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Abstract—We investigate the transmission properties of the
Fibonacci quasiperiodic layered structures consisting of a pair of double
positive (DPS), epsilon-negative (ENG) or/and mu-negative (MNG)
materials. It is found that there exist the polarization-dependent
transmission gaps which are invariant with a change of scaling and
insensitive to incident angles. Analytical methods based on transfer
matrices and effective medium theory have been used to explain the
properties of transmission gaps of DPS-MNG, DPS-ENG and ENG-
MNG Fibonacci multilayer structures.

1. INTRODUCTION

Recently, the metamaterials that exhibit simultaneously negative
permittivity ε and permeability µ in a frequency band have attracted
intensive studies due to their unique electromagnetic (EM) properties.
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They are also called the double-negative (DNG) materials or left-
handed materials because the electric field, the magnetic field and the
wave vector of an EM wave propagating in such a medium form a
left-handed triplet [1–7]. In addition to the DNG materials, another
metamaterial called the single-negative (SNG) material in which only
one of the material parameters is negative deserve special attention.
The SNG materials consist of the mu-negative (MNG) materials with
µ < 0 but ε > 0, and the epsilon-negative (ENG) materials with ε < 0
but µ > 0 [8].

Most of previous works on the metamaterials focused on the
certain unusual properties of wave propagation in a photonic crystal. It
was shown that a one-dimensional photonic crystal (1DPC) composed
of alternating slabs of ordinary double-positive (DPS) and DNG media
can have a type of photonic bandgap (PBG) corresponding to zero
averaged refractive index (n̄) [9–12]. Moreover, it is well known that
a 1DPC constituted by a periodic repetition of MNG and ENG layers
can possess another type of photonic gap with effective phase (ϕeff )
of zero [13–15]. When the periodicity of photonic crystal structure
is broken, wave propagation is not described by Bloch states. The
opposite extreme of a periodic system is a fully random structure.
In the random systems waves undergo a multiple scattering process
and are subject to unexpected interference effects [16]. Multiple wave
scattering in disordered materials shows many similarities with the
propagation of electrons in semiconductors [17]. One of the first
phenomena studied in this context was coherent backscattering or weak
localization of wave [18]. Knowledge on the propagation of waves in
completely ordered and disordered structures is now rapidly improving,
little is known about the behavior of waves in the huge intermediate
regime between total order and disorder. This intermediate regime is
valid in quasiperiodic structures.

Quasiperiodic structures are nonperiodic structures that are
constructed by a simple deterministic generation rule. In a
quasiperiodic system two or more incommensurate periods are
superimposed, so that it is neither aperiodic nor a random system
and therefore can be considered as intermediate the two [19, 20]. In
other words, due to a long-range order a quasiperiodic system can
form forbidden frequency regions called pseudo band gaps similar to
the bandgaps of a photonic crystal and simultaneously possess localized
states as in disordered media [21]. Among the various quasiperiodic
structuress, the Fibonacci binary quasiperiodic structure has been the
subject of extensive efforts in the last two decades. The Fibonacci
multilayer structure is the well-known 1D quasiperiodic structure, its
electronic properties has been well-studied since the discovery of the
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quasi-crystalline phase in 1984 [22]. Wave through a structure in
the Fibonacci sequence had also been studied in past decade, and
recently the resonant states at the band edge of a photonic structure
in the Fibonacci sequence are studied experimentally [23]. Studies of
various aspects of wave propagation in the Fibonacci quasiperiodic
structures carried out in Refs. [24–31] have considerably improved
our understanding of wave transport in the Fibonacci quasiperiodic
structures.

In this paper, we investigate the photonic transmission spectra
in the Fibonacci quasiperiodic layered structures consisting of single
negative metamaterials. We study three kinds of the Fibonacci
quasiperiodic layered structures of DPS-MNG, DPS-ENG and ENG-
MNG, with dispersive and lossless multilayer stacks. In these
structures, with the help of transfer matrix method and effective
medium theory, we show the transmission spectra of TE and TM
waves for both normal and oblique incidences and for different layer
scalings. It is shown that for both TE and TM polarizations with
normal and oblique incidences, there exist the transmission gaps which
are invariant with a change of scale and insensitive to the incident
angles.

The rest of this paper is arranged as follows. In Section 2, we
briefly introduce some theoretical details and transfer-matrix method
for the calculation of the transmission spectra. The result and
discussion are presented in Section 3. Finally, the paper ends with
a conclusion.

2. MODEL AND NUMERICAL METHODS

Quasiperiodic photonic structures are defined by simple mathematical
rules which generate non-periodic structures. The Fibonacci sequence
is the chief example of long-range order without periodicity, and can be
constructed from juxtaposing two building blocks A and B, according
to the following deterministic generation rule: SN+1 = {SN−1SN}
for N ≥ 1, with S0 = {B} and S1 = {A}, and the generation rule
is repeatedly applied to obtain: S2 = {BA}, S3 = {ABA}, S4 =
{BAABA}, etc. The number of layers is given by FN , where FN is the
Fibonacci number obtained from recursive relation FN = FN−1+FN−2,
with F0 = F1 = 1. Geometrical arrangement of 1D the Fibonacci
multilayer structure, which is embedded in air, is shown in Fig. 1. In
this multilayer structure, the thicknesses of A and B are supposed to
be dA and dB, respectively.

We intend to investigate the transmission properties of 1D
Fibonacci multilayer structures constituted by the multilayers of DPS,
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MNG and ENG materials. Generally, the metamaterials are dispersive,
i.e., ε and µ are frequency dependent. These materials have different
expressions of ε and µ accordingly. For MNG material, we suppose
that ε and µ can be expressed as [9].

ε = 1, and µ(ω) = 1 +
32

0.9022 − ω2
, (1)

where ω is frequency in GHz. Similarly, we can take ε and µ for ENG
material as,

ε = 1 +
52

0.92 − ω2
+

102

11.52 − ω2
, and µ = 1, (2)
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Figure 1. Schematic drawing of the one-dimensional quasiperiodic
Fibonacci structure, which is embedded in air. The thicknesses of A
and B are supposed to be dA and dB, respectively.
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Figure 2. The permittivity ε (solid line) and the permeability µ
(dashed line) of (a) MNG and (b) ENG materials as function of
frequency.
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For DPS material, both ε and µ are positive constants. Fig. 2 shows
the optical constants (permittivities and permeabilities) of MNG and
ENG materials. As one can see from Fig. 2, in the frequencies range
0.9–3.2GHz, µ is negative and in the frequencies range 0.9–3.9GHz,
ε is negative. Also, for the frequencies greater than 3.9 GHz, both ε
and µ are positive. In this work, since MNG and ENG metamaterials
are considered in microwave frequency region, these layers are often
electrically thin, i.e.,

|kA|dA =

∣∣∣∣∣dA

√
ω2

c2

(
εAµA − sin2 θ

)
∣∣∣∣∣ ¿ 1

|kB|dB =

∣∣∣∣∣dB

√
ω2

c2

(
εBµB − sin2 θ

)
∣∣∣∣∣ ¿ 1,

(3)

where c is the velocity of light in the vacuum. Also, εA and µA, likewise
εB and µB are permittivity and permeability of two building blocks A
and B, respectively. As a consequence, in the long-wavelength limit,
we adopt effective medium approximation by introducing effective
permittivity εeff and permeability µeff to study wave propagation in
this Fibonacci multilayer structure. εeff and µeff of this nonperiodic
structure are given by [32]

µeff =
NAdA

d
µA +

NBdB

d
µB,

εeff =
NAdA

d
εA +

NBdB

d
εB − sin2 θ

(
NAdA

d

1
µA

+
NBdB

d

1
µB

)

+ sin2 θ

(
1

NAdA
d µA + NBdB

d µB

)
,

(4)

for TE polarization and

εeff =
NAdA

d
εA +

NBdB

d
εB,

µeff =
NAdA

d
µA +

NBdB

d
µB − sin2 θ

(
NAdA

d

1
εA

+
NBdB

d

1
εB

)

+ sin2 θ

(
1

NAdA
d εA + NBdB

d εB

)
,

(5)

for TM polarization. In Eqs. (4) and (5), d = NAdA + NBdB where
NA and NB are the number of A-type and B-type slabs, respectively.
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Eqs. (4) and (5) indicate that multilayer structure is anisotropic in
essence because εeff and µeff depend on the incident angle θ.

In this paper, we take a certain level of the Fibonacci multilayer
structure as a 1D multilayer structure to calculate the transmission
spectra of this deterministic disorder structure. The transmission
spectra of a layered system can be calculate by using transfer-matrix
method. For this purpose, we assume that a wave be incident from
air with angle θ onto the Fibonacci multilayer structure, shown in
Fig. 1. For the transverse electric (TE) wave, the electric field E is
assumed in the x direction (the dielectric layers are in the xy plane),
and the z direction is normal to the interface of each layer. When such
an electromagnetic wave propagates through this multilayer structure,
the incident, reflected and transmitted electric fields are connected via
a transfer matrix M as

M =
(

m11 m12

m21 m22

)
, (6)

where mij (i, j = 1, 2) is the element of the transfer matrix. For more
details about this transfer matrix see Ref. [13]. For the Fibonacci
structure with certain generation number (N), M can be calculated
by a sequential product of the transfer matrices for every successive
interface:

MN = TairA TA TAB TB TBA TA TA TAB TB . . . TB TBair, (7)
where TairA and TBair represent the propagation of light through the
interface air → A and B → air, respectively. TA and TB represent
the propagation of light within layers A and B, respectively. Also,
TAB and TBA represent the propagation of light through the interface
A → B and B → A, respectively. Eq. (8) cab be arranged for any
order of the Fibonacci sequence SN (N À 3) as

MN = TairA TN TBair, for Neven, (8)
MN = TairA TN TAair, for Nodd, (9)

with,
TN = TN−1 TN−2, for Neven, (10)
TN = TN−1 TBA TN−2, for Nodd, (11)

whose initial conditions are
T1 = TA, and T2 = TA TAB TB. (12)

The transmittance coefficients are given by

t =
∣∣∣∣

1
m11

∣∣∣∣
2

(13)

The treatment of TM waves is similar to that for a TE waves.
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3. RESULTS AND DISCUSSION

Here, we investigate three different combinations, DPS-MNG, DPS-
ENG and MNG-ENG of dispersive and lossless materials as the
Fibonacci multilayer structures. We find some band gaps whose
properties are studied in this section in detail.

Firstly, we consider DPS-MNG Fibonacci multilayer structure,
i.e., all A-type and B-type layers are DPS and MNG materials,
respectively. In the following calculation, we choose εA = µA = 1,
dA = 8 mm, dB = 4 mm and the Fibonacci generation number N = 14.
The frequency dependence of the effective permittivity εeff (solid
line) and the effective permeability µeff (dashed line) of considered
DPS-MNG structure are plotted in the Fig. 3 for both TE waves
corresponding to the incident angles 0◦, 20◦ (Figs. 3(a) and (b)) and
TM waves with the incident angles 0◦, 45◦ (Fig. 3(c)). The influence
of the incident angle on the effective parameters εeff and µeff in the
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Figure 3. The effective permittivity εeff (solid line) and the effective
permeability µeff (dashed line) of DPS-MNG Fibonacci structure for
TE and TM waves, corresponding to the incident angles of 0◦, 20◦ and
45◦ as indicated in plots.
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Figure 4. Transmission spectra of DPS-MNG Fibonacci structure for
14th Fibonacci level as a function of frequency for TE and TM waves
with different incident angles; (a) θ = 0◦, 10◦ and 20◦, (b) θ = 0◦, 45◦
and 60◦ and with different thickness scales of 6 : 3, 8 : 4 and 12 : 6 mm
at (c) θ = 20◦, (d) θ = 45◦.

effective medium theory is introduced by expression sin2 θ in Eqs. (4)
and (5) for TE and TM modes, respectively. In our calculations for
DPS-MNG Fibonacci structure when εA = εB = 1 the terms including
sin2 θ in Eq. (5) will cancel for TM modes, so εeff and µeff of DPS-MNG
structure are independent of the incident angle for TM polarization (see
Fig. 3(c)), whilst they are sensitive to the incident angle only for TE
polarization (see Figs. 3 (a) and (b)).

The transmission spectra of TE and TM polarizations in DPS-
MNG are represented for different incident angles of θ = 0◦, 20◦ and
45◦ and for different thickness scales as dA : dB = 6 : 3, 8 : 4 and
12 : 6 mm in Fig. 4. It is clear from Fig. 4(a) that there are two band
gaps in the transmission spectra of TE waves. The first gap exists
in the frequencies where the effective permeability µeff of structure is
negative, whilst, the second gap is occurred in the frequencies where the
effective permeability µeff of the structure is positive (see Fig. 3(a)).
One can see from Fig. 4(a) that for TE polarization, the spectral width
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of the first gap in this structure is invariant with a change in the
incident angles, whilst, the spectral width of the second gap increases
with the incident angle keeping left edge constant. The influence of
the incident angle on the transmission property is introduced by wave

vector k = ω
c

√
εeff µeff − sin2 θ. Here, the dependence of transmission

spectra on the incident angle is introduced by sin2 θ and εeff (θ) or/and
µeff (θ) for DPS-MNG Fibonacci structure. In the case of TM modes,
since εeff and µeff are independent of the incident angle (see Fig. 3(c)),
so the dependence of the transmission gap on the incident angle is
reasonable as indicated in Fig. 4(b). In contrast with the TM modes,
for TE modes the dependence of wave vector on the incident angle
is introduced via εeff (θ) and sin2 θ, so that the final result for k is
independent (dependent) of incident angle in first (second) gap, hence
transmission gap for TE mode will be independent (dependent) of
incident angle in the first (second) gap as shown in Fig. 4(a).

Also, the second gap is found only for the oblique incidence and it
disappears for the normal incidence. From Fig. 4(c), we can see that if
the thicknesses of two building block dA = 8mm and dB = 4 mm are
scaled by 3/4 and 3/2, the position and width of the transmission gap
are nearly invariant. It is seen from Figs. 4(b) and 4(d) that, for TM
waves, only the first gap exists while the second gap corresponding to
TE waves does not appear. The width of this first gap for TM waves
increases with the angle of incidence but remains invariant with the
scaling of dA and dA.

The second Fibonacci quasiperiodic layered structure (with
generation number N = 14) consists of two stacking layers of DPS
(with εA = µA = 1) and ENG materials having thicknesses dA = 8mm,
dB = 4mm, respectively. the frequency dependence of the effective
permittivity εeff (solid line) and the effective permeability µeff (dashed
line) of considered DPS-ENG Fibonacci structure are demonstrated in
the Fig. 5 for both TE waves with incident angles of 0◦, 45◦ (Fig. 5(a))
and TM waves with incident angles of 0◦, 20◦ (Figs. 5(b) and (c)).
In DPS-ENG Fibonacci structure with µA = µB = 1 the terms
including sin2 θ in Eq. (4) will cancel for TE modes, so εeff and µeff

are independent of the incident angle for TE polarization (Fig. 5(a)),
whilst they are sensitive to the incident angle for TM polarization
(Figs. 5(b) and (c)).

The Fig. 6 represents the transmission characteristics of DPS-ENG
Fibonacci multilayer structure. In the case of TE polarization, as seen
from Fig. 6(a), only one gap is found for considered structure in the
frequency range corresponding to ENG material, so that, the upper
edge of this gap is highly sensitive to the incident angle and increases
when angle of incidence increases. Also, the middle of the spectral
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width of this gap remains at the frequency rang that the corresponding
effective permeability µeff of structure is negative (see Fig. 5) and the
gap remains invariant when dA and dB are scaled by different values
(see Fig. 6(c)). Additionally, one can see from Figs. 6(b) and 6(d)
that, two band gaps are found for TM modes in the transmission
spectra. The first (or second) gap appears in the frequency range
where the effective permeability µeff is negative (positive) (see Fig. 5).
The spectral width and position of the first gap do not change and
remain invariant with a change of the incident angle and layer scale (see
Figs. 6(b) and (d)). However, the second gap is sensitive to the incident
angle and disappears for the normal incidence and it is invariant with
a change of layer scale. The dependence of transmission spectra on
the incident angle in DPS-ENG and ENG-MNG can be explained
by similar discussion presented for DPS-MNG structure based on the
effective medium theory.
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Figure 5. The effective permittivity εeff (solid line) and the effective
permeability µeff (dashed line) of DPS-ENG Fibonacci structure for
TE and TM waves, corresponding to the incident angles 0◦, 20◦ and
45◦ as indicated in plots.
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Figure 6. Transmission spectra of DPS-ENG Fibonacci structure for
14th Fibonacci level as a function of incident frequency corresponding
to the incident angles 0◦, 45◦ and 60◦ for TE waves and 0◦, 10◦ and
20◦ for TM waves and for different thicknesses as dA : dB = 6 : 3, 8 : 4
and 12 : 6 mm.

The third Fibonacci structure under investigation is composed of
ENG (with dA = 8 mm) and MNG (with dB = 4 mm) materials. The
effective permittivity εeff and the effective permeability µeff of this
structure and the transmission spectra for the 14th Fibonacci level
are shown in Figs. 7 and 8, respectively for TE and TM waves with
different incident angles. It is seen from Fig. 7 that unlike DPS-MNG
structure, in this case the µeff are sensitive to the incident angle for
TM polarization. Also, in contrast with DPS-ENG structure, in this
case the εeff are sensitive to the incident angle for TE polarization.
It should be noted that the effective response of ENG-MNG structure
in the normal incidence is identical for TE and TM waves. In the
Fig. 8, the transmission spectra of TE and TM polarizations are plotted
for the incidence angles θ = 0◦, 30◦ and 45◦ and for three ratios of
thicknesses dA : dB = 6 : 3, 8 : 4 and 12 : 6 mm (at θ = 30◦).
Regarding to the common frequency range corresponding to ENG and
MNG materials of the structure, e.g., 0.9–3.2GHz, we observe only
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one gap in transmission spectra which is invariant with the angle of
incidence and layer scaling for both TE and TM polarization. Indeed,
the second gaps appeared in the transmission spectra which are highly
sensitive to angles of incidence and insensitive to scaling are located
out of the considered frequency range of ENG-MNG structure.

It is necessary to mention that in DPS-MNG, DPS-ENG and
ENG-MNG structures, we studied the transmission spectra in 1D
Fibonacci multilayer structures against generation number N . We
found that there is a minimum generation number N = 9 in which
the Fibonacci structure yield the photonic bandgap with sharp gap
edges. But by decreasing generation number to the low values the
photonic bandgap property of structure will disappear while, in the
high number of N we have desirable gaps regardless to N is odd or
even number.
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Figure 8. Transmission spectra of ENG-MNG Fibonacci structure
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TM waves corresponding to the incident angles 0◦, 30◦ and 45◦, and
three thicknesses dA : dB = 6 : 3, 8 : 4 and 12 : 6 mm.

4. CONCLUSION

In conclusion, based on the transfer-matrix method and effective
medium theory, we have theoretically investigated the transmission
spectra of three quasiperiodic Fibonacci layered structures consisting
of dispersive and lossless MNG and ENG materials. In DPS-MNG,
DPS-ENG, and ENG-MNG Fibonacci layered structures for both TE
and TM waves, it is shown that there exist the transmission gaps which
are invariant with a change of layer scale and insensitive to the incident
angle. Moreover, for both TE and TM waves we have shown that, there
is a gap which is only found at the oblique incidence, i.e., it disappears
at the normal incidence.
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