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Abstract

It is already known that the process of photosynthesis depends on the quality and inten-

sity of light. However, the influence of the new light sources recently used in horticulture,

known as Light Emitting Diodes (LEDs), on this process is not yet fully understood. Chlo-

rophyll a fluorescence measurement has been widely used as a rapid, reliable, and nonin-

vasive tool to study the efficiency of the photosystem II (PSII) and to evaluate plant

responses to various environmental factors, including light intensity and quality. In this

work, we tested the responses of the tomato photosynthetic apparatus to different light

spectral qualities. Our results showed that the best performance of the photosynthetic

apparatus was observed under a mixture of red and blue light (R7:B3) or a mixture of red,

green and blue light (R3:G2:B5). This was demonstrated by the increase in the effective

photochemical quantum yield of PSII (Y[II]), photochemical quenching (qP) and electron

transport rate (ETR). On the other hand, the mixture of red and blue light with a high pro-

portion of blue light led to an increase in non-photochemical quenching (NPQ). Our

results can be used to improve the production of tomato plants under artificial light condi-

tions. However, since we found that the responses of the photosynthetic apparatus of

tomato plants to a particular light regime were cultivar-dependent and there was a weak

correlation between the growth and photosynthetic parameters tested in this work, special

attention should be paid in future research.
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1 Introduction

Tomato is a strategic crop worldwide. To obtain healthy and productive tomato plants, a high-

quality planting material is a necessity. Light (intensity, quality and duration) is one of the fun-

damental factors that determine the process of photosynthesis and plant growth [1]. Light also

affects the content of primary and secondary metabolites in plants [2]. Under artificial growing

conditions, lighting system can determine the cost and nutrient quality of plants [3, 4]. In recent

years, many researches have proved that the Light Emitting Diodes (LEDs) are a suitable light

source for lighting growth chambers and greenhouses [5–7]. However, the recommendations

for the appropriate light for a particular plant are still under discussion and open researches.

Over the years, different light conditions have been considered to conduct the physiological

studies related to photosynthesis process. A combination of different light spectral such as red,

blue, and white of varying intensities has been considered an efficient and effective source for

plants’ photosynthesis performance [5]. Moreover, several authors [7–9] found that the red

light is important for development of photosynthetic apparatus in various plant species. It also

increases starch accumulation by inhibiting the translocation of photo-assimilates from the

leaves. However, Lactuca sativa plants grown under red LEDs showed lower rates of photosyn-

thesis once light intensity decreased [10]. Similar results of the reduced rate of photosynthesis

under low light intensity and red LEDs was reported for rice [11] and wheat [12]. Such results

may suggest that vulnerability to a lower photosynthetic rate might be linked with changes in

multiprotein complexes such as photosystem I (PSI) and photosystem II (PSII) [10, 13] or it

could be attributed to lower leaf nitrogen content because of altered chlorophyll and caroten-

oid contents [14].

Lettuce plants grown under blue LEDs and high light intensity, displayed a higher net pho-

tosynthetic rate which could be an indicative of the fact that the plants had a pronounced accli-

mation of photosystems for CO2 fixation [10]. A blue light supplementation also led an

increase of photosynthetic activity of Convallaria majalis and strawberry plants [15, 16].

Research conducted on spinach plants grown under blue light-deficient conditions revealed

that the CO2 assimilation rate and quantum efficiency of PSII (FPSII) increased, while the effi-

ciency of light capture (Fv’/Fm’) decreased [17].

Considering the effects of green light, the poor absorption of this wavelength by plant leaves

is well explained through the absorption spectra of chlorophylls or other plant pigments

extracted from green leaves [18]. The work of Wu et al. reported a higher photosynthetic effi-

ciency in tomato plants grown under green light in comparison to plants grown under yellow

light [19]. This is in line with the physical laws of light quanta, with shorter wavelength pho-

tons possessing more energy and therefore exciting more chlorophyll molecules to an unpro-

ductive singlet state. Similarly, when lettuce plants were grown under high-intensity (�PPF

300 μmol m-2 s-1) green LEDs, they showed normal development like plants grown under a

fluorescent lamp which indicated the fact that green light at higher intensities is available to

the plants for morphogenesis and photosynthesis while green light of low intensity might pen-

etrate the leaf insufficiently for morphogenesis or photosynthesis [20].

Recent work conducted by Liu and van Iersel [21] showed that at low PPFD, red light has a

higher quantum yield than both blue and green light, which is consistent with the McCree

curve. As photosynthetic photon flux density (PPFD) increased, quantum yield of green light

decreased more slowly than that of red and blue light. As a result, the quantum yield of green

light gradually surpassed that of blue light and was similar to that of red light at high PPFD i.e.,

under low PPFD red light the quantum yield was higher under red (peak λ 653 nm) than blue

(peak λ 446 nm) and green (peak λ 523 nm), while under high PPFD, the application of green

color caused the higher observed quantum yield (Green>red>blue).
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Chlorophyll a fluorescence measurement is widely used in studies of photosynthetic pro-

cesses [22, 23], monitoring of plants abiotic stress responses see [24], nutrient status of plants

[23, 25–30], plant breeding to select plants of high photosynthetic capacity [31, 32], or in post-

harvest quality studies or assessments of horticultural and other crop plants [33].Evaluation of

the LEDs quality that produces the best vigorous of tomato seedlings based on its physiological

performance was the main aim of this work. This experiment was designed on the hypothesis

that the response of the photosynthetic apparatus of tomato cultivars (Solanum lycopersicum

var. Gangmu No.1) and (Solanum lycopersicum var. Millennium) and their growth parameters

will be varied base on the characteristics of the applied light.

2 Materials andmethods

2.1 Growth conditions and plants cultivation

The experiment was conducted in growth chambers equipped with various LEDs (with possibil-

ity to control light intensity and quality in each compartment, separately) at Fujian Agriculture

and Forestry University, Fujian, China. The experimental design included seven experimental

variants. Each variant had 3 chambers as replicates. Single chamber dimensions were 60 x 60 x

60 cm. The day/night temperatures were 25±2 ˚C and 19±2 ˚C, respectively. The average rela-

tive humidity varied in the growth chambers during the experiment and was 55± 5% (Fig 1).

Seeds of two cultivars of tomato (Solanum lycopersicum) Gangmu No.1 and Millennium

were sown in 32-cells plug trays (28 cm width × 54 cm length × 8 cm height., Luoxi Plastic

Products Co., Shandong, China). Two trays were placed in each growth chamber (1 tray con-

tained 32-cells for each cultivar). The trays were filled with commercial growth substrate (N1:

P1:K1� 3%, Organic matter� 45%, pH 5.5−6.5, Jiangping Enterprise Co., Fujian, China).

One week after sowing, seedlings started to receive fertilization based on water-soluble fer-

tilizers (compound fertilizers "N20: P20: K20+TE", Ruierkang Co., Russia) and Stimufol

Amino (compound fertilizers “N 25%, P 16%, K 12%, Amino acids 2%, Bo 0.044%, Fe 0.17%,

Mo 0.001%, Zn 0.03%, Cu 0.085, Co 0.01%, Mg 0.02%, Mn 0.085% and EDTA” Shoura Co.,

Egypt.). Seedlings also were irrigated two times per week to keep the optimum level of water

content in the growth substrate.

Fig 1. Relative spectral response (%) of the treatments in chambers and environmental conditions.

https://doi.org/10.1371/journal.pone.0249373.g001
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Seedlings were grown in growth chambers under 100± 2 μmol photons m-2 s-1 light intensity

for 12 hours per day. The applied LEDs spectra were: R (red peak wavelength λp (662 nm)), R7:

B3 (red 70 + blue 30 peak wavelength λp (662 nm)), R5:G2:B3 (red 50+ green 20+ blue 30 peak

wavelength λp (662 nm)), R3:G2:B5 (red 30 + green 20 + blue 50 peak wavelength λp (445
nm)), R3:B7 (red 30+ blue 70 peak wavelength λp (445 nm)), B (blue peak wavelength λp (445
nm)), andWFL (white florescent light peak wavelength λp (544 nm)), as control.

After 21 days, seedlings were transplanted into plastic pots (D 7 cm ×H 10 cm; Luoxi Plas-

tic Products Co., Shandong, China) that was filled with the same commercial growth substrate

as it was in the 32-cell plug trays to allow the root system to grow, freely.

2.2 Plant growth characteristics

Data of growth parameters were collected on the 40th day after sowing (DAS). Plant height

(cm) was measured manually. Stem diameter (mm) was measured using a digital Vernier cali-

per. Leaf area (cm2) was determined according to Pandey and Singh [34] method, and total

leaf area (cm2) was calculated by the number of leaves × leaf area. The fresh plants were placed

in Petri dishes without cover and transferred to a drying oven at 75˚C for at least for 48 h to

obtain the dry weight. Dry matter was weighed using an electronic balance (±0.0001 g). Dry

matter content percentage was calculated by the use of the following equation:

Dry matter content % ¼ ðPlant dry weight=Plant fresh weightÞ � 100

2.3 Chlorophyll a fluorescence measurements

Chlorophyll fluorescence signals were measured on the 40th day after sowing (DAS) using

PAM-2500 chlorophyll fluorometer (Heinz Walz GmbH, Effeltrich, Germany). Measurements

were done on the fourth leaf (fully developed leaf), selected from the top of each plant. Mea-

surements were done on 4 leaves from 4 different plants per experimental variant (4 measure-

ments × 4 leaves = 16 replicants). The leaf area of the standard measuring head according to

the size of the clip was 1.3 cm2.

Two types of chlorophyll a fluorescence induction kinetics were managed. The first mea-

surement was based on the application of saturation pulse from red LEDs (8000 μmolm-2 s-1;

300 ms duration) to determine the minimum (Fo) and maximum chlorophyll fluorescence

(Fm) after dark adaptation of the samples for 30 min (by the use of the special leaf clips). After

that, 14 pulses with the same light intensity were applied with 20 seconds intervals. The first

pulse was applied after 40 seconds from first measurements. Data are shown in Fig 3.

The second type of chlorophyll fluorescence induction kinetics was the performance of

rapid light curve (RLC). The light intensity gradient of the RLC was 0, 1, 30, 63, 100, 140, 197,

270, 362, 618, 784, and 1159 μmol photons m-2 s-1. The duration of each light intensity was 20

s. Data are shown in Fig 4.

Under both above mentioned chlorophyll fluorescence measurement protocols the effective

quantum yield of PSII photochemistry Y[II], the quantum yield of non-regulatory energy dis-

sipation [Y(NO) = Fs/Fm] and the quantum yield of regulatory energy dissipation [Y[NPQ] =

1- Y[II]—Y(NO)] were assessed. Non-photochemical quenching (NPQ), photochemical

quenching (qP), and the electron transport rate (ETR) were evaluated [35].

2.4 Data analysis

The data were subjected to two-way ANOVA (LEDs x Cultivar). The comparison between

treatment means were done using Duncan’s multiple range test when P� 0.05 [36]. Pearson’s
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correlation coefficient was executed using SPSS statistical software package version 16.0 (SPSS

Inc., Chicago, IL, USA).

3 Results

3.1 Plant growth characteristics

Light quality with LEDs had significant effects on tomato seedlings’ morphological appear-

ances (Table 1 and Fig 2). The plants of Millennium cultivar exhibited more height (21.79 cm)

than the plants of Gangmu No.1 (20.30 cm), indicating positive response of Millennium in

terms of biomass accumulation. On other hand, R7:B3 proved best (28.5% efficient than WFL)

among all other applied combinations of light with respect to the plant height of tomato seed-

lings. Plant height of tomato seedlings under the influence of R7:B3 was recorded maximum

in both cultivars (24.33 cm ‘Gangmu No.1’, 26.67 ‘Millennium’). By DMR statistical test, it has

been evaluated that R3:G2:B5 was slight but non-significantly different thanWFL (control),

while R3:G2:B5 was observed to be 1.14-fold lower thanWFL. There was non-significant dif-

ference among both cultivars with respect to stem diameter. The R7:B3 proved best (32.71%

efficient than WFL) among all other applied combinations of light in terms of stem diameter.

Stem diameter of tomato seedlings under the influence of R3:B7 was recorded maximum in

both cultivars (3.26 mm ‘Gangmu No.1’, 3.75 mm ‘Millennium’). In case of area of total leaves

per plant, the difference among both cultivars was comparable. The R7:B3 treatment exhibit-

ing maximum total leaves area (44.92% more thanWFL) among all other light combinations,

was most promising LED application on seedlings of tomato. The maximum area of leaves was

exhibited by the plants of both cultivars exposed to R3:B7 (194.75 cm2 ‘Gangmu No.1’, 231.71

cm2 ‘Millennium’). Millennium expressed 2.8% increase in plant diameter as compared to

Gangmu. The R5:G2:B3 treatment was comparable to WFL. Dry matter content of tomato

seedlings of Gangmu No.1 under the influence of R5:G2:B3 was recorded maximum (13.58%),

while Millennium was greatly influenced by WFL (13.34%).

3.2 Chlorophyll a fluorescence measurements

3.2.1 Measurements chlorophyll a fluorescence induction kinetics of the dark-accli-

mated tomato plants. Kinetic measurements (5 min in total) were performed on the dark-

Table 1. Effect of LED light quality on plant growth characteristics of tomato seedlings Gangmu No.1 and Millennium cultivars.

Treatments Plant height (cm) Stem diameter (mm) Total Leaves area (cm2) Dry matter content %

Gangmu
No.1

Millennium LEDs
Mean

Gangmu
No.1

Millennium LEDs
Mean

Gangmu
No.1

Millennium LEDs
Mean

Gangmu
No.1

Millennium LEDs
Mean

R 21.07 b 22.00 b 21.53 b 2.85 ab 2.66 b 2.76 bc 123.67 d 71.33d 97.50 d 8.42 e 10.93 d 9.68 d

R7:B3 24.33 a 26.67 a 25.5 a 3.05 ab 3.57 a 3.31 a 194.75 a 231.71 a 213.23 a 11.81c 12.47 b 12.14 b

R5:G2:B3 17.67 c 17.00 d 17.34d 2.96 ab 2.70 b 2.83 bc 117.33 d 85.13 cd 101.23 d 13.58 a 12.49 b 13.04 a

R3:G2:B5 19.50 bc 19.00 cd 19.25 c 3.10 ab 3.58 a 3.34 a 184.45 ab 141.96 bc 163.21 bc 13.00 ab 12.00 bc 12.5 b

R3:B7 21.00 b 23.00 b 22.00 b 3.26 a 3.75 a 3.26 a 176.27 a-c 203.81 ab 190.04 ab 12.36 bc 12.07 b 12.22 b

B 20.50 b 23.17 b 21.84 b 2.95 ab 3.24 ab 3.10 ab 143.27 b-d 191.92 ab 167.60 bc 10.56 d 11.40 d 10.98 c

WFL 18.00 c 21.67 bc 19.84 c 2.63 b 2.69 b 2.66 c 134.87 cd 159.41 b 147.14 c 12.68 b 13.34 a 13.01 a

Cultivars
mean

20.30 b 21.79 a 2.97 a 3.07 a 153.52 a 155.04 a 11.77 b 12.10 a

Values are means of three replicates. Different letters in the same column indicate significant differences according to Duncan’s multiple range test at P� 0.05. Where

R = Red light 100%, R7:B3 = Red70%+ Blue30%, R5:G2:B3 = Red50%+ Green20%+ Blue30%, R3:G2:B5 = Red30%+ Green20%+ Blue50%, R3:B7 = Red70%+ Blue30%,

B = Blue light 100%, WFL =White Fluorescent Lamps100%.

https://doi.org/10.1371/journal.pone.0249373.t001
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acclimated leaves, and the results are shown in Fig 3. Dark acclimation allowed the opening of

PSII reaction centers, oxidation of the electron transport chain, relaxation of photoprotective

mechanisms (Xanthophyll Cycle), and depletion of the trans-thylakoid gradient. The effective

quantum yield of PSII photochemistry Y[II] slowly began to increase with continued exposure

to higher light intensity in both varieties. In the cultivar Gangmu No.1, the value of Y[II] was

highest under R3:G2:B5 during 60-140s of the measurement time (Fig 3A), while it was highest

in the cultivar Millennium under R7:B3 at 40-300s (Fig 3B).

With increasing light intensity, the quantum yield of regulated energy dissipation in PSII

[Y[NPQ]] improved rapidly in both cultivars. The [Y[NPQ]] in cv. Gangmu No.1 was highest

under treatments B, WFL, and R3:B7 at 60–100, 120–140, and 160-300s, respectively (Fig 3C).

On the other hand, in cv. Millennium, it was highest under treatments B and R3:G2:B5 at 60–

80 and 140-300s, respectively (Fig 3D).

The quantum yield of non-regulated energy dissipation in PSII [Y(NO)] increased rapidly

at the onset of light exposure and decreased directly after 40s, with an increase in the time

period for all light qualities in both cultivars. The [Y(NO)] in cultivar Gangmu No.1 was high-

est under R treatment at 60-300s (Fig 3E), while in cv. Millennium it was highest under R treat-

ment at 120-300s (Fig 3F).

Fig 2. Tomato seedlings grown 40 days under different treatments of LED light.

https://doi.org/10.1371/journal.pone.0249373.g002

PLOS ONE Photosynthetic apparatus performance of tomato seedlings grown under various combinations of LED illumination

PLOSONE | https://doi.org/10.1371/journal.pone.0249373 April 15, 2021 6 / 17

https://doi.org/10.1371/journal.pone.0249373.g002
https://doi.org/10.1371/journal.pone.0249373


Fig 3. Effects of LED light quality on chlorophyll a fluorescence induction kinetics of the dark-acclimated tomato
plants. A and B: effective quantum yield of PSII photochemistry Y(II), C and D: quantum yield of regulatory energy
dissipation in PSII Y(NPQ), E and F: quantum yield of non-regulated energy dissipation in PSII Y(NO), G and H:
non-photochemical quenching (NPQ), I and J: photochemical quenching coefficient (qP), and K and L: electron
transport rate (ETR) in tomato leaves. Gangmu No.1 (A,C,E,G,I,K) andMillennium (B,D,F,H,J,L). Line markers on
the curves indicate to the average± standard error (P�0.05, n = 4). Sort significance letters from top to bottom
according to the treatments (R, R7:B3, R5:G2:B3, R3:G2:B5, R3:B7, B, WFL). Where R = Red light 100%, R7:
B3 = Red70%+ Blue30%, R5:G2:B3 = Red50%+Green20%+ Blue30%, R3:G2:B5 = Red30%+Green20%+ Blue50%, R3:
B7 = Red70%+ Blue30%, B = Blue light 100%, WFL =White Fluorescent Lamps100%.

https://doi.org/10.1371/journal.pone.0249373.g003
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Non-photochemical quenching (NPQ) increased rapidly with increasing time in both varie-

ties at all light qualities. The (NPQ) in cultivar Gangmu No.1 was highest under B and R3:B7

light treatments at 40-160s and R7:B3, R3:B7 and B treatments at 160-300s (Fig 3G), while in

cv. Millennium this parameter was highest under B at 40-120s, R7:B3 at 140-160s, R3:G2:B5 at

180-280s and then B treatment at 300s (Fig 3H).

The photochemical quenching coefficient (qP) decreased directly with the stable light

intensity of 100 μmol photons m-2 s-1 at all light qualities in both cvs. and then increased rap-

idly with continued light exposure at all light qualities in both cvs. The qP in cv. Gangmu No.1

was highest under R3:G2:B5, R5:G2:B3, and B at 80-300s (Fig 3I), while in cv. Millennium it

was highest under B and R7:B3 at 80-300s (Fig 3J).

The electron transport rate of PSII (ETR) increased rapidly with increasing exposure time

in all light qualities in both tested cultivars. The ETR developed best under R3:G2:B5 in cv.

Gangmu No.1 (at 40-160s and then at 200-300s) (Fig 3K), while the highest value was under

R7:B3 in cv. Millennium at 40-300s (Fig 3L).

3.2.2 Effects of LED light quality on RLC of the light-acclimated tomato plants. Rapid

light curves (RLCs) of light-acclimated photosynthetic quantum yields for PSII were measured.

The LED-induced differences in the effective quantum yield of PSII photochemistry Y[II]

manifested mainly in the range of 50–500 light intensities. In this range, the highest Y(II) val-

ues for R5:G2:B3 were obtained in Gangmu No. 1, while hardly any significant differences

were observed in Millennium. In the latter, WFL showed the highest Y(II) (Fig 4A and 4B). It

gradually decreased with increasing light intensity in all light quality treatments. The Y[II]

under R5:G2:B3 and R3:G2:B5 was significantly higher than the others for cv. Gangmu No.1 at

almost all light intensities (Fig 4A), while under WFL it was significantly higher than the other

treatments for cv. Millennium at almost all light intensities (Fig 4B).

The quantum yield of regulated energy dissipation in PSII [Y (NPQ)] was highest under B

in Gangmu No 1, but significant differences were hardly observed in cv. Millennium. The blue

light (B) provided the highest [Y (NPQ)] in both tested varieties (Fig 4C and 4D). The quan-

tum yield of nonregulated energy dissipation in PSII [Y(NO)] had the highest value under R in

both cultivars (Fig 4E and 4F). It increased rapidly with initial light exposure and stabilized

after a slight decrease. However, it increased with increasing light intensity up to 60 μmol pho-

tons m-2 s-1 at all light qualities in both cultivars. The Y(NO) was highest under the R treat-

ment in both cultivars at all light intensities (Fig 4E and 4F).

Non photochemical quenching (NPQ) had the highest value under B and R3:G2:B5 in both

cultivars studied (Fig 3G and 3H). The (NPQ) gradually increased with increasing light inten-

sity under all light qualities in both cultivars. The NPQ was significantly higher under B and

R3:G2:B5 treatments compared toWFL at almost all light intensities in both cultivars studied

(Fig 4G and 4H).

The photochemical quenching coefficient (qP) had the highest value under treatments R5:

G2:B3 andWFL in both cultivars (Fig 4I and 4J). It gradually decreased with increasing light

intensity under all tested light qualities in both cultivars. The qP was significantly lower under

R, R3:B7 and B compared to WFL at almost all light intensities in both cultivars (Fig 4I and

4J).

The electron transfer rate (ETR) of PSII was better under R5:G2:B3 in cultivar Gangmu

No.1 (Fig 4K), while it was best under WFL in cultivar Millennium before the light intensity

reached 270 μmol photons m-2 s-1 and R3:G2:B5 after the light intensity reached 270 μmol m-2

s-1 (Fig 4L). The ETR increased with increasing light intensity and became constant when the

light intensity reached 473, 618, 748, and 1159 μmol photons m-2 s-1, respectively, depending

on the treatments, except for R, which decreased after reaching 473 μmol photons m-2 s-1 in

both varieties. The ETR the plants treated with R5:G2:B3 light was significantly higher in the
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Fig 4. Effects of LED light quality on RLC of the light-acclimated tomato plants. A and B: effective quantum yield
of PSII photochemistry Y(II), C and D: quantum yield of regulatory energy dissipation in PSII Y(NPQ), E and F:
quantum yield of non-regulated energy dissipation in PSII Y(NO), G and H: non-photochemical quenching (NPQ), I
and J: photochemical quenching coefficient (qP), and K and L: electron transport rate (ETR) in tomato leaves. Gangmu
No.1 (A,C,E,G,I,K) and Millennium (B,D,F,H,J,L). Line markers on the curves indicate to the average± standard error
(P�0.05, n = 4). Sort significance letters from top to bottom according to the treatments (R, R7:B3, R5:G2:B3, R3:G2:
B5, R3:B7, B, WFL). Where R = Red light 100%, R7:B3 = Red70%+ Blue30%, R5:G2:B3 = Red50%+Green20%
+ Blue30%, R3:G2:B5 = Red30%+Green20%+ Blue50%, R3:B7 = Red70%+ Blue30%, B = Blue light 100%,
WFL =White Fluorescent Lamps100%.

https://doi.org/10.1371/journal.pone.0249373.g004
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cultivar Gangmu No.1 compared with the other treatments (Fig 4K), while it was statistically

similar in all other treatments at all light intensities, except for R, where it was lower in the cul-

tivar Millennium (Fig 4L).

3.2.3 Correlations between morphological and physiological parameters. Pearson’s

correlation [37] was carried out among the morphological and physiological parameters

observed in this study (Table 2). A significant positive correlation between Y[II] and qP (R2 =

0.899), Y[II] and ETR (R2 = 0.871), qP and ETR (R2 = 0.966), NPQ and Y[NPQ] (R2 = 0.791)

were observed in cv. Gangmu No.1. Only two correlations were found between morphological

and physiological tested parameters i.e., NPQ and stem diameter (SD) (R2 = 0.758) or total

leaves area (TLA) (R2 = 0.788). In the case of cultivar ‘Millennium’, a positive significant rela-

tionship was found between qP and ETR (R2 = 0.945), Y[II] and ETR (R2 = 0.959), and NPQ

and Y[NPQ] (R2 = 0.9113). Only one correlation between morphological and physiological

parameters was found i.e., qP and total leaves area (TLA) (R2 = 0.426), (Table 2).

4 Discussion

In general, not only the performance of the photosynthetic apparatus of plants is strongly

influenced by the quality of light, but also their morphological and physiological properties

[38]. In this work, we have tried to understand how the photosynthetic efficiency of plants and

their growth are affected by different light quality and quantity.

The process of photosynthesis requires light capture and utilization. Leaves are affected by

the directional quality of incoming light. They are not simple light absorbing objects and

Table 2. Correlation coefficient evaluation betweenmorphological and physiological parameters.

PH SD TLA DM Y[II] Y[NPQ] Y[N0] NPQ qP ETR

G
angm

u
N
o.1

PH 1

SD 0.423 1

TLA 0.644 0.656 1

DM -0.425 0.205 0.252

Y[II] -0.152 -0.052 0.278 0.664 1

Y[NPQ] 0.328 0.485 0.310 -0.072 -0.502 1

Y[N0] -0.045 -0.234 -0.523 -0.708 -0.824� -0.077 1

NPQ 0.521 0.758� 0.788� 0.156 -0.053 0.791� -0.454 1

qP -0.03 -0.342 0.121 0.406 0.900�� -0.471 -0.740 -0.167 1

ETR -0.273 -0.467 -0.084 0.462 0.871� -0.501 -0.686 -0.297 0.967�� 1

M
illennium

PH 1

SD 0.426 1

TLA 0.747 0.749 1

DM -0.081 -0.06 0.277 1

Y[II] 0.571 -0.071 0.410 0.235 1

Y[NPQ] -0.200 0.512 0.038 -0.499 -0.599 1

Y[N0] -0.407 -0.465 -0.679 -0.154 -0.647 -0.135 1

NPQ 0.117 0.714 0.320 -0.564 -0.292 0.911�� -0.405 1

qP 0.557 0.085 0.426�� -0.046 0.926 -0.391 -0.711 -0.023 1

ETR 0.474 -0.036 0.427 0.255 0.959�� -0.605 -0.656 -0.281 0.945�� 1

� = Correlation is significant at the P� 0.05 level,
�� = Correlation is significant at the P� 0.01 level, by using Pearson correlation coefficients. Where PH = Plant height, SD = Stem diameter, TLA = Total leave area, and

DM = Dry matter contents%.

https://doi.org/10.1371/journal.pone.0249373.t002
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cellular anatomy affects the direction of light entering the mesophyll [39]. Stimulation of

growth by different wavelengths is already known, e.g., how wavelengths can affect plant

growth through light signal transduction pathways [40, 41]. During the transition from dark

to light, the rate of hypocotyl elongation is determined by the integration of light signals per-

ceived through the phototropin, cryptochrome, and phytochrome signaling pathways. For

example, blue light is absorbed by cryptochrome and phototrophic photoreceptors [40, 41]

and can inhibit shoot elongation [42].

Our results contradict studies reporting inhibition of seedling growth under mixed R and B

lights compared to monochromatic light [43–46]. Seedlings of the two tested cultivars

(Gangmu No.1 and Millennium) showed maximum plant height, stem diameter and total leaf

area when grown under R7:B3, indicating that this spectral composition is most suitable for

their growth (Table 1). Similar results were obtained by Yang, He [47] in pepper seedlings and

Kim and Hwang [48] in tomato seedlings. They observed that a mixture of red and blue LED

light had a beneficial effect on total leaf area and plant height. Thus, the observed stimulation

of plant elongation in our experiment could be due to the reduction in the ratio of blue to red

light [49].

Light quality affects photochemical reactions due to the difference in luminous efficiency of

the various photosynthetic pigments [50–52]. In addition, a certain spectrum of solar radiation

can damage the photosystems, especially PSII, and cause further photoinhibition [53–55].

Light quality can directly affect the photochemical response in short-term illumination. It can

also indirectly affect photosynthetic electron transport by regulating several biochemical pro-

cesses such as endogenous hormone balance and metabolic responses [56]. In dark-acclimated

leaves of tomato, the parameter Y[II ] increased consistently with elapsed time (Fig 3A and

3B). This was mainly due to the activation of enzymes involved in carbon metabolism and sto-

mata opening [57]. On the other hand, Y[II] decreased while photosynthetically active radia-

tion (PAR) increased (0, 30, 63, 100, 140, 197, 362, 618, 784, and 1159 μmol photons m-2 s-1)

(Fig 4A and 4B). This may be due to excessive reduction of PSII subunits. The lower Y[II]

observed under red light in cv. Gangmu No.1. This may be due to the fact that red light effi-

ciently induces inactivation of the PSII reaction center in Tris-treated thylakoid membranes

[58].

The fraction of energy dissipated in the form of heat regulates the NPQ photoprotective

mechanism Y[NPQ] and was larger when the value of Y[II] approached zero at high quantum

flux densities. This may indicate a high photoprotective capacity [59]. The results of our study

showed that the values of Y[NPQ] were significantly different between treatments under dark

and light acclimation conditions (Figs 3 and 4C and 4D).

A greater proportion of energy dissipated passively in the form of heat and fluorescence,

mainly by closed PSII reaction centers (Y(NO)), reflects the inability of a plant to protect itself

from damage caused by excessive illumination [59]. Our results showed a decrease in Y(NO)

under dark and light acclimation conditions (Figs 3 and 4E and 4F). An inability of seedlings

to protect against excessive illumination was observed in both cultivars under R light condi-

tions (Figs 3 and 4E and 4F). Interestingly, Hamdani, Khan [60] recently showed that signifi-

cant down-regulation of the catalase (CAT) and ascorbate peroxidase (APX) transcripts was

observed in rice treated with both red and blue light compared with those treated with white

light. Therefore, the weakened antioxidant system and accumulated reactive oxygen species in

tomato plants grown under red light regimes may have played a significant role in the observed

changes in Y(NPQ) and Y(NO).

To reduce light damage, plants have evolved several protective mechanisms, including non-

photochemical quenching (NPQ), which quenches the excitation of the chlorophyll molecule

within the light-collecting antennae of PSII by converting the excitation energy into thermal

PLOS ONE Photosynthetic apparatus performance of tomato seedlings grown under various combinations of LED illumination

PLOSONE | https://doi.org/10.1371/journal.pone.0249373 April 15, 2021 11 / 17

https://doi.org/10.1371/journal.pone.0249373


energy that can then be emitted [61, 62]. Our results showed that the value of NPQ under dark

acclimation and light acclimation increased continuously with increasing time and light inten-

sity, respectively (Figs 3 and 4G and 4H). According to the NPQmodel proposed by Zaks,

Amarnath [63] and Chávez-Arias, Gómez-Caro [64]tomato leaves are often unable to use all

the light absorbed by their photosynthetic pigments for CO2 fixation. The limited CO2 fixation

limits photosynthetic electron transport, which in turn limits the performance of photosystem

I and II reaction centers. In the case of PSII, these results lead to reactions that generate delete-

rious oxygen [65] as well as damage to the reaction center [66] and membranes [67, 68].

Photochemical quenching (qP) is used as a parameter for estimating the fraction of PSII cen-

ters in open states based on a puddle model for the photosynthetic unit [69]. qP value increased

under dark-acclimation of tomato leaves (Fig 3I and 3J), indicating an increase of the active

reaction centers over the elapsed time. These results are in agreement with Wang et al. [70])

work, where it was found that the qP of Dendrobium candidum plantlets under red and blue

compound light were higher than monochrome red light. On the other hand, qP under light-

acclimation was observed to be decrease with increase in light intensity (0, 30, 63, 100, 140, 197,

362, 618, 784, and 1159 μmol photons m-2 s-1) and also decreased with time (Fig 4I and 4J).

Electron transport rate (ETR) is also a light-acclimated parameter that is directly correlated

to Y[II] by the equation ETR = PAR x Y(II) x Abs-factor (absorbance of photons by photosyn-

thetic pigments) x ratio of absorbed photons by PSII and by photosynthetic pigments [71]. In

present study, ETR was continuously increasing in time or increasing light intensity (Figs 3 and

4K and 4L). This was denoted in both cultivars and all light treatments. However, the increment

of ETR value in time was continues up to 300s (Fig 3K and 3L), while it stopped to increase

after light intensities of ca. 400 μmol photons m-2 s-1 (Fig 4K and 4L) which means that the latter

was the maximum light for growing these plants, nevertheless of the applied light quality.

Several studies showed that light quality has significant effect on plants growth and photo-

synthetic efficiency of plants. Leaves of Cunninghamia lanceolata exposed to light (72.7% red

+ 9.1% blue+ 9.1% purple+ 9.1% green) generated more roots and presented higher chloro-

phyll, Fv/Fo, Y (II), qP, and ETRII than white light (12.7% red+ 3.9% blue+ 83.4% green) dur-

ing photoperiods of 8 and 16 h [72]. The exposure to R3:G2:B5 in Gangmu No.1 and R7:B3 in

Millennium cultivar might have led to higher cyclic electron transport and consequently to

acidification of thylakoid lumen and higher NPQ, avoiding that these electrons are used for

photosynthesis [73]. On the other hand, green light can penetrate deeper in the leaf than red

or blue light [18, 74], thus leading to an increase of ETR and consequently to a stronger activa-

tion of inner leaf photosynthesis and carboxylation activity of RuBisCo [18]. The work con-

ducted by Folta [75] showed that green light promoted early stem elongation that antagonizes

growth inhibition of Arabidopsis seedlings. Liu and van Iersel [21] also showed that plants can

exploit from green light but only under high light intensities.

Measurements of chlorophyll a, chlorophyll b, carotenoids, nitrate, soluble protein, and sol-

uble sugar showed significant difference among the treatments (unpublished data). Chloro-

phyll a, chlorophyll a+b, and carotenoids contents were lower under red light in both

cultivars. The reason might be that the pure red light did not give enough absorbed light

energy causing low Fv/Fm, Y(II), Y(NPQ), ETR, and qP. The high Y(NO) suggests that the

function of PSII is not well operated under red light solely, and it might alter the structure of

PSII. Chlorophyll a had the highest value under R3:G2:B5 in Gangmu No.1 and under R7:B3

in Millennium cultivar. The reason could be the difference in the effective photochemical

quantum yield of photosystem II value resulting from the different optical spectra’s effect

between the different cultivars. Our results showed that the effect of the optical spectra differs

in the different genotypes within the same plant species. Ouzounis et al. [76] examined the

effect of 100% red and 88% red/12% blue on nine tomato genotypes and reported that the
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combination of blue and red LED lighting increased chlorophyll and flavonols contents in

three genotypes.

Considering that tomato leaves of both cultivars treated with red light have increased Y

(NO), we think that these plants have impaired antioxidant capacity compared to plants

grown under other light regimes, leading to an increase in reactive oxygen species. reported

that significant down-regulation of transcripts of catalase (CAT) and ascorbate peroxidase

(APX) was observed in rice treated with both red and blue light compared to plants treated

with white light. Therefore, the weakened antioxidant system and, accordingly, the accumu-

lated reactive oxygen species, as represented here by H2O2, in tomato plants grown under red

light regimes may have played a role in the observed changes in Y(II), Y(NO), and Y(NPQ).

Our results suggest that the responses of the photosynthetic apparatus to light regimes are

cultivation-dependent [77]. In the case of cv. Gangmu No.1, the combinations R3:G2:B5 and

R7:B3 were the best light regimes for the photosynthetic process, while in the case of cv. "Mil-

lennium" it was R7:B3 andWFL.

The only logical/explanatory significant relationship between morphological and physio-

logical test parameters to be highlighted from our work was between qP and total leaves area

(R2 = 0.426) in cv. Millennium. This indicates the weak relationship between the growth

parameters tested in this work and the photosynthetic efficiency of the plants and that such

relationships are cultivation dependent. It appears that this is because different light regimes

affect plant photosynthetic efficiency rather than growth parameters.

5 Conclusions

The photosynthetic efficiency of the plants of the two tomato cultivars tested was significantly

altered as a function of the light regime applied. This was observed under both types of chloro-

phyll fluorescence applied measurements. However, we found that the response of the photo-

synthetic apparatus of tomato plants to light regimes is cultivar dependent. Variations among

these traits suggest that the linking between morphological and physiological traits is insuffi-

cient to understand the effect of the optical spectrum of light on plant growth. Therefore, it is

necessary to perform molecular analyses and link them to morphological and physiological

traits to learn more about the mechanisms of the effect of LED light on seedling growth.
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