Photophysics of Cytosine Tautomers: New Insights into the Nonradiative Decay Mechanisms from MS-CASPT2 Potential Energy Calculations and Excited-State Molecular Dynamics Simulations

Akira Nakayama^{*}, Yu Harabuchi, Shohei Yamazaki[†], and Tetsuya Taketsugu

Department of Chemistry, Faculty of Science, Hokkaido University Sapporo 060-0810, Japan

Electronic Supplementary Information

*To whom correspondence should be addressed. Electronic mail: <u>akira-n@sci.hokudai.ac.jp</u>

[†]Present address: Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

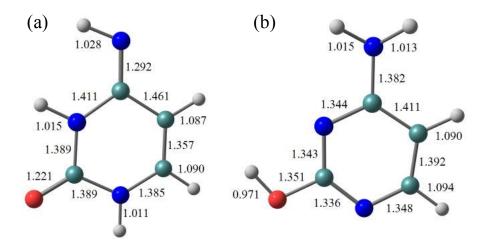
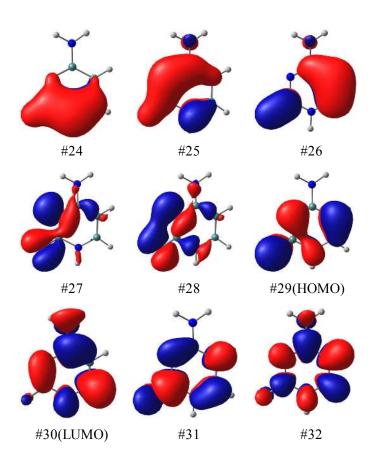
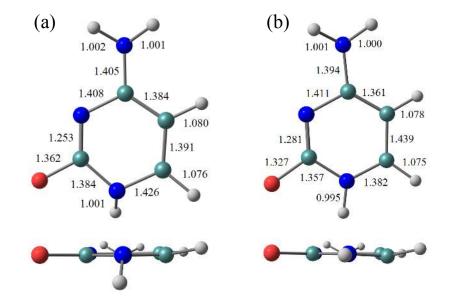


Figure S1. Equilibrium structure in the S_0 state for higher-energy rotamers of (a) imino and (b) enol tautomers. The energies of the imino and enol forms are 0.097 and -0.045 eV relative to the keto form, respectively. The bond lengths are given in units of Å.




Figure S2. Active orbitals of keto cytosine at $(S_0)_{min}$ in the SA(4)-CASSCF(12,9) calculation.

S1 minimum energy structure of keto cytosine

When we perform the geometry optimization of keto cytosine in the S₁ state at the SA(2)-CASSCF(12,9) level starting from $(S_0)_{min}$, it is found that the S₁ minimum energy structure is characterized by ${}^{1}n_{0}\pi^{*}$. It involves the bond inversion of the ring and the elongation of the C2-O7 bond length from 1.222 to 1.362 Å, and also the H1 atom is displaced from the molecular plane. Hereafter this structure is denoted by $({}^{1}n_{0}\pi^{*})'_{min}$ and its structure is given in Figure S3(a). The prime indicates that the structure is optimized by the SA-CASSCF method. The geometry optimization in the ${}^{1}\pi\pi^{*}$ state is also carried out by SA(2)-CASSCF(8,7), where the active space is comprised of only π orbitals. The π orbital that is localized on the N8 atom is excluded from the active space. The optimized geometry is shown in Figure S3(b) and denoted by $({}^{1}\pi\pi^{*})'_{min}$. In contrast to $({}^{1}n_{0}\pi^{*})'_{min}$, planarity of the molecule is maintained. The geometrical change from the (S₀)_{min} structure involves the bond inversion of C2-O7 bond length from 1.222 to 1.327 Å.

The SA(4)-CASSCF(12,9) energy of the S₁ state is 3.64 and 3.81 eV at $({}^{1}n_{0}\pi^{*})'_{min}$ and $({}^{1}\pi\pi^{*})'_{min}$, respectively, suggesting that the former exhibits the S₁ global minimum at the SA-CASSCF level. However, the MS(4)-CASPT2(12,9) calculation at the same structures predicts that the S₁ energies at $({}^{1}n_{0}\pi^{*})'_{min}$ and $({}^{1}\pi\pi^{*})'_{min}$ relative to $(S_{0})_{min}$ are 4.22 and 4.10 eV, respectively, and it is found that $({}^{1}\pi\pi^{*})'_{min}$ lies lower than $({}^{1}n_{0}\pi^{*})'_{min}$ at the MS-CASPT2 level.

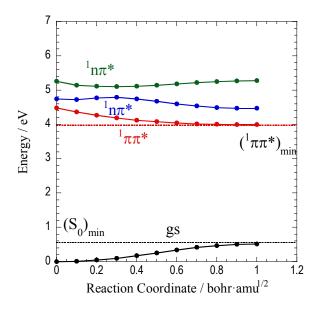
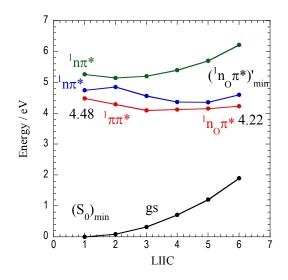
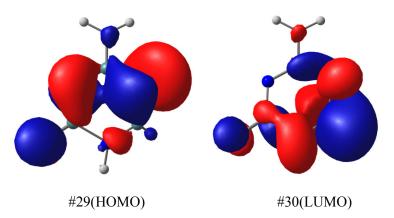

The optimized structure at the MS(2)-CASPT2(8,7) level is shown in Figure 3(a) in the main document and denoted by $({}^{1}\pi\pi^{*})_{min}$. The notable differences between $({}^{1}\pi\pi^{*})_{min}$ and $({}^{1}\pi\pi^{*})_{min}$ are the bond lengths of N1-C2, C2-N3, and C2-O7. The MS(4)-CASPT2(12,9) energy at $({}^{1}\pi\pi^{*})_{min}$ is calculated to be 3.98 eV relative to $(S_{0})_{min}$. We also tried to locate the minimum energy structure in the ${}^{1}n_{0}\pi^{*}$ state at the MS(3)-CASPT2(6,5) level, starting from the $({}^{1}n_{0}\pi^{*})'_{min}$ structure. The active space is comprised of the four π orbitals (two occupied and two unoccupied) and one lone-pair orbital. The S₁ state at $({}^{1}n_{0}\pi^{*})'_{min}$ is characterized by the ${}^{1}n_{0}\pi^{*}$ state at MS(3)-CASPT2(6,5) level, but the geometry optimization in the S₁ state leads to the close proximity to $({}^{1}\pi\pi^{*})_{min}$ and the S₁ state becomes the ${}^{1}\pi\pi^{*}$ state. Therefore we conclude that the S₁ minimum is characterized by the ${}^{1}\pi\pi^{*}$ state at the MS-CASPT2 level.

Figure S3. Minimum energy structures of keto cytosine (a) in the ${}^{1}n_{0}\pi^{*}$ state determined by SA(2)-CASSCF(12,9) method, $({}^{1}n_{0}\pi^{*})'_{min}$, and (b) in the ${}^{1}\pi\pi^{*}$ state determined by SA(2)-CASSCF(8,7) method, $({}^{1}\pi\pi^{*})'_{min}$. The bond lengths are given in units of Å.

MEP from $(S_0)_{min}$ for keto cytosine

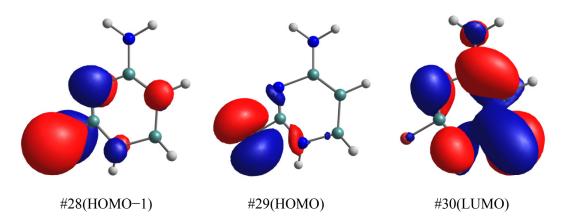

The MEP computation of keto cytosine in the ${}^{1}\pi\pi^{*}$ state from $(S_{0})_{min}$ was performed at the MS(2)-CASPT2(8,7) level of theory with a stepsize of 0.05 bohr·amu^{1/2} and the energetics are reproduced at the MS(4)-CASPT2(12,9) level at selected points along MEP. The MEP calculation was terminated when the plateau region was observed, which was at 1.0 bohr·amu^{1/2} in this case.


Figure S4. Potential energy profiles of keto cytosine from $(S_0)_{min}$ along the MEP coordinates at the MS(4)-CASPT2(12,9) level. The horizontal dotted lines represent the potential energies of the ground and ${}^{1}\pi\pi^{*}$ states at $({}^{1}\pi\pi^{*})_{min}$.

Potential energy profiles from $(S_0)_{min}$ to $({}^1n_0\pi^*)'_{min}$


The MS(4)-CASPT2(12,9) potential energy profiles from $(S_0)_{min}$ to $({}^{1}n_0\pi^*)'_{min}$ along LIIC are shown in Figure S5. Clearly it exhibits a minimum before accessing to $({}^{1}n_0\pi^*)'_{min}$ and the electronic structure around this minimum is characterized by the ${}^{1}\pi\pi^*$ state. After passing through this minimum, the ${}^{1}\pi\pi^*$ and ${}^{1}n\pi^*$ states start to mix and then it reaches to $({}^{1}n_0\pi^*)'_{min}$. This behavior is expected since the C2-O7 bond length at $({}^{1}n_0\pi^*)'_{min}$ is longer than that at $({}^{1}\pi\pi^*)_{min}$, and also it involves the out-of-plane displacement of the H1 atom in order to reach $({}^{1}n_0\pi^*)'_{min}$. From these results, it is expected that after photoexcitation to the ${}^{1}\pi\pi^*$ state, the molecule will relax toward $({}^{1}\pi\pi^*)_{min}$. It is also seen that the electronic characters of the two ${}^{1}n\pi^*$ states (S₂ and S₃) are interchanged along this LIIC points, indicating that the first ${}^{1}n\pi^*$ state is rather characterized by the ${}^{1}n_N\pi^*$ state at (S₀)_{min}.

Figure S5. Potential energy profiles for low-lying electronic states of keto cytosine from $(S_0)_{min}$ to $({}^{1}n_0\pi^*)'_{min}$ using LIIC points at the MS(4)-CASPT2(12,9) level.


Figure S6. SA(2)-CASSCF(8,7) natural orbitals at $({}^{1}\pi\pi^{*}/gs)_{CI}$ of keto cytosine that are relevant to the excitation.

#29(HOMO)

#30(LUMO)

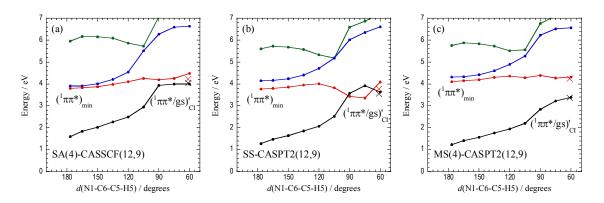
Figure S7. SA(2)-CASSCF(8,7) natural orbitals at $({}^{1}\pi_{N3}\pi^{*}/gs)_{CI}$ of keto cytosine that are relevant to the excitation.

Figure S8. SA(3)-CASSCF(6,5) natural orbitals at $({}^{1}n_{0}\pi^{*}/gs)_{CI}$ of keto cytosine that are relevant to the excitation.

Table SI.Configuration Interaction Coefficients for S_0 , S_1 , and S_2 States in
SA(4)-CASSCF(12,9) Calculation at $({}^1n_0\pi^*/gs)_{CI}$. CS Stands for Closed Shell
Configuration.

	S_0	S_1	S_2
CS	0.053	-0.069	0.682
$^{1}\pi\pi^{*}$	-0.660	0.619	0.043
${}^{1}n_{O}\pi^{*}$	0.627	0.669	0.015

Table SII.Eigenvectors of the Effective Hamiltonican Matrix in MS(4)-CASPT2(12,9)
Calculation at $({}^{1}n_{0}\pi^{*}/gs)_{CI}$.


	S ₀ (MS-CASPT2)	S ₁ (MS-CASPT2)	S_2 (MS-CASPT2)
S ₀ (SS-CASPT2)	0.951	-0.215	0.222
S_1 (SS-CASPT2)	-0.308	-0.613	0.727
S_2 (SS-CASPT2)	0.020	0.760	0.650
S ₃ (SS-CASPT2)	-0.000	-0.013	-0.013

Potential energy profiles from $({}^{1}\pi\pi^{*})_{min}$ to $({}^{1}\pi\pi^{*}/gs)'_{CI}$ at the different levels of theory

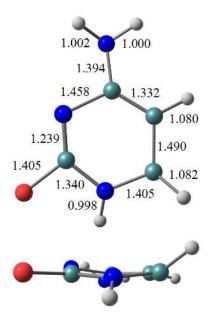

Potential energy profiles from $({}^{1}\pi\pi^{*})_{min}$ to $({}^{1}\pi\pi^{*}/gs)'_{CI}$ are calculated by the SA(4)-CASSCF(12,9), SS-CASPT2(12,9), and MS(4)-CASPT2(12,9) methods, where the MECI point $({}^{1}\pi\pi^{*}/gs)'_{CI}$ is determined at the SA(2)-CASSCF(8,7) level (see Figures S9 and S10). The potential energies are evaluated at geometries determined by fixing the dihedral angle d(N1-C6-C5-H5) at selected values and optimizing the other degrees of freedom in the ${}^{1}\pi\pi^{*}$ state at the SA(2)-CASSCF(8,7) level. Although the SA(4)-CASSCF(12,9) energies of the ${}^{1}\pi\pi^{*}$ and ground states differ by only ~0.2 eV at $d < 90^{\circ}$, the MS-CASPT2 profile predicts that these two states are separated by more than 1 eV. Also, the MS(4)-CASPT2(12,9) energy of the ${}^{1}\pi\pi^{*}$ state at (${}^{1}\pi\pi^{*}/gs$)'_{CI} is calculated to be 4.24 eV, which is higher than that at (${}^{1}\pi\pi^{*}/gs$)_{CI} lies lower than (${}^{1}\pi\pi^{*}/gs$)'_{CI} and determined where $({}^{1}\pi\pi^{*}/gs)_{CI}$ lies lower than (${}^{1}\pi\pi^{*}/gs$)'_{CI} and MS(4)-CASPT2 energies at $d < 90^{\circ}$ is observed, but it is an artifact since it disappears when the mixing between electronic states are taken into account by MS-CASPT2. These results indicate that the MS-CASPT2 method is more appropriate for both geometry optimization and energetics.

Figure S9. MECI structure $({}^{1}\pi\pi^{*}/gs)'_{CI}$ of keto cytosine determined by SA(2)-CASSCF(8,7) method. The bond lengths are given in units of Å.

Figure S10. Potential energy profiles for low-lying electronic states of keto cytosine from $(S_0)_{min}$ to $({}^{1}\pi\pi^*/gs)'_{CI}$ at the (a) SA(4)-CASSCF(12,9), (b) SS-CASPT2(12,9), and (c) MS(4)-CASPT2(12,9) levels, as a function of dihedral angle d(N1-C6-C5-H5). The potential energies at $({}^{1}\pi\pi^*/gs)'_{CI}$ are shown as cross marks at the respective level.

- **Figure S11.** MECI structure $({}^{1}n_{O}\pi^{*}/gs)'_{CI}$ of keto cytosine determined by SA(3)-CASSCF(10,8) method. The bond lengths are given in units of Å.
- Table SIIIConfiguration Interaction Coefficients for S0, S1, and S2 States at $(^{1}n_{O}\pi^{*}/gs)'_{CI}$ in SA(4)-CASSCF(12,9)Calculation.CSStandsStandsforConfiguration.

	S_0	\mathbf{S}_1	S_2
CS	0.120	-0.397	0.671
$^{1}\pi\pi^{*}$	0.471	0.718	0.297
$^{1}n_{0}\pi^{*}$	0.777	-0.376	-0.319

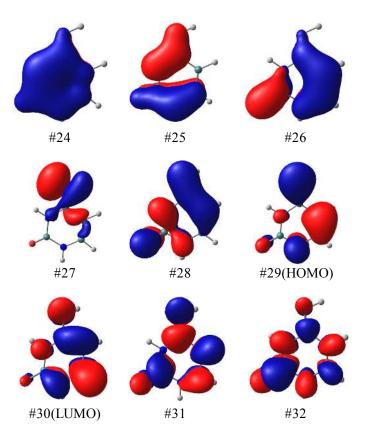
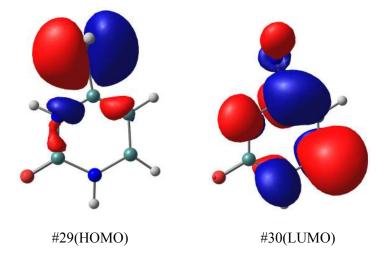
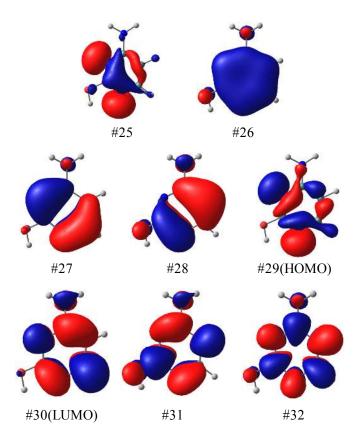
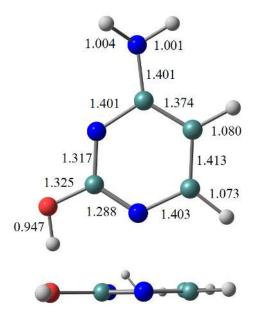
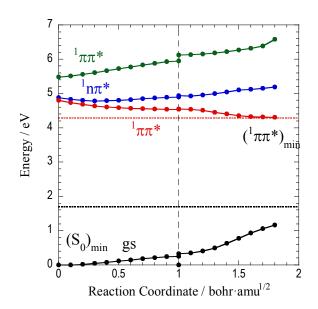



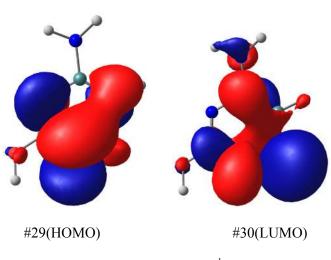

Figure S12. Active orbitals of imino cytosine at $(S_0)_{min}$ in the SA(4)-CASSCF(12,9) calculation.

Figure S13. SA(2)-CASSCF(6,5) natural orbitals at $({}^{1}\pi_{N8}\pi^{*}/gs)_{CI}$ of imino cytosine that are relevant to the excitation.

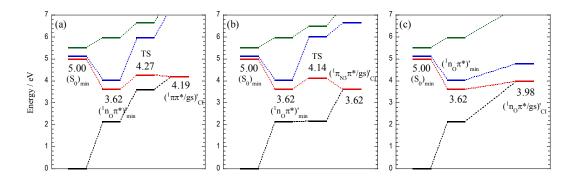
Figure S14. MECI structure $({}^{1}\pi\pi^{*}/gs)'_{CI}$ of imino cytosine determined by SA(2)-CASSCF(10,8) method. The bond lengths are given in units of Å.

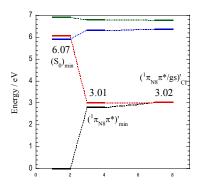




Figure S15. Active orbitals of enol cytosine at $(S_0)_{min}$ in the SA(4)-CASSCF(10,9) calculation.


Figure S16. Minimum energy structure of enol cytosine in the ${}^{1}n\pi^{*}$ state determined by SA(4)-CASSCF(10,8) method, $({}^{1}n\pi^{*})'_{min}$. The bond lengths are given in units of Å.

MEP from $(S_0)_{min}$ for enol cytosine


The MEP computation of enol cytosine in the ${}^{1}\pi\pi^{*}$ state from $(S_{0})_{min}$ was performed at the MS(2)-CASPT2(8,7) level of theory with a stepsize of 0.05 bohr amu^{1/2} and the energietics are reproduced at the MS(4)-CASPT2(10,8) level at selected points along MEP. The MEP reached a plateau region in the planar structure and thus the calculation was terminated at 1.0 bohr amu^{1/2}. From this structure, the geometry was shifted very slightly toward the direction of the $({}^{1}\pi\pi^{*})_{min}$ and the MEP computation was reinitiated. After that, the MEP led to the plateau region again and was terminated at 1.8 bohr amu^{1/2}. It was confirmed that the structure at this point was very close to that at $({}^{1}\pi\pi^{*})_{min}$.


Figure S17. Potential energy profiles of enol cytosine from $(S_0)_{min}$ along the MEP coordinates at the MS(4)-CASPT2(10,8) level. The horizontal dotted lines represent the potential energies of the ground and ${}^{1}\pi\pi^{*}$ states at $({}^{1}\pi\pi^{*})_{min}$. The vertical dashed line represents the reaction coordinate at which the MEP was terminated once since it reached a plateau region in the planar structure.

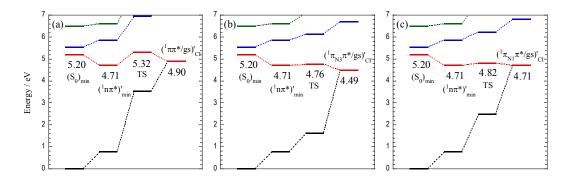

Figure S18. SA(2)-CASSCF(8,7) natural orbitals at $({}^{1}\pi_{N1}\pi^{*}/gs)_{CI}$ of enol cytosine that are relevant to the excitation.

Figure S19. SA(4)-CASSCF(12,9) electronic energies of the $(S_0)_{min}$, $(S_1)_{min} = ({}^1n_0\pi^*)'_{min}$, TS, and MECI structures for keto cytosine, where the latter three structures are optimized at the SA(4)-CASSCF(12,9) level (indicated by prime). The TS structure is determined by the highest point along the reaction path, which is obtained by excited-state geometry optimizations at fixed values of the same driving coordinate as used in the MS-CASPT2 optimization. For the MECI optimization, the projected gradient method by Bearpark *et al.* (Ref. 69 of the main document) is applied.

Figure S20. SA(4)-CASSCF(12,9) electronic energies of the $(S_0)_{min}$, $(S_1)_{min} = ({}^1\pi_{N8}\pi^*)'_{min}$, and $({}^1\pi_{N8}\pi^*/gs)_{CI}$ structures for imino cytosine, where the latter two structures are optimized at the SA(4)-CASSCF(12,9) level (indicated by prime).

Figure S21. SA(4)-CASSCF(10,8) electronic energies of the $(S_0)_{min}$, $(S_1)_{min} = ({}^{1}n\pi^{*})'_{min}$, TS, and MECI structures for enol cytosine, where the latter three structures are optimized at the SA(4)-CASSCF(10,9) level (indicated by prime).