-zero Chern numbers [7]. Indeed, the arguably simpler choice

χ(r)=χ ĉ with ĉ standing for any constant vector also breaks TRbut does so in awaywhich retains

PT-symmetry, forcing the Berry curvature to vanish.

To our knowledge there is no single-phasematerial known to exhibit significant off-diagonal Tellegen

coupling, despite tensors with this formbeing allowed for by at least threemagnetic symmetry (point) groups

2 m, ,̲( and 2 ̲( /m) [38, 39]. Although it is therefore conceivable that suchmaterialsmight be discovered in the

near future, it seems unlikely that the coupling strengthwill greatly exceed that in knownmaterials with a

diagonalmagnetoelectric response, where components of ĉ are atmost of the order 10 3- [38]. It bears

mentioning that off-diagonalmagnetoelectric coupling can be straightforwardly engineered in composites of

piezoelectric andmagneticmaterials [40]where elastic forcesmediate the coupling between electric and

magnetic orders, however this feature limits their application to low frequencies. Putting aside the requirement

of zero external bias allows one to considermetamaterial possibilities such as the one sketched infigure 1(a), in

which omega-particle elements are used to couple the acmagnetic dipolemoment of the double-wire

2
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metamolecule m (which corresponds to asymmetricmode of the antennas) and its ac electric dipolemoment
ezz (which corresponds to the symmetricmode of the antennas) through naturalmagneto-optical response of a

ferrite sphere place in the center [41]. This proposal bears some relation to the concept in [36, 41] andwill not be

investigated in detail, but supports the notion that a practical TPCdesignmay bewithin reach. In the following

we focus on demonstrating the general concept leaving issues of implementation to the future.

3.Numerical results

Two complimentary numerical approaches were used to calculate band structure and eigenmodes of our TPC:

(i) the planewave expansion (PWE)method and (ii) commercial finite elementmethod softwareCOMSOL

Multiphysics. The PWEwas best suited to calculating topological invariants of the bulk bands, whilst the study of

topological edge states in different configurations (including disorder)wasmost conveniently carried out using

COMSOL. Both approaches were used to calculate and confirm the bulk band structure.

To beginwe calculated the band structure of the crystal without bianisotropy as shown infigure 1(b), which

reveals the anticipated presence ofDirac degeneracies at K and K .¢ These features occur near the dimensionless

frequency f a c2 0.60w p= =/ (second and third bands) and correspond to dipolarmodes of the circular rods.
Next a Tellegen responsewas introducedwithin the rods, lifting both degeneracies at K and K¢ due to the

consequent reduction in symmetry (wenote that our choice ofc preserves inversion symmetry, so that K and

K¢ remain equivalent). Figure 1(c) demonstrates that our particular choice of bianisotropy opens a full photonic

band gapwithin the bulk spectrum. To ensure that this opening corresponds to the photonic states acquiring a

topologically nontrivial character we calculated the Berry connection k k E E, i kn x y z z n( )A =  and the Berry

curvature k k,n x y y nx x ny( ) A AW = ¶ - ¶ for bands 1–4. It was found that adopting a gauge inwhich 0nxA =
avoidedmost of the numerical error associatedwith the eigenvector’s phase ambiguity. The Berry curvature of

the lowest dipolar band exhibited two peaks located at the K and K¢ points of the same sign, giving theChern

number kC k k, dn
BZ

n x y
1

2
( )ò= W

p
calculated by the integration of the Berry curvature over the Brillouin zone

a non-zero value of C 1.2 = The calculation of theChern number for the upper dipolar band gives the value of

C 23 = - due to an opposite contribution from K and K¢ and an additional contribution of−1 from G.
The physical hallmark of topological order is the presence of topologically protected edge states robust to

structural imperfections and disorder, a property which stems from the one-way character of suchmodes.

According to the bulk-boundary correspondence (BBC), the number of gap-traversing states N found along a

particular edge is determined by the difference in theChern numbers across the two domains summed over all
bands of lower frequency, i.e. N C C ,gap

I
gap
II∣ ∣= - where C Cn ngap

I,II I,II= å is the ‘gapChern number’ [23] in

which the sum is over all the bands below ith gap, and roman numerals indicate the domain. In addition, the
direction of propagation for thesemodes is predicted by the sign in C Cgap

I
gap
II- .

Wefirst consider a domainwall formed between twoTPCswith reversed signs of the gaugefield ,c inwhich

case the BBCpredicts N 2= modes for the interface. To confirm the presence of topological edge states we

performed numerical simulations of a 30×1 supercell with a reversal ofχ occurring in the center. As can be

seen fromfigure 2(a), a set of twomodes occurs inside the complete photonic band gap opened by the Tellegen

response near the formerDirac degeneracy. Thesemodes (highlighted in blue and red) share a clear

Figure 1. (a)Meta-atoms for a proposedmetamaterial realization of off-diagonal Tellegen coupling. (b, c)Photonic band structure of
the triangular lattice of dielectric rods (r a0.1 ,0= 30) = in air (b)without Tellegen response (χ= 0) and (c)with the Tellegen
response (χ= 1). Inset in (b): the lattice Brillouin zone showing the location of the high-symmetry points (note that K andK′ remain
equivalent due to the presence of inversion symmetry).
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unidirectional ‘one-way’ character, but differ in their field profiles. In particular, one can see fromfigure 2(c)

(two left panels) that one of thesemodes is concentrated at the domainwall while the other one is concentrated

at the center of the unit cells adjacent to the domainwall. Another set of one-way edge states emerges at higher

frequencies where the Tellegen bianisotropy also opens a complete band gap (highlighted in green and yellow),

however, for these higher bands the direction of the one-way propagation is reversed as predicted by the BBC

outlined above. Simple inspection of their dispersion reveals that none of the edge states shown infigure 2 can be

removed by deformations of the band structure unless the band gaps inwhich they lie are closed; such states are

therefore said to be topologically protected.

In addition to domainwalls where the Tellegen parameterχ switches signwe have found that one-way edge

modes also appear at terminations of the TPCby a perfect electric conductor (PEC) (figure 2(b),field profiles not

shown). By contrast with the domainwall we find only a single gap-traversing state at such boundaries, behavior

which is consistent with interpreting the PEC as a trivial (C 0)= photonicmaterial.

A property of special interest is the robustness of the edge states with respect to backscattering. To illustrate

such robustness we performed a numerical study on the scattering of one-way edgemodes by disorder [19, 42].

The edge state was excited by an in-planemagnetic dipole source placed at the domainwall, as indicated by

radiating arrow infigure 3. This figure shows that despite the presence of a strongly disordered region along the

domainwall (bounded by red dashed box infigures 3(a)–(c), and detailed infigure 3(d)), the edge state continues

to propagate in the same directionwithout back-reflection, although it is clear from the field profiles that some

inter-modal scattering occurs as a result.

Topological edge states in systemswith higher values of Chern number have recently been proposed for

selectively routing light along different topological interfaces [23]. In our system, a transition between two

distinct topological interfaces can be engineered by terminating the domainwall configuration considered above

with a topologically trivial insulating region, such as a PEC. This configuration is shown infigure 3where the

domainwall supporting two states N 2 ,( )= meets two PEC interfaces with only a single state (N 1)=
propagating in opposite directions. Therefore, edgemodes of the domainwall will split into two edgemodes

along the PECboundarywhich continue toflow in opposite upward and downward directions.

Note that similar steering control should also be realizable in systemswith higher Chern numbers that can be

achieved by startingwith a system that has a large number of degeneracies with non-zero Berry flux, and this

applies equally to all TR-breaking topological insulators. Square lattices [23] seem to be better for this than

hexagonal, and awide variety of other lattice types exhibiting high point symmetry andwithmultiple degrees of

Figure 2. (a)Photonic band structure of a supercell with |X|=1 but changing sign at a domainwall located in the center. Edge states
connecting low frequency and high frequency bulkmodes appear inside the topological band gap. (b)Band structure for a supercell

withX=+1 throughout and PEC terminations (only edgemodes located at the upperwall are shown). (c)Distribution of Ez
2 for

the edge states shown in (a).
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freedomper unit cell (including hexagonal/honeycomb [43], Kagome [44] and Lieb lattices [45, 46]) could also

be considered, alongwith amore common approach to utilize higher frequency bands of the PC [23].

The splitting betweenmodes at a ‘topological junction’ can be controlled by adjusting the relative phase and

amplitude of edgemodes as they enter it. Infigure 3we demonstrate how, by controlling source polarization, a

reflectionless steering can be achieved regardless of the presence the disorder in the intermediate region. This

scheme takes advantage of the fact that there are two edge states at the domainwall which both couple to the edge

states at the PECboundaries. These two contributions can be tuned to be out of phase in order to give rise to

destructive interference along either armof the splitter. Infigure 3we depict particular choices of the source

polarizationwhich lead to complete steering of thewave in the upward and downward directions, as well as to

equal division of energy between the two arms.

4. Conclusions

Our results show that topologically nontrivial PCs can in principle be engineeredwith a variety of constitutive

relations.Herewe have explored a new avenue towards this aimbased on the use ofmagneto-electric coupling as

a source of non-reciprocity. Togetherwith the gyrotropic permittivity and permeability, which have formed the

basis of similar investigations into photonic analogs of the quantumHall effect, the Tellegenmaterial response

exhausts the number possibilities for achieving non-reciprocity at the level of linear constitutive relations in

systemswithout gain or loss. To achieve this endwe have developed appropriate numerical techniques for

computing photonic eigenmodes, whichwere then used to design and characterize topological order in TPC.

Finally, we have shown that by controlling the phase and amplitude of the edge states in the systemswith

multiple topological channels allows robust steering of electromagnetic radiation, a featurewhich could prove

useful for applications. Since a strong Tellegen response can be engineered inmetamaterials comprised of

magnetic ferrites with bianisotropic elements, such as chiral antennas and split-rings, artificialmedia of this kind

could be used to design the proposed system.While it would bemore straightforward to implement this

proposal experimentally in themicrowave domainwhere the nonreciprocalmagneto-optical response is

naturally large, it can also be of interest in the IR and visible spectral domains, where strongly resonant optical

elements can lead to an enhanced time-reversal symmetry violating bianisotropic response.
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