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Abstract

We present the results of our theoretical and experimental studies of the photorefrac-
tive effect in single crystal SBN:60, SBN:Ce, and SBN:Fe. Specifically, the two -beam
coupling coefficients, response times and absorption coefficients of these materials are
given.

Introduction

A given photorefractive material is considered useful for optical processing applica-
tions such as phase conjugate optics if it possesses three important features: low
response time, large coupling coefficient and high optical quality. Speed is necessary if
the crystal is to be used in real -time applications, while large photorefractive coupling
is required for the construction of efficient devices. However, a crystal with poor opti-
cal quality is of little practical importance, regardless of its speed and gain. Although
a material is yet to be found which completely satisfies all three requirements, here we
show how well SBN:60 approximates these properties.

Material Properties

Strontium barium niobate (SBN) belongs to a class of tungsten bronze ferroelectrics
which is pulled from a solid solution of alkaline earth niobates. The crystal is trans-
parent and can be grown with a variety of ferroelectric and electrooptic properties depend-
ing on the specific cation ratios introduced into the structure. In SBN the unit cell con-
tains ten NbO6 octahedra with only five alkaline earth cations to fill ten interstitial
sites.1'2'3 The structure is thus incompletely filled which permits the addition of a wide
range of dopants into the host crystal. The general formula for SBN is SrxBal_xNb2O6 so
that SBN:60 represents Sr 6Ba 4Nb2O6.

The point group symmetry of SBN is 4mm which implies that its electrooptic tensor is
non -zero. The dominant electrooptic coefficient is r33 which ranges from 100 pm /V in
SBN:25 to 1400 pm /V in SBN:75. SBN:75 would, therefore, appear to be the best photorefrac-
tive SBN crystal were it not for the fact that optical quality diminishes with increasing
Sr concentration. Hence, SBN:60 was selected as the candidate SBN photorefractive material
on the basis of its high optical quality and moderately large electrooptic coefficient.

Photorefractive Properties

Single crystals of SBN:60, SBN:Ce (Sr 6Ba 4Nb2O6:Ce) and SBN:Fe (Sr §Ba4Nb2O6:Fe) grown
wereRockwell International Corporation wee studied using the two -wave mixing experiment

shown in Fig. 1 to determine their effectiveness as photorefractive media. In Fig. 1 beams
1 and 2 are plane waves which intersect in the crystal and thus form an intensity inter-
ference pattern. Charge is excited by this periodic intensity distribution into the con-
duction band, where it migrates under the influence of diffusion and drift in the internal
electric field, and then preferentially recombines with traps in regions of low irradiance.
A periodic space charge is thus created which modulates the refractive index via the
electrooptic effect. This index grating, being out of phase with the intensity distribu-
tion, introduces an asymmetry that allows one beam to be amplified by constructive inter-
ference with light scattered by the grating, while the other beam is attenuated by destruc-
tive interference with diffracted light. This process is shown graphically in Fig. 2.

Mathematically, this two -beam coupling may be described in the steady -state as follows:
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By measuring the four intensities I1(0), I2(0), Il(2), and I2(R), both in the steady -state
and as a function of time, the two -beam coupling coefficient r and the response time T can,
therefore, be obtained from the above equations.

Maximum coupling will result in crystals with large r but small a. However, a and r are
not independent. In fact, since charge must first be excited into a conduction band by the
intensity interference pattern in order to start the photorefractive process, some absorp-
tion is necessary. This is precisely where the role of the dopant enters. By purposely
introducing impurities into the crystal, donor sites are created which become the absorp-
tion centers. It must be noted, however, that any absorption which does not contribute
to the photorefractive mechanism is undesirable.

Figures 4 and 5 show the effect of cerium and iron impurities on the absorption spectra
of undoped SBN, whose spectra is given in Fig. 3. Several interesting observations can be
made. For one, the band edge shifts from 400 nm in SBN to 430 nm in SBN:Ce and 500 nm in
SBN:Fe. Secondly, although the SBN was not intentionally doped, there are signs of deep
level impurities evidenced by perturbations in the spectra near 550 nm. Finally, the
effects of Ce and Fe in SBN are seen to be significantly different. While the spectra of
SBN:Ce is rather featureless with a broad deep level centered at 480 nm, the spectra of
SBN:Fe displays a structured but broad absorption extending from 500 nm to 700 nm with
characteristic peaks at 550 nm and 590 nm. Future investigation of these lines will indi-
cate whether or not they contribute to the photorefractive effect.

First principle calculations using the band transport models can be used to derive
expressions for r and T. Solutions to the photorefractive equations developed most fully
by Kukhtarev6'7'8 show that r and T can be represented functionally as follows:

r = r(kg, E0, X, T; r, ND, NA, e, n)

T = T(kg, E0, X, T, Io; s, 1R' p, ND, NA, e)

where the experimentally controlled variables are

kg = grating wave number

Eo = applied field (normal to grating planes

X = wavelength of incident light
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T = temperature

I
o
= total irradiance

while the material parameters are

r = effective electrooptic coefficient

s = photoionization cross -section

yR = two -body recombination rate

p = mobility

ND = number of donors under dark conditions

NA = number of traps under dark conditions

E = static dielectric constant

n = background refractive index

These equations were applied to cerium doped SBN. Specifically the sample contained
1O18cm 3 cerium atoms which resulted in an as -grown crystal with the following photorefrac-
tive parameters:

r = 11 cm-1

T
e

= 0.10 sec

a = 1.8 cm-1

at

Io = 1W /cm2

T = 298 °K

X = 0.5145 pm

Eo = 0 V /cm

X = 5 pm

Variations in r and T about this "operating point" are shown in Figs. 6 -13 along with the
experimentally obtained values of the two -beam coupling coefficient and response time for
SBN:60 and SBN:Ce. Data for SBN:Fe is not shown since striations in the crystal so affec-
ted the optical quality of the crystal that no reliable experimental values could be
measured. Although the SBN:60 and SBN:Ce samples were striation free and displayed good
optical quality, to date all of the SBN:Fe crystals, regardless of their Fe concentration,
were severely marked with striations. It is believed, however, that better control of the
melt temperature will eliminate this problem.

With no applied field Fig. 7 indicates that r should be greater than 1 cm -1 for all
practical values of Xg, while the application of an electric field of 2 kV /cm ought to in-
crease the coupling coefficient to 35 cm -1 at Xg = 5 pm as shown in Fig. 8. Such a large
response would then make even very thin samples of SBN:Ce useful photorefractive media.
However, in practice, these large values of r are not easily obtainable. As an electric
field is applied to the crystal, induced stresses deform the material and the incident
beams are distorted. Therefore, we conclude that the application of an electric field to
the crystal in order to control its two -beam coupling coefficient is of limited use.

Another manner in which r can be modified was suggested in Ref. 9. By varying the trap
density NA with reduction and oxidation treatments, one should be able to control r
as shown in Fig. 9. Although the exact number density of traps is difficult to measure,
we have indeed been able to change the two -beam coupling coefficient from less than
0.1 cm -1 to 15 cm -1 by heating the crystal in atmospheres with different oxygen partial
pressures.

However, the predicted variation of response time with trap density, which is shown in
Fig. 10, has yet to be observed in SBN:Ce. Although r decreases as expected when the
crystal is heated in a reducing atmosphere, the time constant remains unchanged at a
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typical value of 100 msec at 1 W /cm2 irradiance. This unexpected and currently unex-
plained result has complicated our effort at producing a cerium doped SBN photorefractive
crystal with 1 millisecond response time, since heat treatment was proposed as a method
cf achieving this goal.9 Therefore, other techniques may need to be invoked in order to
obtain the desired speed of response.

Figures 11, 12 and 13 show how the response time T is affected with changes in the
mobility p, the two -body recombination rate yR, and the photoionization cross -section s,
respectively. Since u is predominantly an intrinsic quantity of the host crystal, little
can be done to increase its value. However, s and yR are extrinsic parameters which can be
varied by the selection of different dopants. By choosing a dopant with either a larger
photoionization cross - section or a smaller two -body recombination rate coefficient than
is presently obtained with cerium, the resulting doped sample of SBN should then possess
a shorter response time. The selection of such a dopant, unfortunately, is a nontrivial
task.

Consider Table I which shows the results of an elemental analysis by nuclear activation
of undoped and cerium doped SBN. Since undoped SBN is photorefractive while containing
only trace quantities of cerium, we must conclude that cerium is not the only photorefrac-
tive species for SBN. In fact, Table I indicates that there are significant amounts of Fe,
Ni, Mo and Ta impurities present in the undoped SBN crystal, and Fe and Ni, for example,
are known to be effective photorefractive centers in LiNbO3.10 Although iron has already
been used as a dopant for SBN, the resulting crystals were optically imperfect. Therefore,
we suggest that not only should the growth of iron and cerium doped SBN continue, but that
crystals doped with other impurities, which may prove to have better values of yR and s,
should also be investigated.

Summary of Results

A major goal of our work has been the growth of high optical quality photorefractive SBN
crystals. This was accomplished in part by growing striation -free SBN:60 and SBN:Ce. In
fact, optically excellent crystals of SBN:60 and SBN:Ce can now be had as cubes approaching
1 cm a side. SBN:Fe, unfortunately, has yet to be grown without striations. As was indi-
cated earlier, even better control of the melt temperature may be necessary to eliminate
this problem.

Large two -beam coupling was observed in both SBN:60 and SBN:Ce. Values of r ranged from
2 cm-1 in SBN:60 to greater than 10 cm -1 in SBN:Ce. Such response was large enough to per-
mit the use of these crystals in the construction of the ring 11 and semilinear12 passive
phase conjugate mirrors, for example. It was also found that oxidation and reductions
techniques served as effective methods for varying the value of r in these crystals. How-
ever, the application of an external electric field to the crystals tended to degrade their
optical quality rather than improve the value of their coupling coefficients.

The response times of the SBN crystals we tested averaged about 100 msec for an incident
irradiance of 1W /cm2. In general, SBN:Ce responded quicker than SBN:60 with times
approaching 50 msec at 1W /cm2. Since the two beam -coupling coefficient of SBN:Ce is so
large, the time required to reach a given diffraction efficiency with SBN:Ce will, there-
fore, be much shorter than that needed with SBN:60. Although the response time of SBN:Fe
has yet to be reliably determined, we believe that its speed will not significantly differ
from that of the other two crystals.

Conclusion

High optical quality undoped and doped single crystal SBN:60 has been grown and proven
to be photorefractive. This effect was quantified by measuring the coupling coefficients
and response times of several samples using the method of two -wave mixing. The results of
this work indicate that the introduction of dopants into SBN:60 produce crystals with an
even greater photorefractive effect than that of undoped SBN:60.
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Table 1: Elemental Analysis
by Weight of SBN:60 and SBN:Ce
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