# **Photosynthetic O<sub>2</sub> Exchange Kinetics in Isolated Soybean Cells<sup>1</sup>**

Received for publication December 31, 1981 and in revised form March 22, 1982

PAUL W. BEHRENS, THOMAS V. MARSHO, AND RICHARD J. RADMER Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Catonsville, Maryland 21228 (P. W. B, T. V. M.), and Martin Marietta Laboratories, 1450 South Rolling Road, Baltimore, Maryland 21227 (R. J. R.)

#### ABSTRACT

Light-dependent  $O_2$  exchange was measured in intact, isolated soybean (*Glycine max.* var. Williams) cells using isotopically labeled  $O_2$  and a mass spectrometer. The dependence of  $O_2$  exchange on  $O_2$  and  $CO_2$  was investigated at high light in coupled and uncoupled cells. With coupled cells at high  $O_2$ ,  $O_2$  evolution followed similar kinetics at high and low  $CO_2$ . Steady-state rates of  $O_2$  uptake were insignificant at high  $CO_2$ , but progressively increased with decreasing  $CO_2$ . At low  $CO_2$ , steady-state rates of  $O_2$  uptake were 50% to 70% of the maximum  $CO_2$ -supported rates of  $O_2$  reduction determined in uncoupled cells, suggesting the occurrence of another light-induced  $O_2$ -uptake process (*i.e.* photorespiration).

Rates of O<sub>2</sub> exchange in uncoupled cells were half-saturated at 7% to 8% O<sub>2</sub>. Initial rates (during induction) of O<sub>2</sub> exchange in uninhibited cells were also half-saturated at 7% to 8% O<sub>2</sub>. In contrast, steady-state rates of O<sub>2</sub> evolution and O<sub>2</sub> uptake (at low CO<sub>2</sub>) were half-saturated at 18% to 20% O<sub>2</sub>. O<sub>2</sub> uptake was significantly suppressed in the presence of nitrate, suggesting that nitrate and/or nitrite can compete with O<sub>2</sub> for photoreductant.

These results suggest that two mechanisms (O<sub>2</sub> reduction and photorespiration) are responsible for the light-dependent O<sub>2</sub> uptake observed in uninhibited cells under CO<sub>2</sub>-limiting conditions. The relative contribution of each process to the rate of O<sub>2</sub> uptake appears to be dependent on the O<sub>2</sub> level. At high O<sub>2</sub> concentrations ( $\geq$ 40%), photorespiration is the major O<sub>2</sub>-consuming process. At lower (ambient) O<sub>2</sub> concentrations ( $\leq$ 20%), O<sub>2</sub> reduction accounts for a significant portion of the total light-dependent O<sub>2</sub> uptake.

It is generally recognized that one of the important factors limiting net photosynthesis in higher  $C_3$  plants under ambient conditions is the prevailing  $CO_2$  and  $O_2$  tensions (13, 31, 32). Decreasing  $CO_2$  or increasing  $O_2$  concentrations (from ambient) leads to significant decreases in the net rate of photosynthesis. Conversely, the net rate of photosynthesis can be increased by increasing the  $CO_2$  or decreasing the  $O_2$  concentrations. These observations have been interpreted as a reflection of the direct and/or indirect competition between  $CO_2$  and  $O_2$  for photosynthetic-reducing equivalents. Three principal  $O_2$ -consuming processes have been shown to occur in higher  $C_3$  plants: mitochondrial respiration,  $O_2$  reduction (pseudocyclic electron transport or Mehler reaction), and photorespiration. In strong light, the rate of mitochondrial  $O_2$  consumption is generally thought to represent a relatively minor component of the total  $O_2$  uptake (see, however, 9, 10) and most attention has focused on the lightdependent processes of  $O_2$  reduction and photorespiration. The extent to which each process occurs *in vivo* under different photosynthetic conditions is unresolved.

Endogenous  $O_2$  reduction has been shown to occur in a variety of photosynthetic systems (2, 8, 11, 17, 21, 29). This light-dependent process is eliminated by DCMU, is absent in PSI-deficient algal mutants (24), and is not directly dependent on reactions of the carbon reduction cycle. Inhibition of  $O_2$  reduction by  $CO_2$ presumably reflects the competition between  $O_2$  and NADP<sup>+</sup> for photosynthetic reducing equivalents.  $O_2$  reduction generally occurs at lower rates in washed, broken chloroplast preparations compared with intact chloroplasts and/or cell preparations (12, 17). Collectively these observations suggest that  $O_2$  reduction involves the direct photoreduction of  $O_2$  by some soluble component operating on the reducing side of PSI.

Photorespiration has been extensively investigated and has been suggested to occur at substantial rates in  $C_3$  plants. Ribulose bisPcarboxylase/oxygenase is generally thought to be the pivotal point between the photosynthetic carbon-reduction cycle and the photorespiratory cycle (6, 15, 31; see, however, 20). The relative magnitude of carboxylation (photosynthesis) or oxygenation (photorespiration) is dependent on direct competition between  $CO_2$ and  $O_2$  (6, 15).

We previously reported (17) the light-dependent  $O_2$  exchange characteristics of isolated, intact chloroplasts and cells from spinach under conditions of strong light, high O<sub>2</sub>, and saturating CO<sub>2</sub> concentrations. Under these conditions, significant rates of O<sub>2</sub> uptake were found only during induction or when CO<sub>2</sub> fixation was inhibited. The O<sub>2</sub> uptake that was observed under these conditions was attributed to O<sub>2</sub> reduction. The effects of varying O<sub>2</sub> and CO<sub>2</sub> concentrations on steady-state rates of O<sub>2</sub> exchange have subsequently been examined in whole leaves using similar stable isotope techniques (5, 7, 9; see also 13, 16, 18). These studies suggest a complex relationship between photosynthetic O2-exchange processes, light intensity, and prevailing O2/CO2 concentrations. In this communication, we report the effects of varying O<sub>2</sub> and CO<sub>2</sub> concentrations on rates of light-dependent O<sub>2</sub> exchange in intact, isolated soybean cells. The use of intact cell preparations should potentially eliminate some of the inherent gas diffusion problems encountered in studies with whole leaves. Unlike isolated, intact chloroplasts, cell preparations also contain a complete photorespiratory cycle. A preliminary report of a portion of this work has already appeared (4).

### MATERIALS AND METHODS

Soybean (*Glycine max.* var. Williams) plants were grown in a greenhouse in soil and fertilized weekly with 20-20-20. Intact cells were isolated from young, not fully expanded leaves.

Cells were isolated from soybean as previously described for spinach (17), except for differences in the composition of the

<sup>&</sup>lt;sup>1</sup> Supported by the Science and Education Administration of the United States Department of Agriculture under Grants No. 59-2244-1-629-0 (T. V. M.) and 59-2245-1-1-630-0 (R. J. R.) from the Competitive Research Grants Office.



FIG. 1. Time course of light-induced  $O_2$  evolution and  $O_2$  uptake in intact isolated soybean cells. A, Initial  $O_2$  and  $CO_2$  concentrations were 48% (0.565 mM) and 298  $\mu$ M, respectively. B, Initial  $O_2$  concentration was 46% (0.548 mM). Initial and final  $CO_2$  concentrations were 10 and 8  $\mu$ M, respectively. Numbers in parentheses refer to rates of  $O_2$  evolution or uptake expressed as  $\mu$ mol  $\cdot$  mg Chl<sup>-1</sup>  $\cdot$  h<sup>-1</sup>. Actinic light on ( $\uparrow$ ) and off ( $\downarrow$ ). Total Chl concentration was 75  $\mu$ g/ml.

media. Leaves were sliced into small strips (0.5  $\times$  2 cm) and vacuum infiltrated with 20 ml of media containing 20 mM MES-KOH buffer (pH 5.6), 12.5 mM K<sub>2</sub>SO<sub>4</sub>, 2% (w/v) PVP, and 0.75% (w/v) Macerase (CalBiochem). Leaf strips were subsequently digested in infiltration media containing 0.3 M sorbitol as previously described (27, 28). Released cells were pelleted (100g; 5 min; 4°C); washed twice with media containing 50 mM Hepes-KOH (pH 7.8), 0.2 M sorbitol, and 1 mM MgCl<sub>2</sub>; and finally resuspended in wash medium containing 5 mM DDT. Cell preparations were greater than 95% intact as judged by staining with 2.5% (w/v) Evans Blue in 0.2 M sorbitol. Except as noted, cells were assayed in a medium consisting of 0.2 м sorbitol, 50 mм Hepes-KOH (pH 7.8), 1 mм MgCl<sub>2</sub>, and 50 units/ml of carbonic anhydrase (Sigma). In the presence of a saturating amount of NaHCO<sub>3</sub>, CO<sub>2</sub>-dependent rates of net O<sub>2</sub> evolution were typically  $\geq 100 \ \mu mol O_2$  evolved  $\cdot mg \ Chl^{-1} \cdot h^{-1}$ . Chl concentrations were determined spectrophotometrically as described by Arnon (1).

 $O_2$  exchange was measured polarographically (net), or with a quadrupole mass spectrometer, using isotopically labeled  $O_2$  (99 atom % [<sup>18</sup>O<sub>2</sub>], Bio-Rad Labs). The instrumentation and methods for data analysis and calibration have been described previously (23). All experiments were done using broad-band saturating, orange-red light (Schott filter OG 530 and appropriate heat filters) at room temperature (20-25°C). The initial  $O_2$  and  $CO_2$  concentrations used in each experiment are given in the figure legends. It should be noted that at the pH used in these experiments (pH 7.8) most of the 'total  $CO_2'^2$  was present in the form of  $HCO_3^-$ . Carbonic anhydrase was added to ensure rapid equilibration between  $CO_2$  and  $HCO_3^-$  and thus minimize major changes in  $CO_2$  concentration during the course of an experiment.

### RESULTS

 $O_2$  Exchange Characteristics at High and Low  $CO_2$  Concentrations. The contrasting effects of high (saturating) and low (near ambient)  $CO_2$  concentrations on the kinetics of light-dependent  $O_2$  exchange in intact isolated soybean cells are illustrated in Figure 1. As reported previously (17), in the presence of saturating amounts of CO<sub>2</sub>, O<sub>2</sub> evolution begins immediately upon illumination (Fig. 1A). Concomitantly, there is an immediate light-dependent increase in the rate of O<sub>2</sub> consumption. After an induction period ( $\sim$ 1 min), the rate of O<sub>2</sub> evolution increases severalfold, whereas the rate of light-dependent O<sub>2</sub> uptake becomes essentially negligible.

The comparable experiment, done in the presence of approximately ambient  $CO_2$  (~10  $\mu$ M) is shown in Figure 1B. The kinetics of  $O_2$  evolution are virtually identical to those observed in the presence of saturating amounts of  $CO_2$ . In contrast to conditions in which  $CO_2$  is saturating, the rate of light-dependent  $O_2$  uptake increases dramatically following induction. After several minutes of illumination,  $O_2$ -uptake processes account for a significant proportion (60–70%) of the  $O_2$  evolved, *i.e.* net rates of  $O_2$  evolution are markedly decreased at low compared with saturating  $CO_2$ .

As discussed previously (17), our interpretation of the  $O_2$ -exchange kinetics observed under the high  $CO_2$  conditions of Figure 1A is that the initial rate of  $O_2$  uptake corresponds to  $O_2$  reduction. The low steady-state rate of  $O_2$  uptake indicates that high levels of  $CO_2$  inhibit  $O_2$  uptake associated with  $O_2$  reduction. At ambient  $CO_2$  concentrations, steady-state rates of  $O_2$  uptake could be associated with  $O_2$  reduction and/or photorespiratory  $O_2$ -uptake processes. The direct photosynthetic reduction of  $O_2$  has been shown to occur under conditions where  $CO_2$  fixation is inhibited (17) and it has been widely reported (12, 31, 32) that photorespirations.

O<sub>2</sub> Exchange Characteristics of Uncoupled Cells. A potential means of determining whether the high rates of light-dependent O<sub>2</sub> uptake observed in Figure 1B are associated with photorespiratory and/or O<sub>2</sub>-reduction processes would be to establish the dependence of light-induced O<sub>2</sub> uptake on O<sub>2</sub> concentration. Although widely varied estimates of the apparent affinity of photorespiratory O<sub>2</sub> uptake for O<sub>2</sub> have been reported, most studies (3, 7, 14) suggest a relatively low affinity for O<sub>2</sub> (>20%). In contrast, measurements of O<sub>2</sub> uptake associated with O<sub>2</sub> reduction suggest that this process has a higher affinity for O<sub>2</sub> ( $\leq 8-10\%$ ) (2, 17, 22, 26).

The apparent affinity of the  $O_2$ -reduction process for  $O_2$  was determined using intact, isolated soybean cells (Fig. 2). Experi-

<sup>&</sup>lt;sup>2</sup> Abbreviations: 'total  $CO_2$ ', =  $CO_2 + HCO_3^-$ ; CCCP, carbonyl cyanide, *m*-chlorophenyl hydrazone



FIG. 2. Rates of O<sub>2</sub> exchange as a function of O<sub>2</sub> concentration assayed in presence of 4  $\mu$ M CCCP and 5 mM iodoacetamide. Each data point represents averaged rate of O<sub>2</sub> evolution and O<sub>2</sub> uptake observed. Unnormalized data (different symbols) obtained from four cell preparations. CO<sub>2</sub>-saturated rates of net photosynthesis in uninhibited cells were 84 (O), 121 ( $\oplus$ ), 139 ( $\Delta$ ), 190 ( $\blacktriangle$ ), expressed as  $\mu$ mol O<sub>2</sub> evolved  $\cdot$  mg Chl<sup>-1</sup>  $\cdot$  h<sup>-1</sup>. Curve is a rectangular hyperbola fitted to data assuming a maximum rate of 27.5  $\mu$ mol  $\cdot$  mg Chl<sup>-1</sup>  $\cdot$  h<sup>-1</sup> and an O<sub>2</sub> concentration of 7.5% (80–95  $\mu$ M) for half saturation.



FIG. 3. Effect of  $O_2$  concentration on initial and steady-state rates of light-dependent  $O_2$  evolution and  $O_2$  uptake. Initial  $CO_2$  concentrations were 8 to  $12 \mu$ M. Initial rates of  $O_2$  exchange were plotted as a function of  $O_2$  concentration at onset of illumination. Steady-state rates were plotted as a function of  $O_2$  concentration observed following attainment of a steady-state since net  $O_2$  was evolved during course of these experiments. " $O_2$  reduction" curve (---) was redrawn from Figure 2 assuming a  $V_{max}$  of 27.5  $\mu$ mol  $O_2$  consumed  $\cdot$  mg Chl<sup>-1</sup>  $\cdot$  h<sup>-1</sup> and half-saturation at 7.5%  $O_2$ . Vertical dashed line illustrating 21%  $O_2$ . Steady-state (but not initial) rates from four different cell preparations were normalized to the highest observed  $CO_2$ -saturated rate of  $O_2$  evolution; O, steady-state rate of  $O_2$  uptake;  $\blacktriangle$ , initial rate of  $O_2$  evolution.

ments were done at varied  $O_2$  concentrations in the presence of a Calvin cycle inhibitor (iodoacetamide) and an uncoupler (CCCP). The sustained light-dependent  $O_2$  uptake (and comparable rates of  $O_2$  evolution) observed under these conditions reflects the  $O_2$ -reduction process (17) unemcumbered by coupling to photophosphorylation. Note that rates of  $O_2$  exchange increase with increasing  $O_2$  concentration with an apparent  $K_m$  ( $O_2$ ) of approximately 7% to 8%  $O_2$  or 80 to 95  $\mu$ M  $O_2$  and that the maximum capacity of

the system to photoreduce  $O_2$  is approximately 20 to 30  $\mu$ mol  $O_2$ . mg Chl<sup>-1</sup>·h<sup>-1</sup>. (These values are minimum estimates since we assume  $O_2$  isotope equilibrium between the inside and outside of the cells [30].) This  $O_2$  affinity is similar to that previously determined for algae (22, 26), but considerably lower than that reported from experiments with broken chloroplasts (2, 12). The inherent rate of  $O_2$  reduction in soybean cells is considerably lower than some algae, *e.g. Scenedesmus* (21), and is relatively independent of the photosynthetic CO<sub>2</sub>-fixation capacity of the cells (see legend of Fig. 2).

O<sub>2</sub> Exchange Characteristics of Coupled, CO<sub>2</sub>-Limited Cells. Experiments similar to those of Figure 2 were conducted with coupled (uninhibited) cells in the presence of limiting (8 to 12  $\mu$ M) CO<sub>2</sub> concentrations. Figure 3 shows the initial (*i.e.* during induction) and steady-state rates of O<sub>2</sub> evolution and O<sub>2</sub> uptake (Fig. 1) as a function of O<sub>2</sub> concentration. The O<sub>2</sub> response curves for these initial rates of O<sub>2</sub> exchange were similar to those obtained with uncoupled cells, *i.e.*  $K_m$  (O<sub>2</sub>)=8%, suggesting that the initial O<sub>2</sub> exchange corresponds to O<sub>2</sub> reduction. On the other hand, steady-state rates of O<sub>2</sub> evolution and O<sub>2</sub> uptake showed a much higher half-saturation value.

Several features can be noted regarding the steady-state rates of  $O_2$  exchange (Fig. 3). The maximum rate of  $O_2$  uptake observed in these experiments was approximately 100  $\mu$ mol  $O_2 \cdot$ mg Chl<sup>-1</sup>· h<sup>-1</sup>, which greatly exceeds the apparent capacity for  $O_2$  reduction (Fig. 2 and dashed curve of Fig. 3). This implies that another light-dependent  $O_2$ -uptake process, presumably photorespiration, is occurring. Steady-state rates of  $O_2$  uptake were half-saturated at approximately 18% to 20%  $O_2$  or 210 to 240  $\mu$ M  $O_2$ . This is similar to some previously reported values for the apparent  $K_m$  ( $O_2$ ) for photorespiration (3, 7). Steady-state rates of gross  $O_2$  evolution also increased with increasing  $O_2$  concentrations with a response similar to that observed for steady-state  $O_2$  uptake.

The contrasting effects of different combinations of high (~50%) or low (~10%) O<sub>2</sub> concentrations and high (>240  $\mu$ M) or low (~9  $\mu$ M) CO<sub>2</sub> concentrations on initial and steady-state rates of O<sub>2</sub> exchange are summarized in Table I. Rates of O<sub>2</sub> exchange in these cell preparations were also measured in the presence of CCCP and iodoacetamide (trial a). As noted earlier, rates of O<sub>2</sub> exchange in uncoupled, Calvin cycle-inhibited cells generally are 20 to 30  $\mu$ mol O<sub>2</sub> ·mg Chl<sup>-1</sup> ·h<sup>-1</sup> when measured at high O<sub>2</sub> concentrations. Rates of O<sub>2</sub> evolution and O<sub>2</sub> uptake are sustained in the light and are approximately equivalent, resulting in little net O<sub>2</sub> evolution.

Initial and steady-state rates of  $O_2$  evolution were comparable at both low and high  $CO_2$  concentrations provided experiments were done at high  $O_2$  tensions (trial b *versus* c). At low  $O_2$ concentrations, initial rates of  $O_2$  evolution were decreased (relative to high  $O_2$ ) irrespective of  $CO_2$  concentration, whereas steadystate  $O_2$  evolution was suppressed by low  $CO_2$  (trials b and c *versus* d and e).

Rates of light-dependent  $O_2$  uptake recorded simultaneously in the experiments of Table I essentially follow previously described characteristics. For example, initial and steady-state rates of  $O_2$ consumption (at low  $CO_2$ ) were dependent on  $O_2$  concentration (trial c versus e), whereas steady-state rates of  $O_2$  uptake were sensitive to  $CO_2$  concentration both at high  $O_2$  tensions (trial b versus c) and at low  $O_2$  tensions (trial d versus e).

One feature that should be noted regarding the data in Table I is that with the exception of uncoupled, Calvin cycle-inhibited cells (trial a), there is a clear discrepancy between initial rates of  $O_2$  evolution and rates of  $O_2$  uptake such that some net  $O_2$  is evolved at the onset of illumination. Although the degree of imbalance can vary, we routinely observe higher initial rates of  $O_2$  evolution than  $O_2$  consumption in our cell preparations (see also Figs. 1 and 3 and Ref. 17). This imbalance does not appear to be an experimental artefact since similar initial rates of  $O_2$ 

Table I. Effects of Varied O2 and CO2 Concentrations on Rates of O2 Exchange

| Experiments        | 1 and 2 were done with | different cell preparation | ns assayed as described in | "Materials and Methods." | Total Chl concentration | was 75 |
|--------------------|------------------------|----------------------------|----------------------------|--------------------------|-------------------------|--------|
| $\mu g m l^{-1}$ . |                        |                            |                            |                          |                         |        |

| Experiment | Trial          | [O <sub>2</sub> ] <sup>a</sup> | 100.18              | Rate of O <sub>2</sub> Evolution   |              | Rate of O <sub>2</sub> Uptake |              | Net Rate of              |  |
|------------|----------------|--------------------------------|---------------------|------------------------------------|--------------|-------------------------------|--------------|--------------------------|--|
|            |                |                                | [CO <sub>2</sub> ]* | Initial                            | Steady-State | Initial                       | Steady-State | O <sub>2</sub> Evolution |  |
| ·          |                | %                              | М                   | $mol \cdot mg \ Chl^{-1} \ h^{-1}$ |              |                               |              |                          |  |
| I          | a <sup>b</sup> | 45                             | 11                  | 22                                 | 22           | 20                            | 20           | 2                        |  |
|            | b              | 48                             | 241                 | 25                                 | 95           | 9                             | <1           | 95                       |  |
|            | с              | 48                             | 9                   | 29                                 | 91           | 19                            | 53           | 38                       |  |
|            | d              | 9                              | 252                 | 16                                 | 93           | 7                             | <1           | 93                       |  |
|            | e              | 12                             | 7                   | 16                                 | 59           | 7                             | 39           | 20                       |  |
| 2          | ab             | 48                             | 11                  | 31                                 | 31           | 30                            | 30           | <1                       |  |
|            | b              | 53                             | 322                 | 38                                 | 133          | 10                            | <1           | 133                      |  |
|            | с              | 53                             | 10                  | 42                                 | 134          | 18                            | 81           | 52                       |  |
|            | đ              | 10                             | 295                 | 26                                 | 129          | 7                             | <1           | 129                      |  |
|            | e              | 12                             | 9                   | 22                                 | 92           | 11                            | 65           | 27                       |  |

\* Refer to O<sub>2</sub> and CO<sub>2</sub> concentrations at the onset of illumination.

<sup>b</sup> Assay medium contained iodacetamide (5 mm) and CCCP (4  $\mu$ m).

evolution can be observed under these conditions with the mass spectrometer (in the absence of isotopic  $O_2$ ) or polarographically (17). One explanation for this discrepancy would be that  $CO_2$ fixation reactions are not completely inactivated in our darkadapted cell preparations. The observed effect of  $CO_2$  concentration on initial rates of  $O_2$  uptake *e.g.* trial b *versus* c, would support this idea. However, even at low  $CO_2$  concentrations, initial rates of  $O_2$  evolution and uptake still do not balance. As subsequently presented, it is possible that other substances may compete for recently generated photoreductant.

Effect of CO<sub>2</sub> Concentration on Ratio of O<sub>2</sub> Exchange. The effect of CO<sub>2</sub> concentration on steady state rates of O<sub>2</sub> evolution and uptake is shown in Figure 4. Data from four different cell preparations, all obtained in the presence of high O<sub>2</sub> concentrations (50-80%) and strong light, are presented. Steady-state rates of O<sub>2</sub> evolution ( $\bullet$ ) were relatively constant over a wide range of CO<sub>2</sub> concentrations. Rates of evolution were suppressed, however, approximately 25% at the lowest CO<sub>2</sub> concentrations. In contrast, steady-state rates of light-dependent O<sub>2</sub> uptake (O) progressively decreased from approximately 90 µmol O<sub>2</sub> consumed mg Chl<sup>-1</sup> · h<sup>-1</sup> at the lowest O<sub>2</sub> concentrations tried, to essentially zero at high



FIG. 4. Effect of  $CO_2$  on steady-state rates of  $O_2$  evolution and uptake. O<sub>2</sub> concentrations at steady-state were between 50% and 80% (0.595–0.953 mM) ( $\bigcirc \bullet$ ) or 15% and 24% (0.179–0.285 mM) ( $\square \bullet$ ).  $\bullet$ ,  $\blacksquare$ ,  $O_2$  Evolution  $\bigcirc, \square, O_2$  uptake. Data were compiled from five different cell preparations normalized as in Figure 3 to correct for differences in photosynthetic activity between preparations.

(>70  $\mu$ M) CO<sub>2</sub> concentrations.

Similar CO<sub>2</sub>-response experiments were also conducted in the presence of lower O<sub>2</sub> tensions. Measurements at low O<sub>2</sub> concentrations (<15%) proved impractical since O<sub>2</sub> levels in the reaction vessel changed significantly during the course of illumination, particularly as CO<sub>2</sub> concentrations were increased. However, steady-state rates of O<sub>2</sub> evolution (**ID**) and O<sub>2</sub> uptake (**ID**) were lower (relative to high O<sub>2</sub>) at all CO<sub>2</sub>-limiting concentrations when measured in the presence of moderate O<sub>2</sub> levels (15–24%) (Fig. 4). Increasing CO<sub>2</sub> tensions progressively stimulated rates of O<sub>2</sub> evolution and correspondingly inhibited rates of light-dependent O<sub>2</sub> consumption.

Although the scatter in the data of Figure 4 does not allow a precise kinetic description of the stimulation of  $O_2$  evolution or inhibition of  $O_2$  uptake by  $CO_2$  at higher versus moderate  $O_2$  tensions, several features are evident. For example, the apparent  $CO_2$ -stimulation of  $O_2$  evolution is sensitive to  $O_2$  and becomes more evident as  $O_2$  concentrations are decreased (see also Table I). Likewise, higher  $CO_2$  concentrations are required to inhibit  $O_2$  consumption at high compared with moderate  $O_2$  levels. As noted earlier,  $O_2$ -uptake processes appear to support substantial rates of electron transport. At low  $CO_2$ , rates of  $O_2$  uptake were approximately 50% to 60% and 30% to 40% of the maximum  $CO_2$ -supported rates of  $O_2$  levels, respectively.

Effect of Nitrate on  $O_2$  Reduction. We suggested above that  $O_2$ and  $CO_2$  may not be the sole competitors for recently generated photoreductant. To establish whether nitrate reduction could compete with  $O_2$  reduction, we monitored light-dependent  $O_2$  exchange in uncoupled,  $CO_2$ -inhibited preparations in the presence and absence of added nitrate. Gross rates of  $O_2$  evolution were not significantly changed when cells were resuspended and assayed with or without added nitrate (Fig. 5). Rates of  $O_2$  uptake, however, were reduced approximately 25% to 30% in the presence of added nitrate. These results would suggest that nitrate (presumably following its uptake and conversion to nitrite) (19) can compete (directly or indirectly) with  $O_2$  for photosynthetic-reducing equivalents and thus potentially contribute to the  $O_2$  evolution/uptake imbalances we have observed in cells at least when  $CO_2$ -fixation reactions are limiting.

## DISCUSSION

**Photosynthetic O<sub>2</sub> Reduction.** To separate  $O_2$  uptake associated with the O<sub>2</sub>-reduction process from other light-dependent O<sub>2</sub>-consuming processes, we examined the kinetics of O<sub>2</sub> exchange in



FIG. 5. Light-induced O<sub>2</sub> exchange in presence of 5 mM iodoacetamide and 4  $\mu$ M CCCP. A, Cells resuspended and assayed in media without added nitrate. B, Cells resuspended and assayed in media containing 5 mM KNO<sub>3</sub> and 2 mM Ca(NO<sub>3</sub>)<sub>2</sub>. Initial O<sub>2</sub> concentration was 44% (0.523 mM) in A and 48% (0.570 mM) in B. Actinic light on (†) and off ( $\downarrow$ ). Total Chl concentration was 75  $\mu$ g/ml.

uncoupled, Calvin cycle-inhibited cells. The apparent maximum capacity for endogenous  $O_2$  photoreduction under these conditions was approximately 20 to 30  $\mu$ mol  $O_2$  exchanged mg Chl<sup>-1</sup>·h<sup>-1</sup> (Fig. 2). This, however, is a minimum estimate since we assume  $O_2$  isotope equilibration between the inside and outside of the cell (17). Rates of  $O_2$  reduction in different cell preparations also proved to be relatively independent of CO<sub>2</sub>-saturated rates of photosynthesis, suggesting that photophosphorylation and/or CO<sub>2</sub>-fixation processes were potentially more susceptible to damage than the  $O_2$ -reduction process during the course of cell isolation. Thus, expressing rates of  $O_2$  reduction as a percentage of CO<sub>2</sub>-fixation rates should be interpreted with caution.

The apparent affinity of  $O_2$  reduction  $(K_m O_2)$  for  $O_2$  in uncoupled soybean cells was found to be approximately 7% to 8% or 80 to 95  $\mu$ M  $O_2$  (Fig. 2). This suggests that  $O_2$  reduction is not appreciably substrate limited at atmospheric  $O_2$  concentrations.

Similar  $O_2$ -reduction kinetics have been reported in a variety of studies with intact photosynthetic preparations. For example, relatively high rates (>15  $\mu$ mol·mg Chl<sup>-1</sup>·h<sup>-1</sup>) of  $O_2$  reduction have been observed in algae and in intact chloroplasts and cells isolated from spinach (17, 21, 26). The apparent  $O_2$  affinity of  $O_2$  reduction (7-8%  $O_2$ ) is also similar to that found with intact spinach chloroplasts and algae (17, 21, 26). In contrast, there have been a number of reports (2, , 29) suggesting lower endogenous rates of  $O_2$  reduction (<8  $\mu$ mol  $O_2$ ·mg Chl<sup>-1</sup>·h<sup>-1</sup>) and/or higher affinities for  $O_2$  ( $K_m$  [ $O_2$ ] 0.1–0.4%  $O_2$ ). In general, these studies have been done either with intact chloroplast preparations using indirect methods of assay, *e.g.* H<sub>2</sub>O<sub>2</sub> formation (29), or with broken (class II) chloroplast preparations (2, 12).

We suggested earlier (17) that there may be an inherent difference between the capacity of higher plants and algae to carry out  $O_2$  reduction. Unlike our findings with spinach and now with soybean, certain algae (21) have been shown to carry out  $O_2$ reduction at rates approaching maximum (CO<sub>2</sub>-saturated) rates of photosynthesis. As recently reported, however, other species of algae, *e.g. Chlorella*, appear to have much lower  $O_2$  photoreduction capabilities (25). Whether similar variability exists among higher  $C_3$  plants is unresolved.

Effects of CO<sub>2</sub> and O<sub>2</sub> Exchange. Our experiments on lightdependent O<sub>2</sub> exchange were all done at high light intensities. In the presence of saturating CO<sub>2</sub> concentrations, we observed that maximum steady-state rates of photosynthesis (monitored as gross O<sub>2</sub> evolution) were relatively constant for O<sub>2</sub> tensions between ~10% and 50% (Table I). Likewise, in the presence of high concentrations of O<sub>2</sub> ( $\geq$ 50%), gross rates of O<sub>2</sub> evolution were also relatively constant over a wide range (10 to 350  $\mu$ M) of CO<sub>2</sub> concentrations (Table I, Figs. 1 and 4). Rates of  $O_2$  uptake (and correspondingly net rates of photosynthesis), however, were markedly affected by  $CO_2$  concentration. At high  $O_2$  and low  $CO_2$  concentrations, rates of  $O_2$  uptake were 50% to 70% of the  $CO_2$ -saturated rates of  $O_2$  evolution (Figs. 3 and 4). These results suggest that  $O_2$ , like  $CO_2$ , can sustain high rates of photosynthetic electron transport. This conclusion conflicts with that reached from recent studies (7) done at high light intensity with intact leaves, where it was suggested that  $O_2$  supports only 25% to 35% of the  $CO_2$ -saturated rate of photosynthesis. The estimates from intact leaf measurements were done at low  $CO_2$  and moderate (24–30%) concentrations of  $O_2$ . Our results (Figs. 3 and 4) suggest that all light-dependent  $O_2$ -uptake processes are not saturated at these  $O_2$  tensions.

We also failed to observe (Fig. 4) the complex dependency of gross  $O_2$  evolution and  $O_2$  uptake on  $CO_2$  concentration reported from studies with intact leaves, particularly at high light intensities (7, 9). This may simply reflect the fact that the leaf experiments were done at lower  $CO_2$  concentrations, *i.e.*  $CO_2$  compensation. In the present experiments, net  $O_2$  evolution was observed even at the lowest  $CO_2$  concentrations tried (Fig. 4). Alternatively, as mentioned above, if we assume that the reported leaf measurements were done at subsaturating  $O_2$  concentrations, then the initial increases in  $O_2$  evolution and  $O_2$  uptake that were observed with increasing  $CO_2$  concentrations may (in part) reflect increases in leaf  $O_2$  tensions resulting from  $CO_2$ -dependent increases in the net rate of photosynthesis.

When both  $\dot{CO_2}$  and  $O_2$  tensions are subsaturating, *e.g.* at ambient levels, steady-state rates of  $O_2$  evolution are reduced (Figs. 3 and 4, Table I). Steady-state rates of  $O_2$  uptake are likewise depressed under these conditions. Interestingly, at approximately ambient  $CO_2$  tensions, increasing  $O_2$  tensions (from ambient) stimulated gross rates of  $O_2$  uptake and  $O_2$  evolution about the same extent (Fig. 3). This suggests that draining photoreductant from the system via  $O_2$ -uptake processes is approximately compensated for by increases in the rate of water photooxidation. Similar results have been obtained in studies with intact leaves (7), but at low light intensities and with a slight shift in the  $O_2$  response curve toward lower  $O_2$  concentrations.

 $O_2$  Uptake Mechanisms. Evidence has already been presented indicating that the light-dependent  $O_2$  uptake observed during induction or when  $CO_2$ -fixation reactions are blocked can be principally attributed to  $O_2$  reduction (17). Several lines of evidence indicate that the light-dependent steady-state  $O_2$  uptake observed in soybean cells at subsaturating  $CO_2$  is attributable to both  $O_2$  reduction and photorespiratory processes. For example, both O<sub>2</sub>-uptake processes are sensitive to CO<sub>2</sub> concentrations. Thus, we assume that under CO<sub>2</sub>-limiting conditions (and high light) both O<sub>2</sub> reduction and photorespiration will occur. It is suggested by the sustained operation of this cycle in the presence of uncouplers and CO<sub>2</sub> fixation blockers (Fig. 5A) that O<sub>2</sub> reduction is not simply a transient phenomenon (under conditions of suboptimal CO<sub>2</sub> fixation). Our data are also consistent with the numerous suggestions that photorespiratory O2 uptake operates under CO<sub>2</sub>-limiting conditions. Under appropriate conditions, we observe steady-state rates of gross O<sub>2</sub> uptake (Figs. 1B and 3) which greatly exceed the apparent maximum capacity for O<sub>2</sub> reduction in soybean cells (Fig. 2). The apparent  $O_2$  affinity ( $K_m$  $[O_2] \simeq 18-20\% O_2$  for steady-state  $O_2$  uptake is less than that found for O<sub>2</sub> reduction (Fig. 3) and similar to more recent estimates for photorespiration and for the oxygenase function of activated ribulose bisPcarboxylase/oxygenase measured in vitro (3, 7).

At high light and in the presence of approximately ambient CO<sub>2</sub> tensions, our results suggest that the relative contributions of O<sub>2</sub> reduction and photorespiration to total O<sub>2</sub> uptake are influenced by the prevailing O2 tensions. At high O2 concentrations (>40%), photorespiration is the major  $O_2$ -consuming process. At lower  $O_2$  concentrations ( $\leq 20\%$ ),  $O_2$  reduction accounts for a significant portion of the total light-dependent O<sub>2</sub> uptake. From the data in figure 3 we have attempted to estimate the relative contributions of O<sub>2</sub> reduction and photorespiration to total O<sub>2</sub> uptake as a function of  $O_2$  concentration. If we assume that at steady-state, O<sub>2</sub> reduction occurs at near maximal rates ( $\simeq 25 \, \mu \text{mol}$ )  $mg \cdot Chl^{-1} \cdot h^{-1}$ ; see dashed O<sub>2</sub> reduction curve in Fig. 3) at ambient  $O_2$  concentrations (21%), and that the remaining observed rate of O<sub>2</sub> uptake (~50  $\mu$ mol·mg Chl<sup>-1</sup>·h<sup>-1</sup>) is due to photorespiration, then we estimate that at ambient  $O_2/CO_2$  tensions, approximately 35% of total O<sub>2</sub> uptake is associated with O<sub>2</sub> reduction and 65% with photorespiratory uptake. At high  $O_2$  tensions ( $\geq$ 50%), we infer that photorespiratory O2 uptake accounts for approximately 77% of the total uptake and correspondingly <65% at low (<250  $\mu M$ ) O<sub>2</sub> tensions.

Our estimate of the relative magnitude of the  $O_2$  uptake mechanisms operating under ambient  $O_2/CO_2$  tensions agrees quite well with that derived from studies with intact leaves (7), namely that photorespiration accounts for ~60% of the total  $O_2$  uptake. (Note, however, that leaf measurements were done at low light and at CO<sub>2</sub> compensation.) We have attributed the remaining light-dependent  $O_2$  uptake principally to  $O_2$  reduction. This appears to be in conflict with the actual rate of  $O_2$  reduction observed during induction in the experiment of Figure 3 ( $\Delta$ ). We have assumed, however, that the rates of  $O_2$  reduction observed during induction are depressed and that following the onset of CO<sub>2</sub> metabolism and ATP utilization, the system will effectively become 'uncoupled.'

It should be noted that apparent rates of photorespiratory  $O_2$ uptake are not a direct measure of the turnover of the photorespiratory cycle. For example, from the data in Figure 3, at high (>50%)  $O_2$  concentrations, we estimated that the rate of photorespiratory  $O_2$  uptake was approximately 80 µmol  $O_2$  consumed mg  $Chl^{-1} \cdot h^{-1}$  (the difference between the steady-state rate of  $O_2$ uptake and the maximum rate of uncoupled  $O_2$  reduction). If we assume that 1.75 molecules of  $O_2$  are consumed for each molecule of glycolate synthesized and metabolized through the photorespiratory cycle (5), then an estimate (in terms of glycolate metabolized) of the actual turnover of the photorespiratory cycle under these conditions would be approximately 46 µmol glycolate ·mg Chl<sup>-1</sup> · h<sup>-1</sup>. This is in the range of previously reported estimates of photorespiratory turnover under these conditions (5, 32).

Competition for Photosynthetic Reductant. Two observations indicate that  $O_2$  and  $CO_2$  are not the sole competitors for photosynthetic-reducing equivalents in isolated cell preparations within

the chloroplast. In dark-adapted cells, we typically observed that initial rates of O<sub>2</sub> evolution exceeded initial rates of O<sub>2</sub> uptake during induction (Fig. 1, A and B, Fig. 3, and Table I). Furthermore, initial rates of O<sub>2</sub> evolution in coupled cells often exceeded uncoupled (Calvin cycle-inhibited) rates of O2 reduction. The data in Table I suggest that a portion of this imbalance or 'excess' O<sub>2</sub> evolution may simply be due to incomplete dark inactivation of CO<sub>2</sub> processes. Evidence has been presented, however, that nitrate reduction may also compete for photoreductant (Fig. 5). It is thought that nitrate is first reduced to nitrite in the cytoplasm and subsequently moved into the chloroplast where it is reduced to ammonia (19). The apparent competition between nitrate (nitrite) and O<sub>2</sub> for photoreductant was observed in uncoupled, CO<sub>2</sub>inhibited cell preparations. This is consistent with the known ability of isolated intact, uncoupled chloroplasts to photoreduce nitrite. The extent to which nitrite or other acceptors, e.g. sulfate, compete with  $O_2$  (or  $CO_2$ ) in coupled cells is unknown.

Acknowledgement-The technical assistance of Mr. O. J. Ollinger is gratefully acknowledged.

#### LITERATURE CITED

- ARNON DI 1949 Copper enzymes in chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24: 1-15
- ASADA K, Y NAKANO 1978 Affinity for oxygen in photoreduction of molecular oxygen and scavenging of hydrogen peroxide in spinach chloroplasts. Photochem Photobiol 28: 917-920
- BADGER MR, TJ ANDREWS 1974 Effects of CO<sub>2</sub>, O<sub>2</sub>, and temperature on a highaffinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochem Biophys Res Commun 60: 204-210
- BEHRENS PW, TV MARSHO, RJ RADMER 1981 Photosynthetic O<sub>2</sub> exchange in isolated soybean cells. Plant Physiol 67: S-460
- BERRY JA, CB OSMOND, GH LORIMER 1978 Fixation of <sup>18</sup>O<sub>2</sub> during photorespiration. Plant Physiol 62: 954–967
- BOWES G, WL OGREN, RH HAGEMAN 1971 Phosphoglycolate production catalyzed by ribulose diphosophate carboxylase. Biochem Biophys Res Commun 45: 716-722
- 7. CANVIN DT, JA BERRY, MR BADGER, H FOCK, CB OSMOND 1980 Oxygen exchange in leaves in the light. Plant Physiol 66: 302-307
- EGNEUS H, U HEBER, U MATTHIESEN, M KIRK 1975 Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide. Biochim Biophys Acta 408: 252-268
- GERBAUD A, M ANDRE 1980 Effect of CO<sub>2</sub>, O<sub>2</sub>, and light on photosynthesis and photorespiration in wheat. Plant Physiol 66: 1032-1036
   GRAHAM D 1980 Effects of light on "Dark" respiration. In DD Davies, ed, The
- GRAHAM D 1980 Effects of light on "Dark" respiration. In DD Davies, ed, The Biochemistry of Plants, Metabolism and Respiration, Vol. 2. Academic Press, Inc., New York, pp 525-579
- HEBER U, H EGNUS, U HANCK, M JENSEN, S KOSTER 1978 Regulation of photosynthetic electron transport and photophosphorylation in intact chlorplasts and leaves of Spinacia oleracea L. Planta 143: 41-49
- HEBER U, CS FRENCH 1968 Effects of oxygen on the electron transport chain of photosynthesis. Planta 79: 99-112
- 13. JACKSON WA, RJ VOLK 1970 Photorespiration. Annu Rev Plant Physiol 21: 385-432
- LAING WA, WL OGREN, RH HAGEMAN 1974 Regulation of soybean net photosynthesis CO<sub>2</sub> fixation by the interaction of CO<sub>2</sub>, O<sub>2</sub> and ribulose 1,5-diphosphate carboxylase. Plant Physiol 54: 678-685
- LORIMER GH, TJ ANDREWS, NE TOLBERT 1973 Ribulose diphosphate oxygenase. II. Further proof of reaction products and mechanism of action. Biochemistry 12: 18-23
- MCVETTY PBE, DT CANVIN 1981 Inhibition of photosynthesis by low oxygen concentrations. Can J Bot 59: 721-725
- MARSHO TV, PW BEHRENS, RJ RADMER 1979 Photosynthetic oxygen reduction in isolated intact chloroplasts and cells from spinach. Plant Physiol 64: 656–659
   MULCHI CL, RJ VOLK, WA JACKSON 1971 Oxygen exchange of illuminated
- MULCHI CL, RJ VOLK, WA JACKSON 1971 Oxygen exchange of illuminated leaves at carbon dioxide compensation. In MD Hatch, CB Osmond, RO Slatyer, eds, Photosynthesis and Photorespiration. Wiley-Interscience, New York, pp 35-50
- NEYRA CA, RH HAGEMAN 1974 Dependence of nitrite reduction on electron transport in chloroplasts. Plant Physiol 54: 480-483
- PLAUT Z, M GIBBS 1970 Glycolate formation in intact spinach chloroplasts. Plant Physiol 45: 470-474
- RADMER RJ, B Kok 1976 Photoreduction of O<sub>2</sub> primes and replaces CO<sub>2</sub> assimilation. Plant Physiol 58: 336-340
- RADMER RJ, B KOK, O OLLINGER 1978 Kinetics and apparent K<sub>m</sub> of oxygen cycle under conditions of limiting carbon dioxide fixation. Plant Physiol 61: 915-917
- 23. RADMER R, O OLLINGER 1980 Measurement of the oxygen cycle: the mass spectrometric analysis of gases dissolved in a liquid phase. Methods Enzymol

69: 547-560

- 24. RADMER R, O OLLINGER 1980 Light-driven uptake of oxygen, carbon dioxide, and bicarbonate by the green alga Scenedesmus. Plant Physiol 65: 723-729
- 25. RADMER RJ, O OLLINGER 1981 The variability of light-driven oxygen uptake in algae. Plant Physiol 67: S-673
- 26. RAVEN JA, SM GLIDEWELL 1975 Sources of ATP for active phosphate transport in Hydroictyon africanum: evidence for pseudocyclic photophosphorylation in vivo. New Phytol 75: 197-204
- 27. REHFELD DW, RG JENSEN 1973 Metabolism of separated leaf cells. III. Effects of calcium and ammonium on product distribution during photosynthesis with

- cotton cells. Plant Physiol 52: 17-22 28. SERVAITES JC, WL OGREN 1977 Rapid isolation of mesophyll cells from leaves of soybean for photosynthetic studies. Plant Physiol 59: 587-590
- 29. STEIGER HM, E BECK 1981 Formation of hydrogen peroxide and oxygen dependence of photosynthetic CO<sub>2</sub> assimilation by intact chloroplasts. Plant Cell Physiol 22: 561-576
- STEIGER HM, E BECK, R BECK 1977 Oxygen concentration in isolated chloroplasts during photosynthesis. Plant Physiol 60: 903-906
  TOLBERT NE 1980 Photorespiration. In DD Davies, ed, The Biochemistry of Plants, Vol. 2. Academic Press, Inc., New York, pp 487-523
  ZELITCH I 1975 Improving the efficiency of photosynthesis. Science 188: 626-633