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Abstract

Photosynthesis research in India can be traced back several thousand years, with the mention of the Sun energizing
the plants, which form food for all living creatures on the earth (from the Mahabharata, the great epic, ca. 2600
B.C.) and the report of Sage Parasara (ca. 100 B.C.) on the ability of plants to make their own food, due to their
pigments. With the pioneering studies by Sir Jagdish Chandra Bose, work on photosynthesis proceeded steadily
during the first half of the 20th century. Some of the classic reports during this period are: malate metabolism in
Hydrilla, spectrophotometric estimation of chlorophylls, importance of spectral quality for photosynthesis – an
indication of two photosystems, photoinactivation of photosynthesis, and importance of flag leaf photosynthesis to
grain yield. After the 1960s, there was a burst of research in the areas of physiology and biochemistry of carbon
assimilation and photochemistry. A significant transition occurred, before the beginning of new millennium, into
the area of molecular biology of chloroplasts, regulation of photosynthesis and stress tolerance. Future research
work in India is geared to focus on the following aspects of photosynthesis: elucidation/analysis of genes, molecular
biology/evolution of enzymes, development/use of transgenics and modeling.

Abbreviations: CAM – crassulacean acid metabolism; Chl – chlorophyll; LHC – light harvesting complex; ME –
malic enzyme; OEC – oxygen-evolving complex; PEPC – phosphoenolpyruvate carboxylase; PS – photosystem;
Rubisco – ribulose-1,5-bisphosphate carboxylase oxygenase; TL – thermoluminescence

‘If the photosynthetic process takes place in more than one
photochemical stage it is probable that for one stage a partic-
ular wave-length of light is more efficient than for the other.’
– R.H. Dastur and R.J. Mehta (Annals of Botany, Vol. XLIX,
No. CXCVI. October, 1935)

Introduction

References to plants are abundant in ancient Indian
Sanskrit scriptures: Vedas, Epics, Charaka Samhita

∗ Dedicated to the memory of Professor Suresh Kumar Sinha
(1934–2002).

and Susruta Samhita (D.M. Bose et al. 1971). A ref-
erence to the photosynthetic process is found in ‘The
Mahabharata’, an epic more than 4600 years old (Fig-
ure 1). The report by Sage Parasara (ca. 100 BC), on
plant pigments and their ability to make food, is note-
worthy (Majumdar and Banerji 1960). Sage Parasara
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Figure 1. A shloka (poem) in Sanskrit from ‘The Mahabharata,’ one of the ancient Indian epics (dating back to ca. 2600 BC), describing the
role of plants in harnessing the solar energy into food, and being the source of energy for other living beings on the earth. The physiology of
plants (‘Vriksh-Ayurveda’) is discussed in Rig-Veda, one of the four Indian Vedas, more than 5000 years back.

is called ‘the father of Botany,’ because he classified
flowering plants into various families, nearly 2000
years before Linnaeus. Parasara also described plant
cells (the outer/inner walls and sap coloring matter),
which were rediscovered by Robert Hooke, with the
help of microscope. Photosynthesis research in In-
dia has been reviewed by S. Bose and Rao (1988),
Bhagwat (1990) and R. Singh (1990).

The earliest studies during the modern period were
by Sir J.C. Bose and others, at Calcutta (now called
Kolkata), Banaras (Varanasi) in Uttar Pradesh, and
New Delhi. These are described below. Studies on
photosynthesis intensified with the return of young
Indian scientists trained abroad (see the section on
‘Photochemical reactions’). Soon, international level
research progressed at Bhabha Atomic Research Cen-
ter in Bombay (now called Mumbai) in Maharashtra,

Jawaharlal Nehru University (JNU) and Indian Agri-
cultural Research Institute (IARI) (both at New Delhi),
Madurai Kamaraj University (Madurai, Tamilnadu),
Sri Venkateswara University (Tirupati, Andhra Pra-
desh) and Haryana Agricultural University (Hisar,
Haryana). Their success led to additional centers at
National Botanical Research Institute (Lucknow, Ut-
tar Pradesh), University of Delhi (Delhi), Sambalpur
University (Sambalpur, Orissa), University of Hydera-
bad (Hyderabad, Andhra Pradesh), and a few other
places. The locations of the current centers are indic-
ated in Figure 2, where research on a variety of aspects
of photosynthesis (from primary photochemistry to
ecology and global environment), is being carried out.

Although several Indians have contributed sig-
nificantly to photosynthesis research while working
abroad, this article describes only their work done in
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Figure 2. Some of the active centers of photosynthesis research
in India (in alphabetical order): Bangalore (University of Agricul-
tural Sciences), Bhubaneshwar (Regional Plant Resource Centre,
Utkal University, Institute of Life Sciences), Delhi (Indian Agri-
cultural Research Institute, Jawaharlal Nehru University, University
of Delhi, International Centre for Genetic Engineering and Biotech-
nology), Goa (University of Goa), Hisar (Haryana Agricultural Uni-
versity), Hyderabad (University of Hyderabad), Indore (University
of Indore), Jodhpur (Jodhpur University) , Kolkata/Calcutta/Kalyani
(Bose Institute, University of Kalyani), Lucknow (National Botan-
ical Research Institute), Madurai (Madurai Kamaraj University),
Mumbai/Bombay (Bhabha Atomic Research Centre), Pondicherry
(Pondicherry University), Pune (University of Pune), Sambalpur
(Sambalpur University), Tirupati (Sri Venkateswara University) and
Varanasi (Banaras Hindu University).

India. Among those of Indian origin, and who work
abroad, we list P.N. (Dan) Avadhani, Parag Chitnis,
Henry Daniell, Govindjee, Arun Goyal, Autar Mattoo,
Himadri Pakrasi, Krishna Rao, Sabeeha Merchant,
Krishna Niyogi, Bijay K. Singh, A.R. Subramanian,
Krishna K. Tiwari and Vittal Yachandra.

In view of the overwhelming literature, references
are made to selected publications that originated in
work done in India. However, we mention some
collaborative research wherever pertinent.

Classic work during the pre-1960 era

Sir Jagdish Chandra1 Bose, a pioneer in photosyn-
thesis (as well as plant physiology) research in India
(Figure 3A) demonstrated, early in 1924,2 that the rate
of photosynthesis versus light intensity followed a cur-

Figure 3. Some of the pioneers of photosynthesis research in India
during the pre-1960 period. A. Sir J.C. Bose (1858–1937); B. Bhola
Nath Singh (1898–1984); C. R.H. Dastur (1896–1961); D. R.D.
Asana (1908–1999).

vilinear pattern. He recorded action spectra, as well as
quantum yields (using an ingenious CS2 prism), and
malate metabolism in summer grown Hydrilla (J.C.
Bose 1923, 1924). These findings are amazing, as
simple instruments were fabricated and used to record
novel responses.

Ghosh and Sen-Gupta (1931) analyzed the absorb-
ance of chlorophyll (Chl) in acetone and developed
formulae to determine the content of Chl a as well as
Chl b, based on their absorption at 650 and 460 nm.
It was not until 1941 and 1949 that G. Mackinney and
Daniel Arnon developed the formulae for Chl determ-
ination (for a minireview, see Porra 2002). Rustom
Hormusji Dastur and co-workers (K.M. Samant, R.Y.
Mehta, and S. Solomon), of the Botany Department
of the Royal Institute of Science, Bombay, studied the
effect of monochromatic red and blue-violet, obtained
by filtering lights with carmine and copper sulph-
ate solutions; they concluded that photosynthesis was
dependent not only on the intensity, but also had co-
operative and specific effects of different colors on
photosynthesis (see Dastur and Mehta 1935; Figure
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3C). This seems to be one of the earliest indications
of the two light effect in photosynthesis (see quota-
tion at the beginning of this paper). Although Eugene
Rabinowitch (1951, p. 1167) had raised concerns
based on the use of optically dense tissues, and it
is not clear if the light intensities were in the linear
range of the ‘light curves’, the observations were clear,
and, perhaps, much ahead of the time. B.N. Singh and
Kumar (1935) observed inactivation of carbon assim-
ilation in leaves at high light, obviously an indication
of the phenomenon of photoinhibition (see Adir et al.,
this issue). (See Figure 3B for a photograph of B.N.
Singh.)

Other classic contributions during the pre-1960
period are: a sigmoidal type curve of photosynthetic
response to light, suggesting a saturation kinetic rather
than the Blackman’s break (B.N. Singh and Lal 1935),
and the importance of flag leaf photosynthesis to grain
yield (Rustom Darasha Asana and Mani 1949, see
Figure 3D).

The studies of Shri Ranjan (University of Alla-
habad), on the importance of mineral nutrition to
photosynthesis and modulation of respiration in light,
were of great vision (Ranjan 1940; Ranjan et al. 1962).
In 1940, he also worked on the temperature coefficient
of photosynthesis in Eugenia jambolana (cited by
Rabinowitch 1956). He was instrumental in encour-
aging and molding the career of the editor of this spe-
cial issue, Govindjee (University of Illinois, Urbana,
USA), a pioneer of photosynthesis research.

Research during the post-1960 period

Most of the work in early 1960s was related to the
physiology of photosynthesis, mineral nutrition and
crop yields (Asana et al. 1969) and later diversified
into biochemistry, photochemistry and molecular bio-
logy. The consolidation of photosynthesis research
was facilitated by the interaction of Indian Scientists
with others in India as well as from abroad (Figures
4A–G).

Carbon metabolism: physiology and biochemistry

The physiology and biochemistry of carbon fixation
have been studied by several groups led by (in al-
phabetical order): Yash P. Abrol (Indian Agricultural
Research Institute, New Delhi), Anil S. Bhagwat
(Bhabha Atomic Research Centre, Mumbai), V.S.

Rama Das (Sri Venkateswara University, Tirupati
and later University of Hyderabad, Hyderabad; both
in Andhra Pradesh), Arumugham Gnanam (Madurai
Kamaraj University, Madurai, Tamilnadu), late G.V.
Joshi (Shivaji University, Kolhapur, Maharashtra),
Renu Khanna-Chopra (Indian Agricultural Research
Institute, New Delhi), Aditya N. Purohit (Garhwal
University, Garhwal, Uttar Pradesh), Agepati S.
Raghavendra (Ragha to his friends; see Figures 4E and
4F) (University of Hyderabad, Hyderabad), Prafulla-
chandra Vishnu Sane (Raj to his friends; see Fig-
ures 4B and 4C) (Bhabha Atomic Research Centre,
Mumbai, Maharashtra), Randhir Singh (Haryana
Agricultural University, Hisar, Haryana), late Suresh
K. Sinha (Indian Agricultural Research Institute, New
Delhi) and M. Udaya Kumar (University of Agricul-
tural Sciences, Bangalore, Karnataka) These studies
focused on C3-, C4-, and Crassulacean Acid Metabol-
ism (CAM) photosyntheses as well as C3–C4 interme-
diates (see C.C. Black and B. Osmond, this issue, for
a history of CAM).

C3-, C4- and CAM plants

Despite being a C3 plant, the leaves of rice incorpor-
ate CO2 into C4 acids under blue light (V.S.R. Das
and Raju 1965) or during leaf development. Photo-
synthetically active mesophyll cells were isolated from
leaves of several C3 plants (Gnanam and Kulandaivelu
1969; Kulandaivelu and Gnanam 1974). Carbon fixa-
tion in autotrophic cultures of C3 (Arachis hypogaea),
C4 (Gisekia pharnacoides) and CAM (Chamaecereus
sylvestrii) species was studied by Seeni and Gnanam
(1980, 1982).

Several C4 plants were discovered among the In-
dian flora (V.S.R. Das and Raghavendra 1973; Sankhla
et al. 1975; Raghavendra and Das 1976). A check-list
of C4 plants, based on these reports (Raghavendra and
Das 1978a) is highly cited. The PhD thesis of Age-
pati Raghavendra (advisor: V.S. Rama Das) presented
a comprehensive study of carbon assimilation in a se-
lected range of C3 and C4 plants, chosen from Indian
flora.

The carbon assimilation during C4 pathway was
elucidated in detail in millet crops, such as Eleusine
coracana, Pennisetum typhoides and Setaria italica
(Rathnam and Das 1975; Raghavendra and Das
1978b). A shift from C4 to C3 type photosynthesis
after anthesis was discovered in leaves of sorghum
(Khanna and Sinha 1973). The activities of photosyn-
thetic enzymes in both C3 and C4 plants were shown
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Figure 4. The authors of this review, photographed with the other photosynthesis scientists from
India and abroad. (A) Prasanna Mohanty (sitting in the center). Standing (from left to right):
George Papageorgiou, Alan Stemler, Eugene Rabinowitch, Pat Breen and Govindjee. Photograph
taken in Urbana, Illinois, USA (1968); (B) P.V. Sane (left) with V.G. Tatake (center) and Gunther
Hauska (right). Photograph taken in Lucknow, India (1989); (C) P.V. Sane (second from left) is
flanked by A. Gnanam (first from left), Shikha Roy (third from left), and Govindjee (extreme
right). Photograph taken in Stockholm, Sweden (1989); (D) From left to right: George Papageor-
giou, Christa Chritchley, Danny Blubaugh, William Coleman, Jack van Rensen, Tom Wydrzynski,
Prasanna Mohanty and Alan Stemler. Photograph taken in Montpellier, France (1993); (E) Agepati
Raghavendra (left) with Gerry Edwards (center) and Carlos Andreo (right). Photograph taken in
Rosario, Argentina (1999); (F) Agepati Raghavendra (right) with Hans Heldt (left). Photograph
taken in Hyderabad, India (2002). (G) A recent photograph of T.S. Desai, courtesy of Samar Desai.
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to be influenced by altitude and growth temperatures
(Pandey et al. 1980).

C3–C4 intermediates, discovered in the genera of
Mollugo and Alternanthera (Raghavendra et al. 1978;
Rajendrudu et al. 1986), provided a model system
to study the mechanism of reduced photorespiration
(Raghavendra 1980). The C3–C4 intermediates have
imperfect Kranz anatomy, low activities of photores-
piratory enzymes and predominant localization of en-
zymes such as glycine decarboxylase in bundle sheath
cells (Devi et al. 1995). Further studies on these C3–
C4 intermediates are crucial and are promising for the
understanding of the mechanism and evolution of not
only C3–C4 intermediacy but also C4 photosynthesis.

Studies on CAM date back to 1924, with the
reports of acidification and malate accumulation in
leaves of Hydrilla, particularly at warm temperatures
(J.C. Bose 1924). The phenomenon of CAM was de-
tected in several plants, including some nonsucculents
(Rao et al. 1979).

The properties of selected C3- or C4-enzymes,
e.g., ribulose 1,5-bisphosphate carboxylase/oxygenase
(Rubisco), phosphoenolpyruvate carboxylase (PEPC)
and NADP malic enzyme (ME), were studied and the
enzymes purified (Bhagwat and Sane 1975; Bhagwat
1981; Jawali and Bhagwat 1987; Rajagopalan et al.
1994). Fluorescence probes indicated the importance
of tryptophan and histidine residues in the active site
of spinach Rubisco (N.C. Verma and Bhagwat 1985).
Protein phosphorylation mediates the light activation
of C4-PEPC (Rajagopalan et al. 1994; Parvathi et al.
2000) and regulates small subunit of Rubisco (Kaul
et al. 1986). Some of the Calvin–Benson cycle en-
zymes can exist as multienzyme complexes (Sainis et
al. 2003), a phenomenon which warrants further at-
tention. During ageing, marked changes occur in the
activities of rubisco and PEPC in even the submerged
aquatic angiosperms (Jana and Chaudhuri 1982).

Carbon metabolism in tissues other than leaves

It may be surprising, but the fruiting structures con-
tribute significantly to the crop yield, as they are
capable of photosynthetic CO2 fixation (Sinha and
Sane 1976) and can also reassimilate respiratory CO2.
The reproductive parts of wheat, chickpea (Cicer
arientinum) and rapeseed (Brassica campestris) con-
tain high activities of C4-enzymes, but exhibit in-
termediate status between C3-, and C4/CAM photo-
synthesis (Singal et al. 1987; R. Singh 1993). Key
enzymes of carbon metabolism in these pods, such as

PEPC and NADP-ME were purified and characterized
by S. Das et al. (1986) and Singal and Singh (1986).

Alternative pathways of CO2 fixation were repor-
ted. The chloroplasts of greening potatoes fixed carbon
into formate (through CO2 reductase) and channeled
it into mevalonate (Ramaswamy et al. 1976; Arora et
al. 1985). This phenomenon is highly interesting and
needs to be studied further.

Interaction of carbon assimilation with other
metabolic processes

Mesophyll protoplasts from pea leaves provided a
model system to demonstrate the dependence of
photosynthetic carbon assimilation on mitochondrial
metabolism. Mitochondrial oxidative electron trans-
port helps to dissipate excess reductants from chloro-
plasts (Raghavendra et al. 1994), optimizes pho-
tosynthesis (Padmasree et al. 2002) and protects
chloroplasts against photoinhibition (Saradadevi and
Raghavendra 1992). This work attracted consider-
able attention and the phenomenon of mitochondrial
influence on photosynthesis is now widely accepted
(Gardeström et al. 2002).

Carbon metabolism is essential for fatty acid bio-
synthesis, particularly in plastids of oilseeds (Gupta
and Singh 1996). Glycolate also supports second-
ary metabolism, by enhanced rubber (polyisoprene)
formation in guayule (Parthenium argentatum) (A.R.
Reddy et al. 1987).

The availability and mode of nitrogen has a pro-
found influence on photosynthesis and photorespira-
tion (Kumar et al. 1993). Besides nitrogen, sulphur
also modulates photosynthesis, as in Brassica (Ahmad
and Abdin 2000). There has been renewed interest
in the interaction between photosynthesis and nitro-
gen metabolism and the relevant literature has been
reviewed recently (Kumar et al. 2002).

Crop productivity and stress responses

Photosynthesis by flag leaf is crucial for grain yield
(Asana and Mani 1949). The photosynthetic effi-
ciency varies among cultivars. However, high rates of
photosynthesis alone would not increase crop yields.
Heterotic hybrids of sorghum or wheat produce high
biomass, despite their low photosynthesis (Khanna-
Chopra 2000). Conventional breeding for water use
efficiency could not improve crop performance, be-
cause stomatal closure limits photosynthetic carbon
assimilation too (Udayakumar et al. 1998).
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Accumulation of proline, induced by heat or salt
stress, protects thylakoids against membrane peroxid-
ation by scavenging singlet oxygen species (Alia et
al. 1997). Proline also seems to promote the disso-
ciation of the small subunits of rubisco and suppress
its activity (Sivakumar et al. 2001) suggesting that
proline accumulation during stress may have multiple
functions.

The effects of water stress, heavy metals and el-
evated CO2 on carbon fixation and related enzymes
were studied by several groups. These stress factors
(e.g., water, heat and light) interact while modulat-
ing photosynthesis (Jagtap et al. 1998). Differential
degradation of rubisco has been observed, in heat-
sensitive and heat-tolerant rice varieties, on exposure
to thermal stress (A. Bose et al. 1999). Heavy metals,
such as Cd2+ and Ni2+, affect the enzymes of Calvin–
Benson cycle in chickpea leaves (Sheoran et al. 1990).
Exposure to elevated CO2 reduces photorespiration
and increases photosynthesis in Brassica (Uprety and
Mahalakshmi 2000). Further research on these aspects
is essential to understand the adaptive mechanisms and
to evolve a strategy of exploiting plants for alleviating
the effects of heavy metals and elevated CO2.

Photochemical reactions

As in the case of carbon assimilation, several research
groups in India studied the photochemical reactions
of photosynthesis, that involved light emission, ex-
citation energy distribution, state changes, electron
transport, photoinhibition and stress responses of pho-
tosystems. Sane (1977) suggested the most likely
locations of electron transport components along and
across the thylakoid membranes resulting in vectorial
electron transport, based on his earlier studies and
from several other research groups.

One of the strengths of several Indian scientists has
been the training received in laboratories abroad. The
excellent training received from abroad was then com-
plemented with ingenious adaptation to local environ-
ment. Prasanna Mohanty, one of the authors of this
review, received his PhD degree from the University
of Illinois at Urbana, USA (advisor: Govindjee). His
PhD thesis was one of the first studies on the regulation
of excitation energy distribution and redistribution in
intact algal cells through the use of Chl fluorescence.
A major contribution of Mohanty was the first obser-
vation of the ‘O-I-D-P’ Chl fluorescence (Kautsky)
curve in cyanobacteria, and the analysis of the non-

QA-related chlorophyll fluorescence changes through
the use of various uncouplers, electron carriers, and
inhibitors of electron transfer, also in cyanobacteria (P.
Mohanty and Govindjee 1973a, b; see P. Mohanty et
al., 1971, for the site of hydroxylamine action in red
algae).

P.V. Sane obtained his PhD from the Univer-
sity of Alberta, Edmonton, Canada (advisor: Saul
Zalik). Sane’s work for PhD was a detailed biochem-
ical analysis of carbon assimilation and reactions of
Chl biosynthesis in a mutant of Gateway barley, in
comparison with those of wild type (Sane and Zalik
1970). Later, working with Roderick Park, Sane
analyzed the ultrastructure and biochemistry of the
chloroplast membranes, employing a novel method of
isolating PS I and PS II without detergents (Sane et al.
1970). On the basis of these studies, they proposed a
model for the distribution of two photosystems in the
chloroplast lamellar structure, in an article of Annual
Reviews of Plant Physiology (Park and Sane 1971),
which has become a citation classic.

Thermoluminescence (TL)

Using a novel homemade setup, P.V. Sane, V.G. Tatake
and their co-workers, particularly T.S. Desai (Figure
4G), at Bhabha Atomic Research Centre (Mumbai),
discovered 7 distinct TL-glow peaks from oxygenic
photosynthetic membranes, originating from PS II
(Desai et al 1975, 1983; Sane et al. 1977; Tatake
et al. 1980). Thermoluminescence was discovered by
the late William Arnold, and some fundamental work
was already known (for a historical minireview on
TL, see Imre Vass, this issue). Using inhibitors, ar-
tificial electron donors/acceptors and excitation of PS
II/PS I, the origin of TL-peaks in the back reactions
of electron transport was identified: the one at −20 ◦C
(due to Z+QA

−), 0 ◦C (S2/S3QA
−), 10 ◦C (S3QB

−),
25 ◦C (S2QB

−) and 50 ◦C (PS I). The report of light
emission from PS I at high temperature (Sane et al.
1980) was interesting and stimulated further work in
other laboratories around the world. A major spin off
of the activation energy calculations of the TL peaks
by Tatake et al. (1980), that led to unusual numbers,
was the theory for TL proposed by Don DeVault et
al. (1983). Anoxygenic bacterium Rhodopseudomo-
nas also exhibits interesting TL peaks (Govindjee et
al. 1977). The research on TL was reviewed by Sane
and Rutherford (1986). Sane’s interest in TL work
continues (see, e.g., Sane et al. 2002).
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The thermoluminescence technique has provided a
very useful tool in understanding the mechanism of
delayed light emission. Further work on thermolumin-
escence was initiated in India by Pandit Vidyasagar
and his colleagues at the University of Pune, Pune
(Maharashtra), using a setup similar to that developed
by Tatake et al. (1971). Vidyasagar et al. (1993)
developed mathematical models, based on the gen-
eral order kinetics of thermoluminescence peaks, to
provide acceptable values of activation energy and
frequency factor. They suggested that the events of
retrapping of electrons during TL peak formation are
important while considering the acceptor side but not
so dominant on the donor side (Thomas et al. 1996).

Photosystems: structure, function and responses to
stress

Several research groups in India are interested in
the function and regulation of photosystems, elec-
tron transport, and their responses to abiotic or biotic
stresses. The group of P.V. Sane discovered heat-
induced state changes (Sane et al. 1984). The devel-
opment of state I was dependent on phosphorylation,
whereas the state II development was associated with
the redox levels of electron transport components loc-
ated between the two pigment systems of photosyn-
thesis (Sane et al. 1982). In a recent report, P. Mohanty
et al. (2002) provided the final evidence demonstrating
that elevated temperature treatment enhances the phos-
phorylation of light-harvesting complex IIb (LHC IIb)
and physically increases the transfer of LHC IIb from
PS II region to PS I region. (For a historical account of
the discovery of such changes, see Allen 2002.)

The research groups of Prasanna Mohanty and
Gauri Singhal at Jawaharlal Nehru University (JNU,
New Delhi) studied several aspects of electron trans-
port, energy transfer and transduction processes of PS
II/PS I under a variety of stresses. Among the findings
of Mohanty’s group are: non-circadian out-of-phase
oscillations in electron transport activities of PS II
and PS I and the association of these oscillations with
phosphorylation (Sayeed and Mohanty 1987), in vivo
multiphasic dark relaxation kinetics of Chl a fluores-
cence, related to Q−oxidation (Bukhov et al. 1992),
elevated temperature induced alterations in PS II ac-
ceptor side (Bukhov et al. 1990), subsequent recovery
of this phenomenon (N. Mohanty et al. 1987), and use
of crown ethers as PS II inhibitors and the site of their
action (Sabat et al. 1991).

The group of Gauri S. Singhal studied extensively
the synergistic responses of photosynthesis in wheat
leaves to stresses, such as high light and low temper-
ature. On exposure to high light, there was not only
an increase in lipid peroxidation but also de novo syn-
thesis of protective antioxidant enzymes (R.K. Mishra
and Singhal 1992; N.P. Mishra et al. 1993; Sharma and
Singhal 1992). They observed also that high temperat-
ure or water stress alters the membrane organization
and the absorbance/fluorescence properties of chloro-
plasts (Bharadwaj and Singhal 1981; B.R. Singh and
Singhal 1984).

Udaya Biswal (Sambalpur University) studied the
oxygen evolving complex (OEC) of PS II and pro-
posed one of the earliest models for the Mn-cluster
(Raval and Biswal 1985). Salil Bose (Madurai Kama-
raj University, MKU) studied changes in photochem-
ical reactions due to cation induced stacking and en-
ergy distribution between PS II and PS I (Ramanujam
and Bose 1983). Like inorganic cations, anions were
shown, at the University of Indore, India, to induce
state changes in spinach thylakoids (Jajoo et al. 1998).
Lack of usual cation effects on the electron transport
activity in thylakoids of Hydrilla verticillata has been
reported (S.R. Mishra and Sabat 1998). This could be
due to altered stacking characteristics of chloroplasts
in Hydrilla.

Because of the threats of heavy metal pollution to
agriculture, several workers in India studied the mode
of action and sensitivity to heavy metals of photosyn-
thesis in vivo as well as in vitro. In higher plant chloro-
plasts, Zn2+affected reversibly the donor side (OEC)
of PS II, while Ni2+ affected light-harvesting anten-
nae irreversibly (Tripathy and Mohanty 1980; Tripathy
et al. 1981). These authors elucidated three types of
heavy metal ion specific changes in chloroplast struc-
ture and function. Subsequent work elucidated the
effects of Hg2+, Al3+ and Na+ on the electron trans-
port (Tripathy et al. 1983; Wavare and Mohanty 1985;
Murthy et al. 1989). Similar inhibition of photosyn-
thetic reactions by heavy metals has been observed in
algae and cyanobacteria (D.P. Singh and Singh 1987).

G. Kulandaivelu (MKU) observed that UV-B ra-
diation affected the PS II reaction center of Phase-
olus leaves (Noorudeeen and Kulandaivelu 1982) and
changed the pattern of PS II polypeptides (Nedun-
chezian and Kulaindaivelu 1991). UV-B changed
levels of D1 protein and psbA transcripts in wheat
leaves (Chaturvedi et al. 1998).
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Changes during leaf senescence

Another area of studies initiated by Mohanty’s lab
in JNU is photosynthesis during senescence, using
chloroplasts as well as leaves of barley, wheat and
Cucumis. The OEC was damaged and the activit-
ies of key enzymes, such as rubisco were affected
during senescence (U.C. Biswal and Mohanty 1976,
1978). Further, senescence induces not only loss of
Chl-protein complexes, with differential sensitivity of
various forms of Chl a (A. Grover et al. 1986), but also
causes the migration (due to phosphorylation) of LHC
II to PS I in stromal region (Prakash et al. 2001). The
group of Udaya Biswal continued to study leaf senes-
cence and the chloroplast stability in vitro (Panigrahi
and Biswal 1979; U.C. Biswal and Biswal 1988; B.
Biswal 1997a).

Several groups in India have contributed towards
our understanding of changes in chloroplast structure
function relationships by a variety of stresses, such as
light, UV-B, temperature and drought (e.g., B. Biswal
1997b). These studies have now been extended to
several crop species.

Protein synthesis and chlorophyll development

The group of A. Gnanam (MKU) reconstituted an
in vitro translation system using isolated mesophyll
chloroplasts of sorghum (Geetha and Gnanam 1980).
The isolated chloroplasts were able to synthesize pro-
teins using ATP generated by photophosphorylation;
thus, a very unique protein synthesizing machinery
was demonstrated. They studied the synthesis of heat-
shock proteins by isolated chloroplasts (Krishnasamy
et al. 1988).

Baishnab Tripathy (JNU) studied the Chl biosyn-
thesis and its regulation. The biosynthesis of Chl
was regulated by chloroplast envelope (Manohara and
Tripathy 2000) and was impaired during temperature
stress or senescence (Tewari and Tripathy 1998). The
regulation of Chl biosynthesis by intraplastidic dis-
tribution is interesting and has recently been further
validated by the distribution of biosynthetic interme-
diates (Mohapatra and Tripathy 2003). A novel proto-
chlorophyllide oxidoreductase C (porC) gene, cloned
from Arabidopsis, mediates chlorophyll biosynthesis
(Pattanayak and Tripathy 2002).

5-Aminolevulinic acid acts as a photodynamic
herbicide by accumulating tetrapyrroles and hyper-
sensitizing the plant tissue to light due to the

over-production of singlet oxygen (Tripathy and
Chakraborthy 1991). Prolonged exposure to sub-lethal
doses of Sandoz 9785 (a herbicide, decreasing mem-
brane fatty acids) affects the energy distribution pro-
cess but makes wheat seedlings heat-tolerant (Mannan
and Bose 1986).

Molecular biology of chloroplasts

The molecular biology of the chloroplast, includ-
ing photosynthetic genes, is studied by three groups:
Akhilesh K. Tyagi (University of Delhi), P.V. Sane
(National Botanical Research Institute, Lucknow)
and the team at International Centre for Genetic
Engineering and Biotechnology (ICGEB, New Delhi,
earlier led by Krishna Tewari, and now by Sudhir
Sopory). A historical account on the molecular bio-
logy of chloroplasts is provided by L. Bogorad, this
issue, and of the chloroplast genome by M. Sugiura
(also in this issue).

The research group of Tyagi has characterized
the chloroplast genome of indica rice, Vigna and
Arabidopsis; they have cloned and sequenced nuc-
lear genes encoding the precursors of 33, 23 and 16
kDa polypeptides of OEC from Arabidopsis thaliana
(Kochhar et al. 1996; Jain et al. 1998). They have stud-
ied the promoters of spinach psaF and petH (Tyagi et
al. 1999), developmental control (Kapoor et al. 1994)
and the role of secondary messengers in the plastidic
gene expression (M. Grover et al. 1998). In a recent
study, Tyagi’s group has achieved salt tolerance in in-
dica rice by introducing the gene of choline oxidase,
which produces glycine betaine (A. Mohanty et al.
2002).

The group of P.V. Sane has sequenced about 80%
of the chloroplast genome, including several PS II/PS
I and house keeping genes, from Populus deltoides.
They have studied several psb operons (B to F, L, J)
(Naithani et al. 1997; Dixit et al. 1999), as well as
seasonal and diurnal changes in the expression of PS
II genes (Trivedi et al. 2000).

Among the findings by the group at ICGEB are:
the presence of two cis-elements, in the light regu-
lated promoter of psaF, chloroplast replication in vitro,
stimulation of DNA polymerase activity by a gly-
coprotein, cloning of genes encoding topoisomerases
I/II and their promoters (Mukherjee et al. 1994; M.K.
Reddy et al. 2001; for further details, see Sopory and
Maheswari 2001).
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Figure 5. Participants at the International Satellite Conference on Chloroplasts, held in Indian National Science Academy, New Delhi during
August 13–15, 2001. This conference was organized in conjunction with the International Photosynthesis Congress held at Brisbane, Australia
during August 18–23, 2001. There were 87 participants from India and 26 from abroad, including scientists from Canada, Finland, Germany,
Japan, Sweden, Switzerland, UK and USA. Many Indian scientists referred in this article are indicated with numbers: Sitting (from left to
right): [1] B. C. Tripathy, [2] V. S. Rama Das, [3] S. K. Sopory, [4] P. V. Sane, [5] A. Gnanam, [6] A. S. Raghavendra, [7] K. C. Bansal, [8] P.
Mohanty. Standing (from left to right and bottom to top): [9] S. K. Mukherjee, [10] B. Biswal, [11] J. K. Sainis, [12] G. Kulandaivelu, [13] V.
Jagtap, [14] U.C. Biswal, [15] A. S. Bhagwat, [16] R. Khanna-Chopra, [17] A. N. Misra, [18] N. K. Ramaswamy, [19] A. R. Reddy, [20] M. Z.
Abdin, [21] H. S. Misra. The readers may also recognize several photosynthesis experts from countries other than India. Photograph taken in
New Delhi, India (2001).

Tree photosynthesis

Photosynthesis in trees was studied, e.g., in mango
(Shivashankara and Mathai 2000), rubber (Devakumar
et al. 1999), tea (Joshi and Palni 1998), and Populus
(Pathre et al. 1998). Sucrose phosphate synthase in the
leaves of Prosopis juliflora was activated on illumin-
ation, due to protein dephosphorylation (Pathre et al.
2000). (The work on chloroplast genome in Populus
has already been mentioned in the previous section on
‘Molecular biology of chloroplasts.’)

Cyanobacterial photosynthesis

Joseph Thomas (while at BARC, Mumbai) provided
the first evidence that heterocysts of cyanobacteria
lack PS II and maintain the anaerobic milieu essen-
tial for their nitrogen fixation (Thomas 1970). He
also measured the absorption spectrum of a single
cyanobacterial cell. Several groups studied the charac-
teristics of phycobilisomes and photosystems and their
responses to a variety of stresses in cyanobacteria.
(For a historical account on phycobilisomes, see N.
Tandeau de Marsac, this issue.) One of the important
findings is the existence of variable long wavelength
77K fluorescence emission originating from PS I, the
yield of which was linked to the reduced state of
P700, the primary electron donor of PS I (Shubin et
al. 1991). Excitation energy transfer from phycobil-
isomes to photosystems was an important link during

the temporal separation of photosynthesis and nitrogen
fixation in Plectonema boryanum (Misra and Mahajan
2000). (For a historical account on energy transfer in
plants and algae, see M. Mimuro 2002.) In a recent
and very interesting report, Misra et al. (2003) ob-
served an alternate photosynthetic donor system for
PS I supported light dependent nitrogen fixation in P.
boryanum.

High light causes photooxidative damage due to
rise in lipid peroxidation (D.P. Singh et al. 1995).
PS II was found to be susceptible to NaCl stress (K.
Verma and Mohanty 2000), UV-B (Pandey et al. 1997;
Rajagopal et al. 1998) or heavy metals (Murthy et
al. 1989; D.P. Singh and Singh 1987). Cobalt ions
enhanced the light tolerance and altered the energy
distribution in Synechocystis (Tiwari and Mohanty
1993). Besides quinones, phycobilisomes serve as the
primary targets of UV-B triggered dissociation of PS
II in intact cyanobacteria (Rajagopal et al. 1998).

Mutants have been found which are tolerant to high
light and other stresses (D.P. Singh and Singh 1997;
D.P. Singh and Verma 1995). These mutants would
be very useful to further examine the mechanism of
tolerance of photosynthesis to different stresses.

Concluding remarks

Besides several original significant and interesting
contributions, the Indian researchers have edited and
authored several books, conference proceedings and
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special issues of journals, which serve as excellent
additions to the international photosynthesis literat-
ure (see Appendix). Despite being from a developing
country, Indian Scientists have thrived hard to excel
in research. A major part of the research in Indian
laboratories is carried out by the PhD students. For
example, the doctoral students, from several Indian
laboratories, have contributed immensely to the pro-
gress of photosynthesis research in India. As an ex-
ample, we list here the past PhD students3 of the
authors of this paper.

Most of the early research was on the physiology
and biochemistry of photosynthesis. During recent
years, focus has shifted onto the molecular biology of
chloroplasts (Sopory and Maheswari 2001) and this
was evident at an International Conference held in
New Delhi (Figure 5). Such approach is appropriate to
strengthen research in plant biotechnology, including
areas such as chloroplast transformation and genom-
ics/proteomics of photosynthesis (Raghuram 2002).

India is an agriculturally important country and
photosynthesis research in India has always found sup-
port from the people and the government. We envisage
that the research on this unique aspect of plant science
would make further progress.
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Notes

1In the 1924 book, the first and the middle names of J. C. Bose
are listed as Jagdis and Chunder instead of Jagdish and Chandra.

2At about the same time as J.C. Bose, Dastur (1924) studied
the importance of water content in aging leaves. This work was fol-
lowed by Dastur in 1925, and, then with N.A. Buhariwalla in 1928.
Several scientists from the Indian subcontinent, however, studied
respiration under the English plant physiologist F. F. Blackman
(1866–1947), known since 1905 for the ‘law of limiting factors’
in photosynthesis. These included T. Ekambaram, R.S. Inamdar,
Rafique Ahmad Khan, P. Parija, Shri Ranjan and S.B. Singh (see
Blackman 1954, pp. 230–231). This book was actually produced
by G.E. Briggs after Blackman’s death, and shows the extensive
contributions of Parija to Blackman’s research.

3A partial list of PhD (graduate) students of the authors
of this article: Students of A.S. Raghavendra: Thurumella Vani,
Rita Ghosh, Madhumanchi T. Devi, A.V. Rajagopalan, Kanak-
agiri Saradadevi, Jagannath Gayathri, Kota Parvathi and Kollipara
Padmasree. Students of P.V. Sane: Jayashree K. Sainis, Anuj K.
Singh, Munna Singh, Jaspreet Arora, Vidhu Bijola, Prabodh K.
Trivedi, Pankaj Jaiswal, Purnima Seth, Rekha Sharma, M.S.S.
Reddy, Aashish Srivastava, Puneet Dhawan, Sangeeta Saxena, Vi-
pin Hallan, Nidhi Agarwal, Alok K. Sinha and Promod A. Shirke.
Students of P. Mohanty: Baishnab C. Tripathy, Sabeer A. Sayeed,
Ramakrishna A. Wavare, Narendra Mohanty, S.D. Srinivasa Murthy,
Bagawatula Vani, Jogadhenu S.S. Prakash, Manoj Joshi, Madhulika
Srivastava, Swati Tiwari, Neelima Atal, Sangeeta Dawar and Jerome
F. Sah.

Appendix

Books, conference proceedings and special issues of scientific
journals on photosynthesis edited by Indian scientists (in chrono-
logical order)

Books

Biswal UC and Britton G (eds) (1989) Trends in Photosynthesis
Research. Agrobotanical Publishers, Bikaner, India

Abrol YP, Mohanty P and Govindjee (eds) (1993) Photosynthesis:
Photoreactions to Plant Productivity. IBH Publishing Co. Pvt.
Ltd, New Delhi, India / Kluwer Academic Publishers, Dordrecht,
The Netherlands

Raghavendra AS (ed) (1998) Photosynthesis: a Comprehensive
Treatise. Cambridge University Press, Cambridge, UK

Singhal GS, Renger G, Sopory SK, Irrgang K-D and Govindjee
(eds) (1999) Concepts in Photobiology: Photosynthesis and Pho-
tomorphogenesis. Narosa Publishing House, New Delhi, India /
Kluwer Academic Publishers, Dordrecht, The Netherlands

Yunus M, Pathre U and Mohanty P (eds) (2000) Probing Photo-
synthesis: Mechanisms, Regulation and Adaptation. Taylor &
Francis, London

Conference proceedings and special issues of journals

Mohanty P (ed) (1987) Indo-USSR Symposium on Photosynthesis
under Environmental Stress. Proc Indian National Sci Acad B53:
369–574

Singhal GS, Barber J, Dilley RA, Govindjee, Haselkorn R and
Mohanty P (eds) (1989) Photosynthesis: Molecular Biology
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and Bioenergetics. Proceedings of International Workshop on
Application of Molecular Biology and Bioenergetics of Photo-
synthesis. Narosa Publishing House, New Delhi, India

Singhal GS and Bhagwat AS (eds) (1993) Proceedings of DAE
Symposium on Photosynthesis and Plant Molecular Biology.
Department of Atomic Energy, Bombay & Jawarharlal Nehru
University, New Delhi

Chitnis PR and Mohanty P (eds) (2000) Photosynthesis Research in
the Post-Genomic Era. Indian J Biochem Biophys 37: 351–520

Mohanty P and Raghavendra AS (eds) (2003) Special Issue on
Chloroplast Function. J Plant Physiol 160: 1–96
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