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Photonic Weyl point in a two-dimensional
resonator lattice with a synthetic frequency
dimension
Qian Lin1, Meng Xiao2, Luqi Yuan2 & Shanhui Fan2

Weyl points, as a signature of 3D topological states, have been extensively studied in

condensed matter systems. Recently, the physics of Weyl points has also been explored in

electromagnetic structures such as photonic crystals and metamaterials. These structures

typically have complex three-dimensional geometries, which limits the potential for exploring

Weyl point physics in on-chip integrated systems. Here we show that Weyl point

physics emerges in a system of two-dimensional arrays of resonators undergoing dynamic

modulation of refractive index. In addition, the phase of modulation can be controlled to

explore Weyl points under different symmetries. Furthermore, unlike static structures, in this

system the non-trivial topology of the Weyl point manifests in terms of surface state arcs

in the synthetic space that exhibit one-way frequency conversion. Our system therefore

provides a versatile platform to explore and exploit Weyl point physics on chip.
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A
Weyl point is a point degeneracy between two bands in a

three-dimensional (3D) band structure, with linear
dispersion in all three dimensions in its vicinity1–5. The

simplest Hamiltonian in the wavevector space (k-space) that
supports a Weyl point is H ¼ vxkxsx þ vykysy þ vzkzsz . As sx,y,z

together with the identity matrix form a complete basis for 2� 2
Hermitian matrices, any perturbation on H that preserves the
translational symmetry can be written as a linear superposition of
these four matrices. Thus, any small perturbation in k-space can
only shift the Weyl point without destroying the degeneracy and
opening a gap5,6. Weyl points are 3D topological states: they are
monopoles of Berry curvature in the wavevector space7. Any
closed two-dimensional (2D) surface surrounding the Weyl point
has a unit Chern number. This implies the existence of
topological surface states, in the form of a Fermi arc connecting
two Weyl points of opposite charges for a finite system with its
bulk described by H8–10.

A Weyl point is a 3D object. Therefore, previous works on
Weyl points in photonics11–15, plasmonics16,17 and acoustics18,19

have complex 3D geometries, which limits the potential for
exploring Weyl point physics in on-chip integrated systems. To
explore a Weyl point in a planar 2D geometry, one may use a
synthetic dimension20,21 to simulate the third spatial dimension.
The notion of synthetic dimension was previously proposed for
superconducting qubits22, cold atoms23 and optics24 based on the
idea of increasing local mode connectivity. One can also form the
synthetic dimension using the modes of a ring resonator at
different frequencies25–27. The size of the synthetic dimension,
which corresponds to the number of modes in each individual
ring, can be rather large without increasing the system complexity.

Here we create a synthetic 3D space by dynamically
modulating a 2D array of on-chip ring resonators. Each resonator
supports a set of discrete modes equally spaced in resonant
frequency. These discrete modes thus form a periodic lattice in
the third, synthetic frequency dimension. The two spatial
dimensions and one synthetic frequency dimension together
form a 3D space. Dynamic modulation of the refractive
index leads to effective coupling of modes in the synthetic
dimension25–29. We show that proper design of the modulation
leads to Weyl points in the synthetic space. Our proposed
approach is specifically designed for implementation using an
existing on-chip integrated photonic platform. Compared with
the complex 3D electromagnetic or acoustic structure previously
used to demonstrate Weyl point physics11–19, our approach
provides a far more flexible platform to explore a wide range of
phase space. For example, by changing the dynamic modulation
phases, the same device can be tuned to exhibit line nodes and
Weyl points under inversion or/and time-reversal symmetry
breaking. This system also provides a novel manifestation of Weyl
point physics in terms of a surface state in the synthetic space that
exhibits one-way frequency conversion. More generally, in the
context of topological photonics25–39, this work points to the
significant richness in using dynamic refractive index modulation
to achieve novel topological effects.

Results
Model Hamiltonian system and Weyl points. Our exemplary
system consists of a 2D honeycomb array of identical ring
resonators as shown in Fig. 1a. In the vicinity of a resonant
frequency o0, each ring resonator supports a discrete set of
resonant modes at frequencies described by [b(om)�b(o0)]�
L¼ 2mp (m¼ 0, ±1, ±2...), where L is the circumference of the
ring and b is the effective wavevector. In the absence of group
velocity dispersion, these modes are equally spaced in frequency
by the free spectral range O¼ 2pvg

L (vg is the group velocity),
forming a frequency comb, that is, the m-th order sideband

has a frequency om¼o0þmO. We assume static coupling only
between modes with the same frequency at the nearest neighbour
resonators with an evanescent coupling strength txy. In addition,
each resonator is modulated at the frequency O, which induces
dynamic coupling between modes in the same resonator with
frequency separated by O, with a coupling strength tf. With
appropriate design of the modulation, as detailed in the
Supplementary Note 1 and Supplementary Figs 1 and 2, the tight
binding Hamiltonian of the system is then

H ¼
X
i;m

omayi;mai;mþ
X
ijh i;m

txy ayi;maj;mþ ayj;mai;m

� �

þ
X
i;m

2tf cos Otþfið Þ ayi;mai;mþ 1þ ayi;mþ 1ai;m

� � ð1Þ

where i(j) labels different resonators in the array and fi is
related to the modulation phase on the ith resonator. a and aw

denote the standard ladder operators. The second term inH sums
the overall pairs of nearest-neighbour resonators.

Define ci;m � ai;me� iomt , which represents a transformation to
a rotating frame with angular frequency om. Under rotating wave
approximation, equation (1) becomes

H ¼
X
ijh i;m

txy cyi;mcj;mþ cyj;mci;m

� �

þ
X
i;m

tf e� ifi cyi;mþ 1ci;mþ eifi cyi;mci;mþ 1

� � ð2Þ

We note that the eigenfrequency of the time-independent
Hamiltonian in equation (2) corresponds to the quasi-energy of
the time-dependent Hamiltonian in equation (1)28,40. For the rest
of the study, when there is no confusion, we refer to the
eigenfrequencies of equation (2) as the ‘frequency’ of the system.

Without dynamic modulation (that is, tf¼ 0), the Hamiltonian
in equation (2) is block diagonal with respect to index m. For
each m, the Hamiltonian can be transformed to the wavevector
space as

H2D kx; ky
� �

¼ txy cos kyaþ 2cos
kya
2

cos

ffiffiffi
3
p

2
kxa

� �
sx

þ txy sin kya� 2 sin
kya
2

cos

ffiffiffi
3
p

2
kxa

� �
sy

ð3Þ

where (kx, ky) is the Bloch wavevector in the two spacial
dimension space, a is the centre-to-centre separation between
nearby resonators and sx,y,z are the three Pauli matrices whose
bases are the resonant modes on the two inequivalent A and B
sites in the primitive unit cell of the honeycomb lattice.
These sites form the A and B sublattices. Equation (3) exhibits
Dirac cones at the K and K0 points, corresponding to
K� ¼ ð� 4

3
ffiffi
3
p p

a ; 0Þ in the reciprocal space, respectively. The
effective Hamiltonian at k¼K±þ q for small q is

H2D
eff ;K� qð Þ ¼ 3

2
txya � qxsx þ qysy
� �

Next, we consider applying a dynamic refractive index
modulation to the rings with the frequency O. Such a modulation
enables transitions between modes with different m. This is
captured by the second term in equation (2), which has the form
of an effective coupling in the synthetic frequency dimension
labelled by m. The resulting Hamiltonian therefore represents a
tight binding model in 3D, with two spatial dimensions and one
synthetic frequency dimension. Although in principle the phase
fi can be chosen arbitrarily for each site i, to maintain the spatial
periodicity of the honeycomb lattice, we only consider the case
that fi¼fA for sublattice A and fi¼fB for sublattice B.
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If fA¼fB, the coupling constant along the synthetic frequency
dimension is spatially homogeneous and we can always choose
the gauge with fi¼ 0 for all i. The resulting Hamiltonian for the
Bloch wavevector (kx, ky, kf) is

H kx; ky; kf
� �

¼ 2tf cos kf O
� �

IþH2D kx; ky
� �

where I is the 2� 2 identity matrix and kf is the wavevector in the
synthetic dimension. This Hamiltonian exhibits two line nodes at
(kx, ky)¼K±, which are line degeneracies with linear dispersion

along kx and ky. These line nodes are protected by parity time
symmetry5.

Parity time symmetry in the system can be broken by making
the modulation phases different for the two sub-lattices, as
denoted in Fig. 1b. In the following, we will study two different
modulation phase configurations that break either inversion or
time-reversal symmetry, thus reducing the line node degeneracy
to pairs of Weyl points. Other modulation phase configurations
can be chosen to break both inversion and time-reversal symmetry.

tf
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Figure 1 | A synthetic 3D lattice realized using 2D array of ring resonators. (a) A 2D honeycomb array of ring resonators. Each resonator supports

resonant modes evenly-spaced in frequency by O. A refractive index modulation with frequency O is applied to each ring resonator. (b) A synthetic 3D

lattice describing the system in a. Filled and hollow circles represent the inequivalent sub-lattice of a honeycomb lattice. Different colours represent

resonances of different frequencies. The dashed and solid black vertical links represent coupling along the synthetic frequency dimension generated by

refractive index modulation.
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Figure 2 | Weyl points in an inversion symmetry breaking structure. (a) Modulation phase fA¼0, fB¼ p leads to inversion symmetry breaking.

(b) The Weyl points in the reciprocal space and their charges. The Weyl points are located at ky¼0, kx¼ � 4
3
ffiffi
3
p p

a and kf¼± p
2O. (c) The band structure in

kx� kf plane at ky¼0. The Weyl points at kx¼ 8
3
ffiffi
3
p p

a are equivalent to those at kx¼� 4
3
ffiffi
3
p p

a in b. (d) The band structure in ky� kf plane at kx¼ 4
3
ffiffi
3
p p

a. The

charge of each Weyl point is shown underneath.
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Inversion symmetry breaking. For the system shown in Fig. 2a
with a choice of fA¼ 0 and fB¼ p, we break inversion symmetry
while preserving time-reversal symmetry. Similar p-flux models
where the sign of hopping alternates on the two sublattices
have previously been considered in 3D systems18,41. Here we
provide a different physical implementation. The Hamiltonian in
equation (2), for Bloch wavevector (kx, ky, kf), becomes:

H kx; ky; kf
� �

¼ 2tf cos kf O
� �

sz þH2D kx; ky
� �

The effective Hamiltonians near K± and kf¼ � p
2O are:

Heff ; � p
2O; K� qð Þ ¼ � 2tf O

� �
qf sz þ

3
2

txya � qxsxþ qysy
� �

which have the form vxqxsxþ vyqysyþ vzqfsz. The band structure
along kx� kf and ky� kf are shown in Fig. 2c,d, confirming the
linear dispersion along all three wavevector axes.

The charge of a Weyl point, which is defined as the
Berry flux of the lower band in its proximity, is sgn(vxvyvz)18

and is shown in Fig. 2b. The Weyl points at (Kþ , þ p
2O)

and (K� , � p
2O) have the same charge, as required by time-

reversal symmetry5.

Time-reversal symmetry breaking. For the system shown in
Fig. 3a with a choice fA¼ þf and fB¼ �f, where fA(0, p/2)
is positive, we break time-reversal symmetry while preserving
inversion symmetry. In this case, the coupling along the synthetic
frequency axis is directional, as frequency up conversion and
down conversion will pick up opposite phases from the refractive
index modulation28.

The Hamiltonian in equation (2), for Bloch wavevector
(kx, ky, kf), becomes:

H kx; ky; kf
� �

¼2tf cosf cos kf O
� �

I

þ 2tf sinf sin kf O
� �

sz þH2D kx; ky
� �

Now the Weyl points are at:

o ¼ 2tf cosf; k ¼ K� ; 0ð Þ

o ¼ � 2tf cosf; k ¼ K� ;
p
O

� �

The effective Hamiltonians near K± and kf¼ 0 or p
O are:

Heff ; 0=pO; K� qð Þ ¼ � 2tf O sinf
� �

qf sz þ
3
2

txya � qxsx þ qysy
� �

which have linear dispersion along all three wavevector axes, as
confirmed by the band structure along kx� kf and ky� kf plotted
in Fig. 3c,d.

In terms of the charge of Weyl points, inversion symmetry
requires that Weyl points at (Kþ , 0) and (K� , 0) have opposite
charges and so as Weyl points at (Kþ , p

O) and (K� , p
O)5. This is

confirmed by our Weyl point charge calculation shown in Fig. 3b.

Surface states in analogy with Fermi arcs. In the previous
section, we study Weyl point behavior in a periodic lattice
without truncation. In this section, we demonstrate the surface
states in this system when truncated in space. These surface states
are one of the key experimental signatures of Weyl point.
They are the photonic analogues of the Fermi arc states in
electronic systems42.

0

2
3
2
1
0
–1
–2

–3

3
2
1
0
–1
–2

–3
–2

�
/t

kya/� kf�/�
0.50

1–0.5
0

0.5

+

–

�/t

– +

–+

0

2

–2

�
/t

10
2

kxa/�
0.50

1

kf�/�

�/t

a b

–
–

–+
+

+

–
–

–+
+

+

+–
+

– +
–

�/�

0

kf

–�/�

kx

ky

c d

te–i�

te–i�
tei�

tei� x

y

Frequency

�0+�

�0–�

�0

Figure 3 | Weyl points in a time-reversal symmetry breaking structure. (a) Modulation phase fA¼ þ p/3 and fB¼ � p/3 leads to time-reversal

symmetry breaking. (b) The Weyl points in the reciprocal space, and their charges. The Weyl points are located at ky¼0, kx¼ � 4
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The results presented up to now have been obtained using the
tight binding model of equation (1), which is a simple model
that captures the essence of Weyl point physics in our system.
In contrast, in this section, as our objective is to illustrate an
experimental signature, we used a more realistic model of a
ring resonator under external modulation. In this model26,34, we
consider the dynamics of the circulating amplitudes for each
waveguide forming the ring. Both the static coupling between the
rings and the modulation are treated using these amplitudes.
Below, we refer to this model as the waveguide amplitude model.
Details of the calculation can be found in Supplementary Note 2
and Supplementary Fig. 3. Compared with the tight binding
model, where there is only nearest-neighbour coupling along
the frequency axis, in this waveguide amplitude model there is a
long-range coupling beyond the nearest neighbour. Nevertheless,
the key characteristics from the tight binding model, in particular
the existence and the properties of the Weyl points, are preserved
in this waveguide amplitude model, as shown in Supplementary
Notes 3 and 4, and Supplementary Figs 4 and 5.

Using the waveguide amplitude model, we calculate the surface
states for the structure shown in Fig. 4a. Here we choose the
modulation phase fA¼ 0, fB¼p to break inversion symmetry
while preserving time-reversal symmetry. The case where
time-reversal symmetry is broken is presented in Supplementary
Note 5 and Supplementary Fig. 6. The overall characteristic
of the surface state in the two systems are quite similar, as the
surface states arise from the Weyl points. The inter-ring
coupling g and the modulation strength are chosen such that

the nearest-neighbour coupling is isotropic in the spacial and
frequency axes, that is, txy¼ tf in the effective tight binding model.

Figure 4b shows the band structure for a stripe infinite
along both x and the synthetic frequency dimension; thus, the
eigenstates are Bloch states with well-defined wavevector kx and
kf. Two types of states can be easily identified. The bulk states for
different ky are projected inside the four Weyl cones shown in
Fig. 2c. In addition, surface states on the top and bottom surface
of the stripe (shown in Fig. 4b as transparent blue and orange
sheets respectively) are well separated from the bulk states. On a
constant frequency cut through the Weyl points, these surface
states show up as arcs connecting a pair of Weyl points,
in analogy to Fermi arc in electronic systems42.

Figure 4c,d show constant frequency cuts at two frequencies.
On the constant frequency cut, the bulk states form a disk around
each of the four Weyl points. The surface states form two pairs of
arcs, plotted in blue and orange lines for the top and bottom
surface respectively. Unlike the tight binding model in which the
pair of Weyl points usually have the same frequency and the
surface state arcs connecting them run parallel42, our calculation
using the waveguide amplitude model shows that the pair of Weyl
points in our system are different in frequency. Figure 4c is a cut
at a frequency above the Weyl points. Its two surface state arcs,
although not parallel, do not cross. Figure 4d is a cut at a
frequency between the frequencies of the Weyl points. Its two
surface state arcs cross, which is not seen in tight binding models.

The surface states on the top and bottom surfaces with the
same Bloch wavevector have opposite group velocities along the
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(c) A constant frequency band structure at o¼0.5g. Bulk states shown in yellow are from the bands above the Weyl points. þ /� indicates the charge of

Weyl points. Blue and orange lines show the top and bottom surface states. (d) A constant frequency band structure at o¼0.07g. Bulk states shown in

yellow are from the band above the Weyl point near kx¼ 2p
3
ffiffi
3
p

a
and the band below the Weyl point near kx ¼ 4p

3
ffiffi
3
p

a
. (e,f) Static state modal intensity driven by

continuous wave input. N¼ 5 rows in y and 60 resonant modes are used. A round trip transmission of 90% for each mode is used to account for losses.

Input to the top row of rings consists of two frequencies as marked by pink arrows, with phase delay of p
2 between the square-ended and circular-ended

arrows. The states excited in e,f are primarily the ones represented by the dark and light green dot in d, respectively, that is, kx¼ pffiffi
3
p

a
and kf¼± p

2O. Only 20

resonances closest to the excitation are shown. The mode intensity of the A and B sublattices in each row are plotted separately along y.
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frequency dimension. This is evident from the opposite slopes of
the orange and blue sheets in Fig. 4b. This implies that a surface
state in our system supports one-way frequency conversion.
However, in our system there are two pairs of Weyl points and
consequently two counter-propagating surface states on the same
surface. This is best illustrated in Fig. 4b, where the surface states
around the kf¼ p

2O pair of Weyl points propagate anticlockwise
(down-conversion on the top surface and up-conversion on the
bottom surface), whereas those around the kf ¼ � p

2O pair of
Weyl points propagate clockwise. To observe the one-way
frequency conversion of the surface state, the input excitation
must be chosen such that it has a kx that supports a surface
state. Furthermore, the input must have maximal coupling to
kf¼ p

2O and minimal coupling to kf ¼ � p
2O, or vice versa. This can

be achieved by excitation with two frequencies matched to two
adjacent resonant modes, with the proper relative phase delay
between these two frequency components.

Figure 4e,f present simulation of the one-way frequency
conversion of the surface state. Dynamic modulation is
introduced through an electro-optic modulation on the ring
resonator and a small loss is assumed for each resonator. The
input waveguides have a linear delay along x to couple to the
kx ¼ pffiffi

3
p

a
Bloch state on the top surface of the stripe. The input

excitation consists of two nearest resonant frequencies o0 and
o0þO with a phase difference of � p

2, which leads to selective
coupling to either of kf¼± p

2O. Consequently, Fig. 4e,f correspond
to the surface states marked by dark and light green dots in
Fig. 4d, respectively. Figure 4e,f demonstrate purely up or down
one-way frequency conversion, which provides a measurable
experimental signature of the Weyl points and corresponding
topological surface states in our proposed system.

The zig-zag edge of a honeycomb lattice also supports a pair of
edge states. However, these states are non-chiral and can be easily
distinguished from the topologically non-trivial surface states
arising from the Weyl points, by examining their propagation
direction on opposite edges of a stripe. The zig-zag edge states
propagate along the same direction on the opposite edges,
whereas the surface states in Weyl point system propagate along
different directions. This is verified by the simulation shown in
Supplementary Fig. 7.

Discussion
The main contribution of this manuscript is the realization that
three-dimensional topological effects can be demonstrated in a
planar structure. It greatly reduces the structural complexity of a
3D photonic lattice to a 2D one. This simplification makes it
experimentally viable to demonstrate Weyl point physics using an
integrated photonics platform in the infrared and visible
wavelength regime, which is a significant step towards using the
photonic topological phenomenon in on-chip photonic systems.
Furthermore, we demonstrate that frequency space can provide
new physics beyond the underlying static system. Our proposed
system also allows access to multiple types of topological states in
the same device. By changing the dynamic modulation phase,
the system can change from exhibiting line nodes to Weyl
points under inversion or/and time-reversal symmetry breaking.
The general idea of Weyl point in 2D system with a synthetic
dimension can also be implemented in other geometrical
configurations besides honeycomb lattices41 and potentially
using other types of resonant systems21.

Our proposed system can be implemented using silicon ring
resonator under carrier-depletion modulation43. As detailed in
Supplementary Note 6 and Supplementary Fig. 8, a 4� 3 array of
silicon rings with free spectral range of each ring at 26 GHz
as experimentally demonstrated in ref. 44 (which coincide

with the modulation frequency), with an effective coupling
constant txy¼ tf¼ 8 GHz and an internal loss rate of 2.7 GHz
(Q¼ 2� 105), suffice to demonstrate the one-way frequency
conversion in the Fermi-arc surface state described in the
previous section. The entire array can fit into a 3� 4 mm2 chip,
which can be further reduced to 1� 1 mm2 by increasing the
modulation frequency to 50 GHz and folding of the ring45,
as shown in Supplementary Fig. 9. The required refractive
index modulation strength of 0.5 mm� 1 and optical loss of
1.1 dB mm� 1 (see Supplementary Table 1), albeit challenging,
has been demonstrated in silicon waveguide modulators46,47.
Other types of resonators and modulation schemes such as LiNO3

microdisks48 and polymer modulators49 may also be used.
Compared with the silicon ring resonators, these schemes may
provide higher quality factors, stronger and intrinsically lossless
modulation, and/or higher modulation bandwidth.

Data availability. The data that support the findings of this study
are available from the corresponding author on request.
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