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ABSTRACT 
 

Increasing water scarcity and environmental considerations are calling for more 

effective means to purify industrial and urban wastewaters. Advanced oxidation 

processes are able to effectively remove many persistent and toxic pollutants from 

water to enable the use and reuse of impaired quality raw water sources. Among 

these processes, heterogeneous photocatalysis has some notable inherent advantages, 

such as relative process simplicity, and the minimal generation of waste streams. 

Unfortunately, the commercially available photocatalysts show poor efficiency in the 

utilisation of natural solar radiation and are difficult to separate and recover from 

treated water, which results in high operational costs. In order to alleviate these 

recognised problems, this thesis explored an improved method of material synthesis 

to produce nanomaterials with desirable properties. 

 

The investigation of peroxide method at high pH values showed that this facile 

approach offers great potential for the fabrication of various nanoparticles, 

nanostructures, and thin films deposits. The shape, size, structure and surface 

properties of the resulting photocatalysts were simply controlled through the process 

pH, the time of reaction, and the chemical composition of the solvent base. Both 

partial and complete dissolution of the precursors was accomplished to fabricate 

various, crystalline and amorphous anatase and alkali titanate end products. The use 

of ammonium hydroxide base was more advantageous, since it provided a very 

simple means to achieve simultaneous N doping. 

 

Effective N-doping of Degussa P25 commercial photocatalyst was simply achieved 

using highly concentrated (25%) ammonium hydroxide base in 24 h time at room 

temperature in an open reactor. The raw product slurries were neutralised with acid, 

washed with water, and aged until dry at 75 °C. Additional doping (co-doping) with 

Ag was achieved by adding AgNO3 to the raw slurries. The resulting nanoparticles 

had elongated rod and needle-like shapes, 2-3 times larger specific surface area 

(92.9-144.6 m2g-1) than the precursor P25, and 5.4-6.5 nm mesopore sizes. These 

photocatalysts were remarkably effective in the photobleaching of Methylene Blue 
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under visible light, and simulated solar light illuminations. Therefore, this method is 

suitable to improve the performance of currently available commercial 

photocatalysts. 

 

Na-titanate microspheres with 700-800 nm diameter were produced at low (25-80 
◦C) temperatures using NaOH for base, and P25 precursor in the peroxide method. 

Both the raw and calcined products showed very high adsorption affinity towards 

Methylene Blue dye, and were also capable of its degradation under UV light 

without minimal loss of performance after five complete treatment cycles. The 

calcined product showed higher catalytic activity, and could be fully recovered from 

the spent slurry by gravity settling. 

 

Exchanging Na with H in titanates microspheres in HCl solution resulted in the 

formation of hydrogen-titanate nanofibres, which were transformed into anatase 

nanofibres after annealing at 550 °C for 6 h. The nanofibres had average specific 

surface area of 31.5 m2/g, average pore volume of 0.10 cm3/g and average pore size 

of 50 Å. These products also were effective adsorbent of the model pollutant and 

adsorbents and good photocatalyst under simulated solar light illumination. No 

reduction in photocatalytic activity was observed over three complete treatment 

cycles, and the effective separation of nanofibres was achieved by gravity settling 

resulting in low residual solution turbidity. Such nanofibres may also be used to 

produce paper-like photoreactive filter materials. 

 

An easily separable fibrous photocatalyst was produced by depositing H-titanate 

nanofibres on wool fibres serving as bio-template. The calcined end-product showed 

anatase crystal phase and nanofibrous morphology (about 50 µm length and 9.5 µm 

diameter), having about 24 m2/g specific surface area with mesoporous 

characteristics. These nanofibres were effective in the photocatalytic degradation of 

humic acid model pollutant solution under UV light irradiation. The performance of 

this photocatalyst showed only a small decrease after three complete treatment 

cycles, and the microfibres were easily separated from the treated solution by 

sedimentation with very low supernatant turbidity. 
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