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The cross section for f meson photoproduction on the proton has been measured for the first time up
to a four-momentum transfer 2t � 4 GeV2, using the CLAS detector at the Thomas Jefferson National
Accelerator Facility. At low four-momentum transfer, the differential cross section is well described by
Pomeron exchange. At large four-momentum transfer, above 2t � 1.8 GeV2, the data support a model
where the Pomeron is resolved into its simplest component, two gluons, which may couple to any quark
in the proton and in the f.

PACS numbers: 13.60.Le, 12.40.Nn, 13.40.Gp

In this paper we report results of the first determination
of the cross section for elastic f photoproduction on the
proton, up to 2t � 4 GeV2. The scarce existing experi-
mental data for this reaction [1–5] extend only to a mo-
mentum transfer of 2t � 1 GeV2 and are well described
as a purely diffractive process in the framework of the tra-
ditional vector dominance model [6], or in a more modern
way as the exchange of the Pomeron trajectory in the t
channel [7]. At larger t, the small impact parameter makes
it possible for quark in the vector meson and a quark in
the proton to become close enough to exchange two glu-
ons which do not have enough time to reinteract to form
a Pomeron. Such a model of the Pomeron as two nonper-
turbative gluons [8] matches the diffractive contribution
up to 2t � 1 GeV2, but predicts a different behavior at
higher t [9].

Large momentum transfers also select configurations in
which the transverse distances between the two quarks in
the vector meson and the three quarks in the proton are
small. In that case, each gluon can couple to different
quarks of the vector meson [9], as depicted in the middle
diagram of Fig. 1, as well as to two different quarks of
the proton [10] (bottom diagrams in Fig. 1). Because of
the dominant ss̄ component of the f, and to the extent
that the strangeness component of the nucleon is small,
the exchange of quarks is strongly suppressed. So, elastic
f photoproduction at large t is a good tool to resolve the
Pomeron into its simplest two-gluon component and to
gain access to the quark correlation function in the pro-
ton [11–13].

Measurements at such large four-momentum transfers
are now possible thanks to the continuous beam of CEBAF
at Jefferson Lab. This experiment was performed using the
Hall B tagged photon beam. The incident electron beam,
with an energy E0 � 4.1 GeV, impinged upon a gold
radiator of 1024 radiation lengths. The tagging system,
which gives a photon-energy resolution of 0.1% E0, is de-
scribed in Ref. [14]. For this experiment the photons were
tagged only in the range 3.3–3.9 GeV. The target cell,
a mylar cylinder 6 cm in diameter and 18 cm long, was
filled with liquid hydrogen at 20.4 K.

The photon flux was determined with a pair spectro-
meter located downstream of the target. The efficiency
of this pair spectrometer was measured at low intensity
(105 g�s in the entire bremsstrahlung spectrum) by com-

parison with a total absorption counter (a lead-glass de-
tector of 20 radiation lengths). During data taking at high
intensity (6 3 106 tagged g�s), the number of coin-
cidences, true and accidental, between the pair spec-
trometer and the tagger was recorded by scalers. The
number of photons lost in the target and along the beam
line was evaluated with a GEANT simulation. The correc-
tion is of the order of 5%. The systematic uncertainty on
the photon flux has been estimated to be 3%.

The hadrons were detected in CLAS, the CEBAF large
acceptance spectrometer [15]. It consists of a six-coil su-
perconducting magnet producing a toroidal field. Three
sets of drift chambers allow the determination of the mo-
menta of the charged particles with polar angles from 10±

to 140±. A complete coverage of scintillators allows the
discrimination of particles by a time-of-flight technique as
described in Ref. [16]. As the field in the magnet was set
to bend the positive particles outwards, most of the K2,
from the f ! K1K2 decay, were lost into the inert for-
ward part of the detector. They were always identified by
the missing mass of the reaction gp ! pK1�X�.

In Fig. 2, a well-identified K2 peak can be seen above
a background which corresponds to a combination of
misidentified particles, the contribution of multiparticle
channels and accidentals between CLAS and the tagger.
This background is eliminated by subtracting the counts

2 gluons

correlations

Pomeron

FIG. 1. Diagrams representing the exchange of a Pomeron or
of two gluons in the photoproduction of the f.
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FIG. 2. Missing mass squared M2�X� in the reaction
gp ! pK1�X�.

in the sidebands from the main peak, in each bin in
t (determined by the four momentum of the detected
proton). As indicated in the figure, each sideband spans
half of the missing mass width under the K2 peak. Their
contribution to the K1K2 mass spectrum is shown in
Fig. 3. Note that it is very small under the f peak.

In the Dalitz plot (Fig. 4) of invariant masses squared
M2�K1K2� versus M2�pK2�, two resonant contributions
to the pK1K2 channel can be clearly seen, namely, the
pf and the L��1520�K1 channels. A cut at M2�pK2� .

2.56 GeV2 further suppresses the contribution of the L�

production to the K1K2 mass spectrum.
The resulting mass spectra are shown in Fig. 5 for se-

lected bins in t. The peak of the f�1020� clearly shows
up over a K1K2 continuum contribution which must be
subtracted. The f events are selected by the cut 1.0 ,

M2�K1K2� , 1.1 GeV2. The CLAS acceptance in the
forward direction limits the data set to values of 2t larger

FIG. 3. The K1K2 mass spectrum, before the sideband sub-
traction. Slashes: lower mass sideband contribution. Back-
slashes: higher mass sideband contribution.

than 0.4 GeV2. This experiment extends the measured
range up to 2t � 4 GeV2.

The detector efficiency depends on four variables: Eg ,
t, u

cm
K1 , and f

cm
K1 (the decay angles of the K1 in the c.m. of

the f). A GEANT simulation program, which takes into
account the entire CLAS setup, was used to calculate the
detector efficiency, taking into account in an iterative way
the experimentally observed variation of the cross section
as a function of these variables. No variations of the cross
section against Eg and f

cm
K1 were observed. This efficiency

varies from 0.15 to 0.25. The accuracy of the simulation
has been evaluated to be 5% from a comparison between
the real data and the Monte Carlo simulation [17] for the
channel gp ! pp1p2, where the statistics are very high.

The continuum background has been subtracted assum-
ing an isotropic distribution in u

cm
K1 and two hypotheses for

its variation against the mass M�K1K2�: (i) a flat con-
tribution, and (ii) a phase space distribution plus a contri-
bution of the f0�980� decaying into two kaons (the mass
of the f0 is below the two-kaon threshold but because
of its �60 MeV width, the tail of the Breit-Wigner can
contribute). Its contribution was determined by fitting the
K1K2 mass spectrum [up to M2�K1K2� � 1.2 GeV2 in
each bin in t] with two components: the background itself
and a Breit-Wigner describing the f meson peak.

The results for the cross section are the average between
two values obtained according to these two background
hypotheses, with the difference being taken as an estimate
of the systematic uncertainty due to the subtraction of the
K1K2 continuum production. The data are integrated over
the full tagging energy range �3.3 , Eg , 3.9 GeV�.

The cross sections ds�dt versus t for the f photopro-
duction are presented in Fig. 6, for eight bins in t. For val-
ues of 2t around 1 GeV2, our data are in good agreement
with the most precise published data. The dotted curve
corresponds to Pomeron exchange [11]. The solid curve

FIG. 4. Invariant mass squared M2�K1K2� as a function of
M2�pK2�.
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FIG. 5. Invariant mass K1K2 for selected values of the four-
momentum transfer t �GeV2�, after sideband subtraction. The
curves show the continuum obtained from the fits discussed in
the text.

corresponds to the exchange of two nonperturbatively
dressed gluons [10,11] that may couple to any quark in the
f meson and in the proton. It includes quark correlations
in the proton, assuming the simplest form of its wave
function [18]: three valence quarks equally sharing the
proton longitudinal momentum. The parameters in this
model are fixed by the analysis of other independent
channels. It also reproduces the data recently recorded at
HERA [19] up to 2t � 1 GeV2 (see Ref. [11]).

The solid curve gives a good qualitative description of
the experiment over the entire range of t except for the last
point at 2t � 3.9 GeV2. Here, one approaches the kine-
matical limit and u-channel nucleon exchange may con-
tribute [11]. Performing the experiment at higher average
energy (4.5 GeV) would push the u-channel contribution
to higher values of jtj �6 GeV2� and leave a wider window
to study two-gluon exchange mechanisms.

The dot-dashed curve includes the u-channel contribu-
tion with the choice gfNN � 3 for the fNN coupling
(the addition of the u-channel amplitude to the dominant
t-channel amplitude does not lead to double counting, be-
cause the former relies on quark exchange and the latter
relies on gluon exchange). This value comes from the
analysis of nucleon electromagnetic form factors [20] as
well as nucleon-nucleon and hyperon-nucleon scattering
[21]. It is higher than the value gfNN � 1 predicted from
SU(3) mass splitting or v 2 f mixing [22], thus confirm-

FIG. 6. The differential f photoproduction cross section ver-
sus the four-momentum transfer t (see text for the explanation
of the curves). The error bars displayed are the quadratic sum
of statistical and systematic uncertainties which include 3% for
normalization, 5% for acceptance, and 5%–15% for background
subtraction.

ing evidence for additional Okubo-Zweig-Iizura–evading
processes at the fNN vertex.

The predictions of two other models are also presented
in Fig. 6. Both treat the gluon exchange in perturbative
QCD (this leads to the steep t behavior) and use a di-
quark model to take into account quark correlations in
the proton (this fixes the magnitude of the cross section).
Berger and Schweiger [12] (upper dashed curve) use a
wave function which leads to a good accounting of Comp-
ton scattering and nucleon form factors, while Carimalo
et al. [13] (lower dashed curve) use a wave function which
fits the cross section of the gg ! pp̄ reaction. Above
2t � 2 GeV2 our data rule out the t dependence of these
diquark models, demonstrating that the asymptotic regime
is not yet reached in the f production channel, and that
the use of nonperturbatively dressed gluon exchange is
better suited to this kinematics range. Recently, a new
anomalous Regge trajectory associated with the f1�1285�
meson has been proposed [23]. It reproduces the HERA
[19] data �2t , 1 GeV2�, but its momentum dependence
is too steep to reproduce our high t data.

The f decay angular distribution will be published later.
Up to 2t � 2.5 GeV2, it follows a sin2u

cm
K1 dependence, in

agreement with s-channel helicity conservation (SCHC):
a real photon produces a f meson with only transverse
components [24]. Above, where the u-channel contributes,
a slight violation of SCHC is observed.
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In conclusion, elastic photoproduction of f mesons
from the proton was measured for the first time up to
2t � 4 GeV2. Below 2t � 1 GeV2, our data cannot dis-
tinguish between the Pomeron exchange and the two-gluon
exchange models. At high t, the predictions of these mod-
els differ by more than an order of magnitude. Above
2t � 1.8 GeV2, our data rule out the diffractive Pomeron
and strongly favor its two-gluon realization. Not only does
this finding open a window to the study of the quark cor-
relation function in the proton, but also it provides us with
a new insight on our understanding of the meson-nucleon
interaction at short range. It fixes the size of the two-gluon
exchange part, and the comparisons with the r meson pho-
toproduction data, which have been taken concurrently,
will tell us the relative importance of the quark interchange
mechanisms. Such analysis is in progress and will be re-
ported later.
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