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Abstract

Photosystem II (PSII) uses light energy to split water into chemi-

cal products that power the planet. The stripped protons contribute

to a membrane electrochemical potential before combining with the

stripped electrons to make chemical bonds and releasing O2 for power-

ing respiratory metabolisms. In this review, we provide an overview of

the kinetics and thermodynamics of water oxidation that highlights the

conserved performance of PSIIs across species. We discuss recent ad-

vances in our understanding of the site of water oxidation based upon the

improved (1.9-Å resolution) atomic structure of the Mn4CaO5 water-

oxidizing complex (WOC) within cyanobacterial PSII. We combine

these insights with recent knowledge gained from studies of the bio-

genesis and assembly of the WOC (called photoassembly) to arrive at a

proposed chemical mechanism for water oxidation.
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WOC:
water-oxidizing
complex

PSII: photosystem II

Thylakoid
membrane:
lipid bilayer inside
cyanobacteria and
chloroplasts
containing
photosynthetic
complexes (and
respiratory complexes
in cyanobacteria)
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INTRODUCTION

Natural photosynthesis dominates the bio-

sphere as the most widespread and successful

metabolism on Earth (1). Among photosyn-

thetic organisms, the oxygenic phototrophs are

the most prolific, comprising all known species

of cyanobacteria, algae, and higher plants. The

early ancestors of these organisms transformed

the surface of Earth beginning circa 3 billion

years ago from a drab aluminosilicate compos-

ite to a lush green carpet visible from outer

space. This transformation was powered by

two highly successful metabolic innovations

(2). First, the innovation of reaction center

photochemistry and the water-oxidizing

complex (WOC) in photosystem II (PSII)

produced both redox energy, carried as O2 and

hydrogen in plastoquinol (PQH2) (Equation

1a,b), and the proton motive force ( pmf ∼

�pH) across the thylakoid membrane. Later,

the second innovation, respiration, combined

the oxidation of hydrogen carriers with O2

reduction, pmf formation, and ultimately

energy storage in phosphate ester bonds:

2H2O + 4hν → 4e−
+ O2 + 4H+

lumen, 1a.

2PQ + 4e−
+ 4H+

stroma → 2PQH2. 1b.

Remarkably, despite their enormous phyloge-

netic and ecological diversity, all contemporary

oxygenic phototrophs characterized to date use

an identical PSII inorganic core and conserved

subunits for solar energy conversion. Stated

differently, three billion years of evolution

under the far-ranging biogeochemical forces

since the accretion of Earth have produced only

a single blueprint for catalyzing water-splitting

chemistry. The evolution of a single enzymatic

solution despite access to every ecological

niche and the vast time period is exceedingly

rare in biology! To learn from this lesson,

we must understand the physicochemical

principles by which PSII operates (3, 4). This

is a main goal of this review. These principles

can be applied to designing bioinspired water

oxidation catalysts and bioengineering reaction

centers (5, 6). The factors determining PSII

solar energy conversion efficiency are described

below (see PSII Reaction Center Efficiency).

We begin here with a general introduction.

The net reaction of PSII (Equation 1) is

enabled by chlorophyll (Chl), which both

captures light and converts it into chemical

energy. Five chemically distinct Chls have

been identified in light-harvesting complexes

of oxygenic phototrophs: Chls a, b, c, d, and f

(7–9). Most PSII reaction centers utilize Chl a

[λmax = 665 nm in methanol (10)] for primary

charge separation. However, the cyanobac-

terium Acaryochloris marina utilizes Chl d
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Figure 1

Structure of the photosystem II water-oxidizing complex (WOC) as revealed by the 1.9-Å resolution X-ray diffraction structure by
Umena et al. (17). (a) The Mn4CaO5(H2O)4 core with bond distances in angstroms. (b) First coordination sphere ligand environment
of the WOC core. Amino acid residues from the D1 subunit are shown in cyan, and those from the CP43 subunit are in yellow. The
relative positions of the two chloride ions are also shown. Images generated in the PyMOL program using Protein Data Bank entry
3ARC (17).

Chl: chlorophyll

STF: single-turnover
flash

[λmax = 697 nm in methanol (11)] to split water.

Chl f was recently found within a filamentous

cyanobacterium derived from stromatolites

and has the longest absorbance wavelength of

all Chls at λmax = 707 nm (in methanol) (11).

Whether it too can replace Chl a in the PSII

reaction center remains to be shown.

Turning to the PSII-WOC, the elemental

composition, electronic coupling, and inter-

manganese distances within the Mn4CaOx

core have been established by reconstitution

(12) and spectroscopic studies (reviewed in

Reference 13). X-ray diffraction (XRD) studies

of PSII core protein complexes have revealed

the atomic coordinates of the metal-oxo cluster

in its dark-stable state, Mn4CaO5(H2O)4

(Figure 1) (14–17). If cells are dark adapted

and then subjected to a series of single-turnover

flashes (STFs), the greatest yield of oxygen is

released on the third flash and every fourth

flash thereafter in a damped period-four

pattern (Figure 2b) (18). All modern proposals

concerning the mechanism of water oxida-

tion adopt the time-tested work of Kok and

coworkers (19, 20), who interpreted the data

of Joliot et al. (18) by proposing that oxygen is

released upon the linear accumulation of four

charges through a cycle of four intermediates

or S states (Equation 2; Figure 2a). Fourier

transform (FT) analysis of the oscillations

(Figure 2c) provides the frequency compo-

nents that contribute to damping the oscilla-

tions. A single frequency is typically obtained

and provides a model-independent measure of

the turnover probability through the catalytic

cycle (the cycle period is also used and has a

maximum theoretical value of four flashes):

S0
hv

−→ S+1
1

hv
−→S+2

2

hv
−→ S+3

3

hv
−→ S+4

4 −→O2+S0.

2.

Several other spectroscopic markers also ex-

hibit period-four oscillations, including the Chl

a variable fluorescence emission from PSII (Fv,

which is discussed in detail in Light to Chemi-

cal Conversion Efficiency in PSII, below) (21).

When O2 yield and Fv are monitored simulta-

neously, overlap of the FTs clearly shows that
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Figure 2

(a) The classic Kok model. Starting from the dark-stable S1 state, a reaction center progresses to S2 with probability γ (hit) following a
single-turnover flash (STF). O2 is released following the third flash through the S4 intermediate, and the cycle resets to S0. Damping of
oscillations is accounted for by the inefficiency parameters [miss (α) and double hit (β)]. (b) Simultaneously measured oscillations in
flash O2 yield (black) and variable Chl-a fluorescence yield (Fv/Fm, blue) in Arthrospira maxima whole cells and (c) corresponding Fourier
transforms. Based on raw data from Reference 21, in which 50 STFs were applied at 0.5 Hz following 5-min dark adaptation; the signal
was averaged 40 times.

both methods are affected by the same physical

process (Figure 2). Below (see Light to Chem-

ical Conversion Efficiency in PSII), we discuss

how this method has expanded our toolbox to

allow measurement of the WOC turnover rate

in vivo in many different oxygenic phototrophs.

STRUCTURE

Cellular Localization and Composition

PSII exists in vivo in the thylakoid membrane as

a dimer, with each monomer containing 19–31

polypeptide subunits (length is species depen-

dent and reviewed in References 22–24). Thy-

lakoid membranes in the chloroplasts of higher

plants are arranged in structured stacks (grana)

and single sheets (lamella). Assembled PSII in

plants is segregated from photosystem I (PSI),

as it is preferentially localized in the grana as

revealed by biochemistry (25) and electron mi-

croscopy studies (26, 27). The chloroplasts of

algae typically do not have the elegantly defined

grana stacks of higher plants, and less is known

about the exact localization of PSII, although

isolated appressed thylakoids are enriched in

PSII relative to bulk thylakoids (28). The con-

tent of PSII in thylakoids relative to PSI and

antenna complexes varies with organism, light

intensity, and spectral wavelength in a manner

reflecting the need for reductant versus the need

for pmf and ATP (29).

In cyanobacteria, PSII is found throughout

the thylakoid membrane system within the

singular cellular compartment. Only in the

primitive cyanobacterium Gloeobacter violaceus

is PSII localized to the cytoplasmic membrane

owing to an unusual absence of thylakoid

membranes (30).

At least three extrinsic (soluble) subunits

are associated with the lumenal side of PSII in

green algae and higher plants: PsbO (33 kDa,

also known as the Mn-stabilizing protein), PsbP

(23 kDa), and PspQ (16 kDa). These subunits

protect the inorganic core of the WOC and may

play a role in proton evolution (for recent re-

views, see References 31, 32). Interestingly, the

extrinsic (lumenal) subunits of cyanobacterial

PSII differ from those found in green algae and

higher plants. PsbO is conserved, but PsbP and

PsbQ are replaced with homologs CyanoP and

CyanoQ. In addition, cyanobacterial PSII con-

tains the soluble subunits PsbU (12 kDa) and

PsbV (cyt c550), which are not found in green

algae and higher plants (31, 32). Although the

binding of cyt c550 enhances PSII activity by
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promoting the binding of PsbO, PsbU, Ca2+,

and Cl− (33–38), a precise role for the redox-

active heme group is unclear (reviewed in Ref-

erence 39). The red algae (Rhodophyta) and

brown algae (Bacillariophyta or diatoms) also

contain PsbU and PsbV in addition to PsbO,

PsbP, and a homolog of PsbQ, PsbQ′ (31).

The Reaction Center

Whereas the low-molecular-weight and extrin-

sic subunits of PSII vary among diverse oxy-

genic phototrophs, the reaction center (RC)

core is remarkably conserved. The RC core is

defined as the minimal set of subunits required

to oxidize water and has been experimentally

determined to include D1, D2, CP43, CP47,

and cyt b559 (α- and β-subunits). The only sig-

nificant variation observed to date in core pro-

teins is in the D1 subunit of cyanobacteria. At

least four classes of D1 isoforms have been iden-

tified in cyanobacteria (40). The expression of

these protein isoforms is controlled by differen-

tial transcriptional regulation of multiple psbA

gene copies within a single genome (40, 41).

Subtle differences in the amino acid sequences

of these D1 isoforms control the efficiency of

PSII specifically at very high and very low light

intensities (42–45) or under low-oxygen con-

ditions (46, 47). By contrast, green algae and

plants contain only a single D1 isoform (40)

and consequently utilize a different regulation

system for dealing with varying light intensities.

The Water-Oxidizing Complex

The structure of the inorganic cluster where

water is oxidized has been the subject of signifi-

cant study for decades, and extensive knowledge

has accumulated from spectroscopic and other

sources. In 2011, the 1.9-Å XRD structure

of PSII from Thermosynechococcus vulcanus by

Umena et al. (17) provided a significantly

higher-resolution map at the atomic level

of the PSII-WOC in its dark-stable S1 state

(Figure 1). This structure was built upon

earlier XRD reports of a closely related

cyanobacterial PSII-WOC that first estab-

lished many of the structural insights (14–16).

The WOC core is composed of an irregular

cubical cluster or heterocubane, CaMn3O4

[as established by Ferreira et al. (15)], bridged

by corner Mn3 to Mn4 (exocuboidal) via

chemically distinct µ-oxos (µ2-O4 and µ4-O5;

see Figure 1a for numbering) differing in

their coordination and bonding types. At first

glance, the ligand coordination numbers are

normal, six for each Mn atom and seven for Ca

(Figure 1b). However, Mn1, Mn3, Mn4,

and Ca have exceptionally long distances to

corner µ4-O5 (2.4–2.7 Å), which are longer

than typical covalent bond lengths for these

atom types and therefore form considerably

weaker bonds. The consequences of these

weak interactions and this unusual geometry

are discussed in the following sections.

Oxygen atoms O1, O2, and O3 are the re-

maining corner oxos within the Mn3CaO4 het-

erocubane, and each is bonded to three met-

als. Each of these oxos is more weakly bonded

(hydrogen bonded) to a fourth ligand (W923,

CP43-R357, and D1-H337, respectively) (17),

yielding four-coordinate oxos (µ4-oxos) in dis-

torted tetrahedral geometries. The strength

and position of the latter hydrogen bonds play

an important role in the Mn3CaO4 electronic

structure and in our proposed mechanism. Ideal

tetrahedral geometry imposes sp3 hybridization

of the valence oxygen orbitals, essentially elim-

inating π bonding to Mn and yielding longer

and weaker Mn–O bonds. Such bonding is less

directional and thus more flexible than, for ex-

ample, Mn3(µ3-O) in planar geometry, which

has stronger sp2
+ pz (multiple) bonding and

is more inflexible (6). As a result of this bond-

ing dichotomy, two geometrical limits exist for

Mn3Ox core types among inorganic complexes:

an incomplete cubane-Mn3(µ3-O)4 and planar-

Mn3(µ3-O)(OH)3. Prevention of planarization

is essential for high water oxidation activity

in Mn4O4 model complexes. In the WOC,

Ca2+ helps prevent planarization of Mn3O4

by binding to three corner oxos, complet-

ing and stabilizing the heterocubane topology

(see Photoassembly of PSII Water-Oxidizing

www.annualreviews.org • Photosystem II 581
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Complex). However, owing to its filled valence

electronic configuration, Ca2+ has no direc-

tional bonding preference at all (ionic bond-

ing). Hence, the oxos coordinated to Ca2+ are

much less positionally constrained, contrary to

the case of a Mn4O4 cubane (6). This added

flexibility of the Mn3CaO4 heterocubane is be-

lieved to be a major reason for the WOC’s

high catalytic activity, as it facilitates the pro-

posed rate-limiting O-O bond formation step

between oxos (48). It may also help rationalize

the unusual WOC structure observable in the

Umena et al. (17) XRD structure, which some

characterize as distorted or damaged by X-rays.

Oxygen atom O4 covalently bridges the het-

erocubane subcluster to the exocuboidal Mn4.

This Mn has historically been denoted the

dangler (49) or gateway (50) Mn, in reference to

its magnetic or redox properties, respectively.

Mn4 plays a crucial role in the photoassembly of

the WOC (see Photoassembly of PSII Water-

Oxidizing Complex, below). O4 is bound to

two Mn atoms (Mn3 and Mn4) and strongly

hydrogen bonded to a water molecule (W539,

2.55 Å) positioned in the same plane at a trig-

onal planar site (µ3-oxo). This geometry and

bond length show that O4 is sp2 hybridized and

hence participates in strong covalent π bonding

between Mn3 and Mn4. O4 is surrounded by

a constellation of five hydrogen bonds within

3.3 Å (three Asp and CP43-R357), suggestive

of a proton transfer network. This bonding

arrangement is conducive to tautomerization

between O4 and the water molecule W2

located trans to O4 (see Donor-Side Kinetics,

below), as found in trans oxo/hydroxo Mn

complexes (51, 52). This tautomerization

equilibrates these two forms, O-Mn4-W2 ⇔

HO-Mn4-OH(W2) and implies resonance

stabilization of W2 resulting from stronger

(π) bonding. This interpretation is supported

by its short Mn4-O bond length (2.2 Å)

and exceptionally low positional disorder

(threefold-smaller volume than all other oxos!)

(17).

As previously stated, the bonding environ-

ment around O5 is most unusual. O5 has 4 +

0 ligands (no ordered H-bonds) and is denoted

µ4-oxo. Its geometry is an incomplete octa-

hedron missing two coordination sites trans

to vectors Mn3-O5 and Ca-O5. This bonding

environment indicates that the O5 orbitals

are unhybridized and comprise valence s + 3p

atomic orbitals directed at the metals and at two

open (uncompensated) sites on the octahedron.

This geometry is compatible with the possibil-

ity that O5 may be a hydroxide ion (protons are

not detected in XRD) but is not likely a water

molecule. Additionally, the absence of struc-

turally ordered hydrogen-bonding partners to

O5 disfavors hydroxide or water at O5. The

space trans to Mn3-O5 lacks positioned atoms

until a methyl group 3.68 Å away (D1-V185)

and is presumably filled with disordered water

molecules. Similarly, the space trans to Ca-O5

lacks positioned atoms until a Cl− (or HCl)

6.89 Å away. These features all point to an

electron-deficient (nearly neutral) O5 atom or

hydroxide with atomic s + p orbitals occupied

with bonding and antibonding electrons from

neighboring metals, resulting in very long bond

lengths and an unusual incomplete octahedral

geometry. The flexibility of the heterocubane

core would facilitate attaining this structure.

The Mn-Mn and Mn-Ca distances revealed

by the Umena et al. (17) structure are clearly

at odds with previously reported distances

from extended X-ray absorption fine structure

(EXAFS) measurements by Yano, Yachandra,

and coworkers (53, 54). However, the geometry

is strikingly similar to a model based on X-ray

absorption spectroscopy (XAS) and XRD data

by Dau and coworkers (55) and to a separate

model based on density functional theory

(DFT) calculations by Siegbahn (56, 57).

The inherent flexibility of the heterocubane

core geometry and intermanganese redox

tautomerism have been proposed as a possible

reconciliation (58, 59).

Umena and coworkers (17) took great care

to minimize the X-ray dose per crystal unit

volume. However, some photoreduction of

Mn3+/4+ to Mn2+ is expected from exposure to

13.3 keV (0.9 Å) radiation. Yano and coworkers

(60) showed that a PSII crystal with 61% H2O

content contains, on average, approximately

582 Vinyard · Ananyev · Dismukes
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Si: Kok-cycle
intermediate (0 ≤ i ≤

4)

Electron
paramagnetic
resonance (EPR):
spectroscopic
technique used to
study changes of the
spin states of unpaired
electrons

20% Mn2+ during exposure to 0.28 × 1010

photons µm−2 (at 100 K, 13.3 keV, the max-

imal dosage reported by Umena et al.). These

values are based on XANES (X-ray absorption

near edge structure) calibration standards. The

final Mn2+ content in the Umena et al. struc-

ture is likely less given that their crystals were

dehydrated to 57% H2O (17). Dau and cowork-

ers (61) found similar results suggesting pho-

toreduction in XRD methods. Previous XRD

structures were exposed to much higher X-ray

doses. For example, the 3.5-Å resolution struc-

ture by Ferreira et al. (15, 60) was exposed to

1.75 × 1010 to 3.5 × 1010 photons µm−2 (at

100 K, 13.3 keV). At this dosage, approximately

50–70% of Mn3+/4+ was reduced to Mn2+, on

average (60). Paradoxically, the overall WOC

geometry (CaMn3O4 heterocubane plus an ex-

ocuboidal Mn4) is quite consistent between the

3.5-Å Ferreira et al. structure and the 1.9-Å

Umena et al. structure despite the 6–12-fold

difference in X-ray exposure and 2.5–3.5-fold

difference in predicted Mn2+ content. To us,

this suggests that although photoreduction may

be occurring, photodamage is not significantly

distorting WOC geometry.

By comparing the Mn-Mn distances in the

1.9-Å XRD structure with EXAFS spectra (53,

62, 63), several groups have calculated that the

crystal structure reflects a reduced S state lower

than S1 (64–67). This conclusion is based on the

assumption that the average oxidation state of

Mn is +3.5 in S1. However, if a lower oxidation

state assignment is used (Mn3+ average in S1),

DFT calculations suggest that the Umena et al.

WOC geometry can be readily explained with-

out photoreduction arguments (see sidebar, Mn

Oxidation States in PSII: An Ongoing Debate)

(58). The foregoing structural analysis is de-

veloped in A Proposed Mechanism for Water

Oxidation, below.

PHOTOASSEMBLY OF THE PSII
WATER-OXIDIZING COMPLEX

The Mn4CaO5 WOC core is not chemically

stable as a free cofactor and must be assembled

within the PSII-apo-WOC complex using

energy derived from PSII charge separation.

During biogenesis, the native inorganic co-

factors Mn2+, Ca2+, and Cl− bind to the

apo-WOC domain of the newly translated and

modified PSII protein scaffold and, through

a sequence of light and dark steps, assemble

the O2-evolving complex (68, 69). Bicarbonate

serves as a native cofactor in plant PSII and

accelerates the kinetics of this slow process (70),

exerting an influence on water oxidation kinet-

ics through the arginine residue CP43-R357 in

the holoenzyme (71). This maturation process,

historically known as photoactivation (12, 68),

occurs naturally during de novo biogenesis

of PSII and repair of damaged PSII centers.

Photoinactivation of PSII is a natural process

that occurs across all phylogenetic species of

oxygenic phototrophs during O2 evolution at

high light flux. It involves irreversible damage

to the D1 subunit, which binds the WOC (40).

Photoinactivation would limit photosynthetic

productivity without the repair process, in

which the PSII complex is recycled by removal

of the damaged D1 and replacement with a

new copy, followed by photoassembly of a new

WOC (reviewed in Reference 12).

The pioneering work of Cheniae and

coworkers (69, 72–74) showed that pho-

toassembly is a multiquantum process, and

the basic kinetic scheme derived from these

original studies on spinach PSII membranes

remains intact, although the molecular details

have been significantly extended (Figure 3)

(12, 75–78). Beginning from a dark-adapted

PSII-apo-WOC precursor plus inorganic

cofactors (IM0), photoassembly starts by pho-

tooxidation of one Mn2+ to form intermediate

IM1, which then undergoes an essential dark-

rearrangement step to form IM1
∗ before fur-

ther productive photooxidation can continue

(Figure 3). Ca2+ affinity increases during

this dark step, and Ca2+ addition specifically

accelerates this step (79–81). Electron para-

magnetic resonance (EPR) spectroscopy has

revealed that this interaction involves binding

to form a shared bridging (hydr)oxo ligand

between Mn3+ and Ca2+ (82). The formation

of IM1 has a very low quantum yield (∼0.25%).
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Mn OXIDATION STATES IN PSII: AN ONGOING DEBATE

Based upon the multiline EPR signals of the S2 and S0 Kok-cycle intermediates, all four

Mn ions of the WOC are electronically coupled to produce a single set of cluster electronic

states with spin multiplicity of S = 1/2 (160, 161). Additionally, EPR, 55Mn-ENDOR

(electron-nuclear double resonance), and XAS spectroscopic analyses agree that S2 con-

tains a combination of Mn3+ and Mn4+ (49, 162–165). Therefore, the catalytic cycle of

water oxidation begins with S0 as either Mn2+(Mn3+)3 [low oxidation state (LOS) assign-

ment] or (Mn3+)3Mn4+ [or equivalently Mn2+Mn3+(Mn4+)2] [high oxidation state (HOS)

assignment].

The HOS paradigm is preferred by many in the field based on its interpretation of

the PSII Mn K-edge (63, 166–170), Mn Kβ (59, 169, 171), and RIXS (K pre-edge) (54,

172) spectroscopic features when compared with model compounds. For a detailed analysis

of these studies, see the recent review by Pace and coworkers (173). 55Mn-ENDOR data

suggest that Mn2+ is not present in S0 and therefore support the HOS model (174, 175).

This conclusion is based on the relatively narrow S0 spectral envelope (attributable mainly

to 55Mn magnetic hyperfine terms) compared with octahedral Mn2+ complexes used as

references (invariably large magnetic hyperfine). However, the ligand field symmetry around

Mn4 is not octahedral according to the XRD structure of S1 (Figure 1). Rather, it is five-

coordinate (the Mn4-O5 distance, 2.5 Å, is too long for appreciable bonding character) and

lacks inversion symmetry, an essential requirement to observe large scalar 55Mn hyperfine

interactions (176). Therefore, we propose that the Mn2+ model complexes used to calibrate

this assignment may not accurately reflect the ligand field or the 55Mn hyperfine interactions

found at the Mn4. This suggestion needs more evidence going forward.

Two methods have been used to count the number of charge equivalents in the PSII-

WOC. Yocum and coworkers (177) titrated intact PSII-WOC samples with excess chemical

reductants and observed the loss of O2 evolution activity and the release of Mn2+. Their

data suggest S1 is present as (Mn3+)2(Mn4+)2 (HOS assignment). However, the reductants

utilized (specifically hydroxylamine) interact with and reduce other species besides Mn3/4+

(178, 179). In contrast, our group has determined the number of quanta of light (STFs)

required to photoassemble apo-PSII-WOC starting from Mn2+ and Ca2+. Two studies

utilizing different flash intensities and durations have found that O2 is first released after

seven flashes (one-electron transfer steps) (79, 86). These results correspond to the LOS S1

assignment of either (Mn3+)4 or Mn2+(Mn3+)2Mn4+. We emphasize that titration and pho-

toassembly methods do not rely on model complexes for calibration. Hillier & Wydrzynski

have also argued for the LOS assignment of S1 [(Mn3+)4] based on the comparison of water

exchange kinetics in Mn3+-containing model complexes and PSII (180). More experiments

are needed to fully resolve this critical debate in PSII research.

Additionally, IM1 decays if the light flux is

very low, or is unproductively photooxidized if

the dark process does not complete first. EPR

spectroscopic data support all of the suggested

structures for IM0, IM1, and IM1
∗ in Figure 3

(83). The next intermediate, IM2, forms by pho-

tooxidation of a second Mn2+. The structure in

Figure 3 is only postulated as no direct spectro-

scopic evidence currently exists to characterize

IM2. All light-induced intermediates after IM1
∗

form with much higher quantum yield and

have not yet been isolated for characterization.

Experiments by Burnap and coworkers (84)

using cyanobacterial cells have used paired
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Water-oxidizing

complex
Fast Slow 

Dark 

?? 

IM0  IM1 IM1* IM2

k1

k–1

k2

2Mn2+Mn2+

hν

Protein
conformational

change 

[Mn3+(CO3
2–)] 

[Mn3+(OH–)]

+HCO3
–

+Ca2+

[Mn3+–(O2–)–Ca2+] 

hν

a

b

[Mn4CaOx]

Mn3+–O–Ca2+

Mn3+

[Mn2+(HCO3
–)]

+HCO3
–

[Mn2+(H2O)]

+Ca2+

–H+

[Mn2+–(HO)–Ca2+]

hν

–H+

hν

–H+

X X

Figure 3

The sequence of kinetic intermediates (panel a) and proposed chemical formulation (panel b) of the intermediates formed during the
major photoassembly pathway in spinach photosystem II membranes. Figure adapted from Reference 12.

flash experiments to reveal a third kinetic phase

of photoassembly in a minority of centers,

presumably representing an alternate pathway

to the second intermediate, IM2. The rate to

this intermediate is 5–10 times faster than the

rate-limiting dark-rearrangement step that is

normally observed in plant PSII. Assuming

that the dark-rearrangement step is a protein

conformational change, Burnap and coworkers

propose the possibility that a fraction of the

centers may already exist in the rearranged state

during or shortly after the first light-induced

step. These centers are thus able to process the

second quantum without the prior delay re-

quired by the conformational change. Burnap’s

observation fits well with photoassembly mea-

surements using spinach PSII membranes, in

which Ca2+ was replaced by Cd2+, an inhibitor

of O2 evolution (85). This change produces a

tenfold acceleration of the dark step in Cd2+-

reconstituted centers, which bind competitively

and more strongly to the native Ca2+ site.

Apparently, the low Ca2+ affinity thus controls

the rate of the slow dark conformational step,

and some other cations that bind more tightly

(e.g., Cd2+) accelerate conversion to the ready

state, IM1
∗. Subsequently, photoassembly pro-

ceeds, and Cd2+ can be exchanged with Ca2+

to yield catalytically competent WOC (85).

The three kinetically resolved steps of pho-

toassembly are associated with cofactor uptake

by an ordered sequence of steps 1Mn2+(1 pho-

ton) + Ca2+(dark) + 3Mn2+(n photons), as il-

lustrated in Figure 4. The dark step is gated

by Ca2+ and appears to involve a protein con-

formation change (D1 carboxyl terminus?) that

controls the kinetics (86). This step templates

the formation of the binding site for the remain-

ing three Mn ions. Without Ca2+, many more

than three Mn2+ ions bind and photooxidize to

form an unproductive intermediate (87).

The Mn2+ and Ca2+ stoichiometries, their

cooperative binding, and their kinetic sequence

of uptake as determined by photoassembly
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ks ≈ 0.02 s–1
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e–

OCa

O

OO
E

S1a

H2O Mn3+

H2O H2O

Mn3+O
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Mn3+

H2O
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H+

OCa

HO

OO

E

H2O Mn2+

H2O H2O

Mn3+O

Mn3+
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Mn3+

H2O
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H2O

OO

H2O Mn2+

H2O H2O

Mn3+O

Mn3+

Mn3+

H2O
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O

OO
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H2O Mn3+

H2O H2O
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OO
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H2O H2O

Mn4+O

Mn3+

Mn3+ S4a
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EB– His

H+
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O

OO

O

H2O Mn3+

H2O H2O

Mn4+O

Mn3+

Mn3+

S4b

EB– His2 H2O

+•
O

Mn

Mn

S0b

Figure 4

Proposed mechanism of water oxidation by the photosystem II (PSII) water-oxidizing complex (WOC). Arrows within chemical
structures represent the alignment of the Jahn-Teller axis on each Mn3+, corresponding to the antibonding eg

1(dz2) orbital. Rate
constants for S-state transitions (black text) are detailed in Table 1. Fast and slow substrate water exchange rates (kf and ks, respectively)
were measured at 10◦C in spinach PSII membranes (186, 187). The inset structure of the PSII-WOC is analogous to intermediate S1b

in our mechanism and was generated in the PyMOL program using coordinates from Protein Data Bank entry 3ARC (17).

actually forecast the structural organization

of these cofactors in the WOC, as seen in

recent XRD studies (reviewed in References

12, 75). The initial Mn2+ site, corresponding

to Mn4, was further identified as the dangler

Mn by EPR spectroscopy of the holoenzyme

(49). EPR spectroscopy of photoassembled

cyanobacterial PSII-apo-WOC core complexes

has given further evidence describing the ligand

field of (Mn4)3+ in IM1 (88). A µ-oxo (formally

µ-oxido or di-µ-hydroxido) bridge forms be-

tween Mn3+ and Ca2+ during photoassembly,

as identified by EPR spectroscopy (82). This

appears to be the O5 bridge from Mn4 to
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Jahn-Teller ( JT)
effect: tetragonal
elongation of
six-coordinate Mn3+

(3d4) resulting from
asymmetric electronic
configuration (hole in
dx2−y2 and
antibonding electron
in dz2)

Ca2+ (Figure 1). During photoassembly, Ca2+

locked in a fixed ligand field at (Mn4)3+ inde-

pendent of the solution pH; in the absence of

Ca2+, this (Mn4)3+ ligand field varied systemat-

ically with pH. Thus, a critical role of Ca2+ is to

work together with (Mn4)3+ to form an ionized

oxide bridge (O5) that is chemically and kinet-

ically stable over a wide pH range and provides

the template for the cooperative binding and

high-quantum-yield photooxidation of the

remaining three Mn2+ (82). These remaining

steps assemble the Mn3O4-incomplete cubane

to the precursor [(Mn4)(O5)Ca], forming the

Mn4CaO5 catalytic core (see Structure, above).

Chloride is essential for O2 activity of PSII

(89) but not for photoassembly (12). Although

no protein chaperones are required for pho-

toassembly (the process can proceed in vitro

with purified apo-PSII-WOC), (bi)carbonate

is an important cofactor that accelerates the

rate and increases the yield of photoassembly.

During photoassembly of spinach PSII, it acts

through two binding sites: One is a general base

site, and the other is specific to (bi)carbonate

(70, 80). Electron spin-echo envelope mod-

ulation (ESEEM) studies of 13C-bicarbonate

binding established that the latter interaction

involved direct coordination to (Mn4)2+ and

contributed to the ligand field around (Mn4)3+,

possibly by delivery of (hydr)oxide for forma-

tion of a µ-oxo bridge to Ca2+ (90). Although

(bi)carbonate appears not to be essential for O2

evolution activity in some PSIIs (91), it signifi-

cantly influences the kinetics of O2 evolution in

a cyanobacterial strain mediated by CP-R357

(71) and is absolutely essential for the operation

of hypercarbonate strains (21), in which it ap-

pears to be important for proton evolution (92).

A PROPOSED MECHANISM FOR
WATER OXIDATION

Next we propose an atomic mechanism for wa-

ter oxidation that uses the low oxidation state

assignment and builds on a prior mechanism

that adopted this assignment (48). We apply

the results highlighted in other sections of this

review, the atomic positions taken from the

1.9-Å structure (17), and recent DFT calcu-

lations. Two remarkable features of the XRD

structure that we develop in our proposed

mechanism are the unusual ligand field at O5

and the very highly ordered W2 (threefold-

lower positional disorder). In our mechanism,

we suggest that these two oxygens are derived

from substrate waters by applying the principles

of chemical bonding and reactivity from inor-

ganic chemistry (93). Notably, we explicitly in-

clude the consequences of the Jahn-Teller ( JT)

effect. This vibronic term causes tetragonal

elongation around Mn3+ owing to distortion

around the asymmetric electronic configura-

tion (dx2−y2 hole and antibonding electron in

dz2) and results in a large energy stabilization of

0.5–1 eV for Mn3+ in oxide ligand fields (93).

This effect cannot be overlooked in chemically

accurate mechanisms. We also include the

mechanistic and energetic consequences of the

proton ionization of water molecules bound to

Mn2+/3+/4+ cations (pKa differences). Notably,

a factor of seven to eight difference in pKa

exists for water molecules bound to axial

versus equatorial positions of JT-distorted

Mn3+ (94). These terms are critical to account

for the large differences in substrate water

exchange rates with the S state, as determined

by 18O-isotope mass spectrometry (95). To our

knowledge, the S-state dependence of these

rates has not been successfully incorporated

within any self-consistent mechanism.

Flash #1: S1 → S2

We begin with the dark-stable S1 intermediate

in the low oxidation state (Mn3+)4 (Figure 4).

In our model, S1 can exist as two proton tau-

tomers as recently hypothesized by Pace and

coworkers (96). The first S1a species (derived

from S0) features W2 as an aqua ligand to

Mn4. Based on energetics (93) and by analogy

to those observed from a (Mn3+)4O4 model

cubane (97), the JT axes of Mn1 and Mn3 are

predicted to point toward O5 and that of Mn2

is predicted to point toward O2 in S1a. The

other (preferred) tautomer S1b is predicted to

form upon net movement of a proton from

W2 [bound at the more acidic non-JT axis on
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YZ: tyrosine residue
D1-Y161

(Mn3+)4] to D1-H337. This is likely mediated

by the water network connected to W2 and by

an internal proton donor, BH. S1b is driven to

tautomerization by coordination of the pro-

tonated imidazoyl cation on H337 to O3 via

a strong hydrogen bond [2.6 Å in the Umena

et al. structure (17)]. This tautomerization

drives the reorientation of the JT axes of Mn1

and Mn3 toward O3. The S1b vibronically

stabilized tautomer can explain the decrease

in substrate water exchange rates measured

by Hillier & Wydrzynski (Figure 4; reviewed

in Reference 95). As shown in Figure 4, the

rearrangement of two JT axes in tautomer S1b

produces a more tightly bound O5 owing to the

loss of two antibonding interactions from Mn1

and Mn3. This stronger bonding is consistent

with the observed 500-fold slowing of the sub-

strate exchange rate in S1 relative to the (OH)5

exchange rate in S0 (Figure 4), assuming that

O5 is the slow-exchanging substrate water site.

Species S1b continues in our proposed cat-

alytic cycle. Following photochemically driven

charge separation, YZ
• oxidizes Mn2 (Mn3+

→

Mn4+), triggering the following steps: (a) in-

ternal movement of a proton from the histidyl

cation H337-H+ to a base B− caused by the loss

of an electron and stronger covalent bonding

within the Mn2(O1)(O3)Mn1 rhombus [the

(Mn1)3+ dx2−y2 hole is directed at O1 and O3,

and dz2
1 is pointed at O5], and (b) reorientation

of the JT axis on Mn3 along O5 to accommo-

date this stronger covalent bonding. As a result

of this realignment of two JT axes with their an-

tibonding interactions directed at O5, the water

exchange rate of O5 is predicted to increase

substantially from its S1 value, consistent with

the experimental data showing a 100-fold in-

crease at the slow substrate site in S2 (Figure 4).

The faster exchanging site (W2) is not directly

affected and slows by a much smaller value

(Figure 4).

Flash #2: S2 → S3

After the second flash, a rapid deprotonation

event is followed by a metal-centered oxidation

(98). This redox-leveling process partially

mitigates the energy barrier of the second

oxidation by decreasing the formal charge

of the WOC. We propose that the internal

base BH associated with H337 (Figure 4) is

deprotonated to the bulk in this step. Neutral

H337 may be stabilized by hydrogen bonding

to the backbone carbonyl of E333 [noted as

E in Figure 4 and located 3.37 Å from H337

in the Umena et al. structure (17)]. The hole

injected into the Mn4Ca cluster by YZ
• is pos-

tulated as localized to Mn4 (Mn3+
→ Mn4+).

Thus, the fast-exchanging water (W2) should

bind more tightly than in the previous inter-

mediate, and the bonding environment of the

slow-exchanging site (O5) is not significantly

affected in the S2 → S3 transition (Figure 4).

Flash #3: S3 → S4 → S0 + O2

O2 is released following the third flash through

a complex series of intermediates. First, we

propose that the formation of YZ
• facilitates

the deprotonation of W2 to the bulk via the

adjacent water network (species S3YZ
• in

Figure 4). Next, the YZ
• hole is subsequently

transferred to the cluster, generating an oxyl

radical cation at O5 (S4a) that is stabilized

by delocalization of the hole between the

antibonding dz2
1 electrons on Mn1 and Mn3,

as highlighted in Figure 4. Ultimately, this

configuration evolves to form a bond between

O5 and Mn4, as shown in Figure 4.

The O5 oxyl radical is in close proximity

to the terminal oxo of Mn4 (W2). Termi-

nal O-Mn4+ bonds trans to oxido (O4) are

uniquely weak (and long) owing to a half-filled

dπ
3 shell with three antibonding electrons

(99). This configuration favors formation of an

intramolecular O-O bond, shown as the peroxo

intermediate S4b in Figure 4. The peroxo inter-

mediate that forms at Mn4 in our mechanism

is formally similar to the peroxo intermediate

that forms during O2 release from perman-

ganate (MnO4
−) following photoexcitation in

the gas phase (100, 101). Based on DFT calcu-

lations and assuming the high oxidation state

assignment, Siegbahn (67, 102) found that an

oxo-oxyl radical coupling mechanism for O-O
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P680: reaction center
Chl a dimer

bond formation in S4 has significantly lower en-

ergy than the nucleophilic attack mechanisms

preferred by Brudvig and coworkers (103). Im-

portantly, spin states are consistent with bond

formation in the Siegbahn oxo-oxyl radical cou-

pling mechanism. The unpaired electron on O5

is predicted to have spin β, which would pop-

ulate a bonding orbital with a spin α electron

from the oxo of Mn4 (102). In a seminal recent

paper by Lubitz and coworkers (104), a bridg-

ing oxo (O5) was shown to be exchangeable at

rates compatible with those previously reported

for substrate water exchange (95), which leads

directly to possible oxo-oxyl radical coupling

mechanisms involving O5, as shown here.

Conversion to O2 by internal charge transfer

is downhill in energy (105, 106). O2 is released

upon uptake of the next two substrate water

molecules at sites W2 and O5 (S0a in Figure 4).

In the resulting S0b state, the water molecule

at position O5 spontaneously deprotonates

via the adjacent water network to the bulk,

forming a µ3-hydroxide ligand that assumes

sp3 hybridization with weak bonds to Mn1 and

Mn3 and ionic association with Ca2+. There

is no appreciable bond strength between Mn4

and O5 in S0, in agreement with the long 2.5-Å

distance seen in the XRD structure of S1 (17).

This conformation of S0 results in the fastest ex-

change rate of the slow substrate water site (O5,

10 s−1; Figure 4). The fast-exchanging water

(W2) is bound to (Mn4)2+ and also exhibits its

most rapid rate in S0 (>120 s−1; Figure 4).

Flash #4: S0 → S1

Following the fourth flash, a metal-based ox-

idation step precedes deprotonation (98). We

propose that the five-coordinate Mn4 is oxi-

dized from Mn2+ to Mn3+ in this step. The final

deprotonation event is centered at O5, and dur-

ing it the hydroxo is converted to a corner µ3-

oxo weakly bridging Mn1, Mn3, and Mn4 and

ionically associated with Ca2+. As previously

discussed, the absence of ordered hydrogen-

bonding partners of O5 in the Umena et al.

(17) structure suggests that O5 is more likely a

bridging oxo rather than a hydroxo in S1.

Additional Considerations

The foregoing mechanism emphasizes the

most recent structural, electronic, and chemical

attributes of the WOC, specifically the oxygen

atomic coordinates, the lower oxidation state,

and water exchange rates. We stress that our

proposed mechanism for WOC turnover,

although based on established principles of

chemical bonding within transition metal–oxo

complexes, may need further refinements

from consideration of other experiments or

computations.

DONOR-SIDE KINETICS

The redox-active tyrosines YZ (D1-Tyr161)

and YD (D2-Tyr160) are located symmetrically

in the D1 and D2 subunits of the homodimeric

reaction center core, nearly equidistant to

P680; YZ is between P680 and the CaMn4 site

(Figure 5). They have been extensively re-

searched (107). Their environments are highly

ordered with different residues and water ac-

cessibility that confer different electrochemical

potentials, as understood from synthetic mod-

els (108). For example, only YZ
• has sufficient

thermodynamic driving force to advance all

S-state transitions of the Kok cycle, whereas YD

actually acts as an inefficient reductant to the

S2 and S3 states (109–111). These differences

account for their substantially different kinetics

of electron donation to the Mn4CaO5 complex.

The kinetics of the reduction of P680
+ by YZ are

triphasic and have time constants of 20–50 ns

(fast nanosecond kinetics), 300–600 ns (slow

nanosecond kinetics), and 30–35 µs (microsec-

ond kinetics) (112–115). The fast nanosecond

kinetic reaction is facilitated by a hydrogen-

bonding interaction between YZ (hydroxo) and

D1-His190. The two slower kinetic reactions

are related to changes in the protein environ-

ment that favor YZ oxidation. The 300–500-ns

kinetic reaction is controlled by changes

in the local dielectric protein environment,

whereas the 30–35-µs kinetic reaction reflects

proton rearrangement processes. The ener-

getics of these relaxation processes contribute

www.annualreviews.org • Photosystem II 589

A
n
n
u
. 
R

ev
. 
B

io
ch

em
. 
2
0
1
3
.8

2
:5

7
7
-6

0
6
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

b
y
 R

u
tg

er
s 

U
n
iv

er
si

ty
 L

ib
ra

ri
es

 o
n
 0

6
/0

9
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



PQ Pool

Pheo

Car

QA

Fe2+

P680

ChlZ

QB

cyt b559

YD

4H+ + O22H2O

Mn4Ca

YZ
•

~10 ms

~100 ms

200–800 μs

200–500 ps

~1.7 ms

3–8 ps

30 μs–1.4 ms ≤35 ns >150 μs

~500 ms

1

2

3

4

5

6

7

8

9

10

Figure 5

Kinetics of electron/hole carriers in photosystem II (PSII). Dotted lines
represent secondary electron transfer pathways as described in Light to
Chemical Conversion Efficiency in PSII.� YZ

• oxidation kinetics are S-state
dependent, as detailed in Table 1.� The reduction of P680

+ by YZ
• is

multiphasic (112–115).� The reduction of Pheo (188–190) is approximately
100-fold faster than the� subsequent reduction of QA (188, 190–192).� QB

accepts two electrons from QA (τ = 200–400 µs for QA
−QB → QAQB

− and
500–800 µs for QA

−QB
−

→ QAQB
2−) (134–137).� QB preferentially

exchanges with the PQ pool (193) or� can reduce cyt b559 (194).	 P680
+ can

be reduced via the network of Car, ChlZ, and cyt b559 (195).
Alternatively,
P680

+ can be reduced by direct charge recombination (quantum tunneling)
with QA (150). Indirect (nonradiative) recombinations of [P680

+Pheo−]1 and
[P680

+Pheo−]3 occur with half-times of >1 ns and ∼200 ps, respectively (151,
196).� The reduction of P680

+ by YD has a half-time of >150 µs at pH 6.5
(142). The oxidation of S0 by YD

• is much slower and occurs on the order of
5–40 min (111). Abbreviations: Car, carotenoid; PQ, plastoquinone.

approximately 0.1 eV of stabilization energy

for this reaction, with contributions of 10, 25,

and 60 meV for each of the three phases, re-

spectively (116). Renger & Renger (13) noted

that the contribution of the slower phases

increases upon replacement of Ca2+ by Sr2+ in

the Mn4Ca site, revealing that the relaxation-

dependent phases of YZ oxidation involve

degrees of freedom extending to the inorganic

core.

The kinetics of individual S-state transi-

tions and the O2 release rate are considerably

faster than the catalytic turnover rate, which

is typically limited on the acceptor side by

reoxidation of (PQH2)B. The kinetics of YZ
•

reduction and Mn oxidation in the WOC cen-

ter have been analyzed by time-resolved EPR

spectroscopy (117, 118) and optical changes

in UV absorption (119). These data show

that YZ
• is the direct oxidant of Mn during

S-state transitions. The time courses for the

one-step advancements of S0, S1, and S2 satisfy

single exponential kinetics, in contrast to the

multiphasic YZ oxidation by P680
+ (see above).

The half-lives of these reactions are given in

Table 1 and reflect the kinetics for resting

populations in dark-adapted PSII. The rates of

S0 → S1, S1 → S2, and S2 → S3 as measured by

EPR and XAS progressively slow in the ranges

of 30–70 µs, 70–110 µs, and 180–350 µs,

respectively (63, 117, 118). Interestingly, the

S0 → S1 transition is supposedly slower than

S1 → S2 when UV absorption or FT infrared

spectroscopy (FTIR) absorption is used to

monitor the reaction kinetics (119, 120). The

S3 oxidation by YZ
• is slower by a factor of

three to eight compared with the next slowest

S-state transition and is the most sensitive

to environmental factors. This step has been

examined by time-resolved Mn XAS and FTIR

and found to resolve into two phases with a lag

phase of approximately 200 µs. The latter step

correlated with the detection of proton release

by an entropically favorable process (63, 120).

Kinetic data have been obtained for the

detection of the released O2 product in so-

lution using electrochemical (18, 121, 122),

EPR (123), and photoacoustic (124) methods

(Table 1). Because diffusion lengths to the de-

tector and internal sinks for O2 solubility need

to be considered in whole cells, data from iso-

lated PSII complexes are considered more re-

liable for determination of the intrinsic half-

life for O2 release. The ranges of values found

are 1.2–2.2 ms for polarography, 1–2 ms for

EPR, and approximately 2 ms for photoacoustic

methods. These rates are fully consistent with

predicted kinetics of the S0 → S3 transition.

The release of O2 is not reversible even at ele-

vated O2 pressure (125) and exhibits a driving

force of at least 220 mV (126).
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Table 1 S-state transition half-lives as measured by EPR (YZ reduction), UV absorption, X-ray absorption, and FTIR as

well as O2 release as measured by polarography, EPR, and photoacoustics

S-state transition half-life EPRa UVb XASc FTIRd Polarography Photoacoustics

S0 → S1 30–70 µs 250 µs ≤30 µs 130 µs

S1 → S2 100–110 µs 55 µs 70 µs 65 µs

S2 → S3 180–350 µs 290 µs 190 µs 460 µs

S3 → S0 1.0–1.4 ms 1.2 ms 1.1 ms 1.4 ms

O2 release 1–2 mse 1.2–2.2 msf,g
∼2 msh

Data refer to dark-adapted samples using single-turnover flashes. Abbreviations: EPR, electron paramagnetic resonance; FTIR, Fourier transform

infrared spectroscopy; XAS, X-ray absorption spectroscopy.
aYZ

• reduction (117, 118).
bMnox formation (119).
cMnox formation (63).
dH+ and protein dynamics (120).
eO2 detection via EPR-active spin probe (123).
f Reference 121.
gReference 122.
hPulsed photoacoustic time shift resulting from O2 release (124).

QA : primary PQ
acceptor

QB: secondary PQ
acceptor

Plastoquinone (PQ)
pool: the
membrane-soluble
sum of oxidized PQ
and reduced PQH2

ACCEPTOR-SIDE KINETICS

Following the formation of the primary

charge-separated state, [P680
+Pheo−], Pheo−

reduces the primary acceptor, QA, a tightly

bound plastoquinone (Figure 5). The thermo-

dynamic driving force of this step is defined by

the relative midpoint potentials of Pheo/Pheo−

and QA/QA
− and is controlled by the local

protein environment. The Pheo hydrogen-

bonding partner D1-130 is a Glu in plants

and algae but may be either a Glu or Gln in

cyanobacteria, depending on the expressed D1

isoform regulated by light intensity (40). Sub-

stitution of Gln for Glu at D1-130 changes the

Em(Pheo/Pheo−) by −33 mV in Synechocystis

(127) and −17 mV in Thermosynechococcus (44,

128). The Em of QA/QA
− also varies based

on species (129), D1 isoform (130, 131), and

herbicide occupancy of the QB pocket (132).

Although QA accepts only one electron

at a time and no protons, the secondary PQ

acceptor, QB, is reduced and protonated twice

to form PQH2. Electron transfer from QA
−

to QB is facilitated by a nonheme iron (Fe2+)

equidistant between the two PQ molecules.

The nonheme Fe2+ is ligated by a bidentate bi-

carbonate ligand [essential for efficient electron

transfer (91)] and four His residues: D1-H215,

D1-H272, D2-H214, and D2-H268 (17).

Through computational studies, the Em of

QB/QB
− is predicted to be dependent on the

protonation state of D1-H252 (133). D1-S264

forms a hydrogen bond to QB that facilitates

forward electron transfer from QA
− only when

D1-H252 is protonated (133). QB is reduced

with kinetic time constants of 200–400 µs for

the first transfer (QA
−

→ QB) and 500–800 µs

for the second transfer (QA
−

→ QB
−) (134–

137). The resulting (PQH2)B diffuses from the

binding pocket and is replaced by an oxidized

QB from the membrane-soluble PQ pool.

SECONDARY ELECTRON
TRANSPORT WITHIN PSII

The most efficient electron transfer pathway in

PSII is the linear flow of electrons from water

to (PQH2)B via the WOC, YZ, P680, Pheo, QA,

and QB. Although YZ is the preferred reduc-

tant of P680
+, it is in competition with YD, Car

(via cyt b559 and ChlZ), and backward reactions

from the acceptor side (e.g., QA
−). Addition-

ally, although the combined impact of these

secondary pathways (Figure 5) may be mini-

mal under continuous moderate light flux, they
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are essential for PSII survival under excess light

fluxes and photoassembly (138).

Tyrosine D

Although the cation radical form of YD
• has a

high reduction potential [Em = 700–800 mV

(111)], it remains oxidized in the dark for long

periods and does not play a major role in PSII

turnover under continuous illumination (107).

However, YD is completely conserved in PSIIs

from the genomes of all oxygenic phototrophs,

indicating that it is absolutely essential. Owing

to its hydrophobic protein environment, the

YD
• radical is remarkably dark stable and can

be observed via EPR for hours after exposure to

light (139). However, YD can reduce both the

S2 and S3 Kok-cycle intermediates (generated

after one or two STFs, respectively) (109–111)

but cannot reduce S0 or S1. Conversely, YD
• can

oxidize S0, although its kinetics are very slow

(110, 111). These features help explain why

after several minutes of dark adaptation, WOC

centers are composed of approximately 25%

S0 and 75% S1, but after many hours of dark

adaptation, the population of S1 approaches

100%. When P680
+ formation is faster than

WOC cycling or if the Mn4Ca is disassembled,

YD can directly reduce P680
+ (140–142). This

ability of YD to store an oxidizing equivalent

supports photoassembly. The YD artificial mu-

tant D2-Tyr160Phe was significantly impaired

in the rate and yield of photoassembly of the

WOC inorganic core (143).

Cyclic Electron Transport Around
PSII: Cyt b559, ChlZ, and Car

The PsbE and PsbF subunits comprise the α-

and β-subunits of cyt b559 and are essential

components of the PSII core. As recently re-

viewed by Shinopoulos & Brudvig (138), fol-

lowing the formation of P680
+, cyt b559 may be

oxidized, and the oxidizing equivalent is rapidly

equilibrated between cyt b559, ChlZ, and Car

(144), and subsequently reduced by QB
−. This

cyclic pathway around PSII functions when the

Mn4Ca cluster is not present, but it has also

been observed experimentally in vivo in a pho-

toprotective role under excess light conditions

(145) when the PQ pool is highly reduced (146).

Charge Recombination

The initial [P680
+Pheo−] charge-separated

state is short-lived and transfers to [P680
+QA

−]

within hundreds of picoseconds following pho-

tochemical excitation of P680 (147). Typically,

YZ reduces P680
+ and QA

− reduces QB. How-

ever, [P680
+QA

−] may also recombine through

various pathways with either photoprotective

or destructive consequences [see excellent

reviews by Vass & Cser (148) and Rutherford

et al. (149)]. First, [P680
+QA

−] may di-

rectly recombine via quantum tunneling. This

nonradiative reaction is relatively slow (approx-

imately 2 ms) and may serve a protective role

in excess light conditions (150, 151). The free

energy gap between QA/QA
− and P680/P680

+

is large (>1.2 eV). Thus, the relationship

between the thermodynamics and kinetics

of this recombination is hypothesized to

follow inverted Marcus behavior owing to the

predicted large reorganization energy (148). As

previously discussed, the Em of QA/QA
− varies

considerably among species and cyanobacterial

D1 isoforms (see Secondary Electron Trans-

port Within PSII, above). Therefore, we and

others have predicted that this tuning of the

QA/QA
− Em may be the result of evolutionary

selection to maximize photoprotection and/or

minimize inefficient back reactions under

light-limited conditions (44, 45, 148, 149).

The [P680
+QA

−] charge pair is in equilib-

rium with both the singlet and triplet states of

[P680
+Pheo−] and can populate with different

probabilities and consequences (132, 152, 153).

Their formation is controlled by the free energy

gap between Pheo/Pheo− and QA/QA
−. Similar

to that of [P680
+QA

−], the transient singlet state

of 1[P680
+Pheo−] decays harmlessly (and likely

protectively) via a nonradiative direct pathway

(148). In contrast, when triplet 3[P680
+Pheo−]

forms, it decays via triplet 3P680, which, ow-

ing to its longer lifetime, may react with dis-

solved molecular oxygen, 3O2, to form singlet
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1O2. This product is a powerful oxidizing agent

that causes extensive damage to PSII and sur-

rounding sites (132, 152, 153).

LIGHT TO CHEMICAL
CONVERSION EFFICIENCY
IN PSII

PSII Reaction Center Efficiency

Here we focus on contributions to the solar en-

ergy conversion efficiency of PSII, η, which can

be reduced to the product of three terms as in

Equation 3 (4, 154),

η = LHY × FEY × PQY, 3.

where LHY is light-harvesting yield, FEY is

fractional energy yield, and PQY is the quan-

tum yield of product (O2 + PQH2) formation.

In PSII, individual quanta of visible light are

absorbed directly or transferred from excited

states of antenna pigments of comparable or

higher energy and form the excited state of the

photochemically active Chl, P680
∗. The yield of

this reversible process depends on the product

states (prior photochemical events) and defines

the quantum yield for light harvesting by

P680 (LHY). Estimates of maximum LHY

for oxygenic phototrophs without product

inhibition range from 34% to 50%, based on

the full spectrum of incident solar radiation at

the surface of Earth (3, 4). Subsequently, the

excitation on P680
∗ is trapped by photochemical

conversion steps with a probability that de-

pends on the product state (PQY). These occur

as electron and proton transfer steps that form

electron/hole pairs on specific neighboring

cofactors. As depicted in Figure 6 (from Refer-

ence 4) for PSII, the initial step involves form-

ing a Chl a radical cation (P680
+) and a reduced

Pheo radical anion (Pheo−). Also shown is the

FEY relative to P680
∗, defined as the difference

in their respective reduction potentials. This

step is followed by a series of electron transfer

steps to adjacent cofactors that further separate

the electron/hole pair at the expense of further

loss of internal energy in discrete amounts de-

termined by the cofactor identity and environ-

mental interactions. The FEY decreases overall

by 0.49–0.58 V or 27–32% relative to P680
∗

upon forward electron transfer on the acceptor

side from Pheo− to QA
− to (PQH2)B. Likewise,

on the donor side, sequential electron transfers

to the high-potential hole of P680
∗ are filled by

YZ, which in turn oxidizes the WOC. There is

an estimated overall energy loss of 0.32–0.44 V

or 17–24% from P680
∗ to the products in Equa-

tion 1a (4, 155). This results in a total FEY of

44–56% (ignoring the pmf created). This loss is

a system design loss of PSII and is not an intrin-

sic overpotential specific to the WOC. These

energy losses following the photochemical step

(FEY) are the cost to ensure a high probability

of charge transfer between each of the selected

carriers and not others (PQY), while also

suppressing wasteful charge recombination

pathways (see Secondary Electron Transport

Within PSII, above) (156). Another trade-off

that the cofactor design must avoid is loss of

excited state trapping at P680
∗ and increased

nonphotochemical quenching of P680
∗ once it

is formed. The magnitude of PQY is related to

the turnover efficiency of WOC cycling (see

below). Dark-adapted PSII with an oxidized

PQ pool and donor-side proton buffers can

achieve PQY of up to 95% (1 − α + β) at

low light fluxes (21), but the PQY is much

lower even at ambient and certainly at full

solar intensity as these reservoirs become

filled, depending on the species. Returning

to Equation 3, we estimate the maximal light

to chemical quantum yield of PSII to be

approximately 24% (0.5 × 0.5 × 0.95).

PSII–Water-Oxidizing Complex
Cycling Efficiency

Most commonly, the efficiency of PSII is

reported as a light-saturated rate of O2 evo-

lution that, when normalized to Chl content,

approaches 6,000 µmol O2 (mg Chl)−1 h−1

in vitro (157). As shown in Table 2, the

sustained turnover rates of the PSII-WOC

vary considerably among cyanobacteria, algae,

and higher plants and among PSII particle

preparation methods. The historical units of

µmol O2 (mg Chl)−1 h−1 can be converted
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0.49–0.58 V
loss  

1.83 V

–0.58 –
–0.57 V

P680
*/P680

+ 
Pheo–/Pheo

–0.52 –
–0.41 V

QA
–/QA

–0.16 –
–0.08 V    0.00 –

–0.09 V

Fractional
energy yield = 44–56% 

0.32–0.44 V
loss 

H2O/O2

+0.82 –
+0.93 V Si/Si+1 

+1.1 V YZ/YZ
•

+1.2 V
P680/P680

+ 

+1.25 –
+1.26 V 

QB
–/QB 

i

ii

iii

iv

v

vi

vii
viii

0.81–1.02 V

Figure 6

Relative energies of electron/hole carriers in photosystem II (PSII). Adapted from Reference 4.
(i) Em(H2O/O2) values reflect the physiologically relevant pH range of 5–7. (ii) S-state Em values were
indirectly measured in spinach [+1.1 V (197)] or Synechocystis 6803 [+1.0 V (198)] with reference to an
Em(QA

−/QA) value of −80 mV (199, 200). (iii) Em(YZ/YZ
•) was indirectly measured in spinach (201) with

reference to an Em(QA
−/QA) value of −80 mV (199, 200). (iv) Em(P680/P680

+) was indirectly measured in
Synechocystis 6803 [+1.26 V (198)] or spinach [+1.25 V (201)] with reference to an Em(QA

−/QA) value of
−80 mV (199, 200). (v) The Em(P680

∗/P680
+) value is calculated as 1.83 eV (energy of a 680-nm photon)

more negative than Em(P680/P680
+). (vi) Em(Pheo−/Pheo) has been indirectly measured in spinach

[−410 mV (202), −420 mV (201)] or Synechocystis 6803 [−440 mV (198)] with reference to an Em(QA
−/QA)

value of −80 mV (199, 200), and directly measured by spectroelectrochemistry in Thermosynechococcus
elongatus containing D1:1-PSII [−522 mV (44)] or D1:2-PSII [−508 mV (128)]. (vii) Em(QA

−/QA) was
directly measured by redox titrations in spinach [−80 mV (200)] and Scenedesmus obliquus [−80 mV (199)],
and by spectroelectrochemistry in T. elongatus containing D1:1-PSII (−124 mV) or D1:2 (−83 mV) (130),
Chlamydomonas reinhardtii (−162 mV), spinach (−149 mV), and Cyanidioschyzon merolae (−92 mV) (129).
(viii) Em(QB

−/QB) was indirectly measured in pea chloroplasts [Em(QA
−/QA) − Em(QB

−/QB) = −70 mV
(135)] or Synechocystis 6803 [Em(QA

−/QA) − Em(QB
−/QB) = −83 mV (203)].

to the intrinsic turnover rate per PSII from a

knowledge of the Chl concentration per RC.

This conversion is also given in Table 2 and

reveals that the light-saturated rate using artifi-

cial electron acceptors is remarkably similar for

PSIIs from many different organisms, ranging

from 27 to 67 O2 s−1 PSII−1. To the best of our

knowledge, the highest sustained rate measured

in vitro is 67 s−1 in the thermophilic cyanobac-

terium Thermosynechococcus elongatus (157).

The use of artificial electron acceptors with

their inefficient reoxidation rate is commonly

believed to limit PSII turnover in vitro. As

previously described, the Kok cycle operates at

less than 1–2 ms per turnover in dark-adapted

(resting) enzyme. Thus, the maximal single

turnover rate of PSII should be 500–1,000 s−1.

Indeed, instantaneous O2 release as measured

by polarography (121, 122), EPR (123), or

photoacoustics (124) occurs in 1.2–2.2 ms
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Table 2 Light-saturated PSII turnover frequency in vitro (O2 evolution) and in vivo (variable Chl a fluorescence)

Species Preparation Turnover frequency (s−1)

Spinacia oleracea Membrane fragments 30a

Chlamydomonas reinhardtii Membrane fragments 45b

Chlamydomonas reinhardtii Core complexes 27c

Thermosynechococcus elongatus Core complexes 67d

Synechocystis sp. PCC 6803 Core complexes 27e

Synechocystis sp. PCC 6803 Core complexes 35f

Synechocystis sp. PCC 6803 Core complexes 25g

Chlorella pyrenoidosa Whole cells 25h

Arthrospira maxima Whole cells 88h

Unless otherwise specified, all data refer to a temperature range of 20–25◦C. Abbreviations: Chl, chlorophyll; PSII, photosystem II.
aBBY preparation (25), 450 µmol O2 (mg Chl)−1 h−1, 270 Chl/YD

• (181).
bPSII-enriched thylakoid membrane fragments, 650 µmol O2 (mg Chl)−1 h−1, 276 Chl/4 Mn (28).
cHis-tag-labeled D2 subunit, 2400 µmol O2 (mg Chl)−1 h−1, 46 Chl/ YD

• (182).
dHis-tag-labeled CP43 subunit, 6000 µmol O2 (mg Chl)−1 h−1, 45 Chl/ YD

• (44, 157) at 45◦C.
e2500 µmol O2 (mg Chl)−1 h−1, 44 Chl/0.25 O2 (183).
f 2400 µmol O2 (mg Chl)−1 h−1, 59 Chl/ YD

• (184).
gHis-tag-labeled CP47 subunit, 2440 µmol O2 (mg Chl)−1 h−1, 41 Chl/cyt b559 (185).
hValues correspond to turnover frequency at one-half maximum Q value (21).

(see Table 1), corresponding to rates of

455–833 s−1.

In vivo, PSII turnover kinetics are readily

measured by monitoring variable Chl a fluo-

Arthrospira
maxima

Chlorella
pyrenoidosa

STF frequency, Hz

Q
u

a
li

ty
 f

a
ct

o
r,

 Q
 =

 (
α

 +
 β

)–
1

8

6

4

2
0.1 1 10 100 1000

Figure 7

Dependence of period-four oscillations in Fv/Fm on
the dark time between single-turnover flashes
(STFs) for intact cells of the green alga Chlorella
pyrenoidosa ( green) and the cyanobacterium
Arthrospira maxima ( purple). The quality factor
values, Q = (α+ β)−1, were obtained by fits to a
standard two-parameter Kok model (see Figure 2a).
The figure is based on raw data from Reference 21.

rescence using fast repetition rate fluorometry

(21, 158). The damping rate for the amplitude

of period-four oscillations of variable Chl a

fluorescence (Fv) reflects the intrinsic turnover

kinetics of the PSII-WOC (Figure 2b). Two

analytical approaches are used (21). Fourier

analysis of these oscillations gives the period of

the oscillations directly and provides a model-

independent measure of the dissipation of the

catalytic cycle with flashing rate (Figure 2c).

Alternatively, the amplitude of the oscillations

can be mathematically fit to the classic (19, 20)

or extended (159) Kok model (Figure 2a) to

estimate the probability of a miss (α) or double

hit (β). The Kok parameters are then used to

calculate a familiar quantity in resonator theory

called the quality factor of the cycle, Q = (α +

β)−1. When Q drops to half its peak value, the

power entering the Kok cycle drops by half.

As shown in Figure 7, the in vivo upper limit

of WOC turnover rate varies considerably

by species. The WOC cycling efficiency of

the green alga Chlorella pyrenoidosa sharply

decreases above STF frequencies greater than

25 s−1 and reaches 50% at 100 s−1. Because

four flashes are required for one WOC cycle,

www.annualreviews.org • Photosystem II 595

A
n
n
u
. 
R

ev
. 
B

io
ch

em
. 
2
0
1
3
.8

2
:5

7
7
-6

0
6
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

b
y
 R

u
tg

er
s 

U
n
iv

er
si

ty
 L

ib
ra

ri
es

 o
n
 0

6
/0

9
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



the turnover frequency can be estimated as

1/4 × 100 s−1
= 25 s−1. The fastest in vivo

water splitter is the hypercarbonate cyanobac-

terium Arthrospira maxima. The WOC cycling

efficiency decreases above STF frequencies

greater than 100 s−1, dropping to 50% at

350 s−1 (turnover rate = 88 s−1) (21). This

drop-off in rate was limited by the buffer

capacity of the lumen and thus attributed

to proton release kinetics (92). In vivo PSII

turnover efficiency is strongly affected by the

redox state of the PQ pool, which is controlled

by downstream electron carriers (including cyt

b6f, PSI, and alternative oxidases) (29).

SUMMARY POINTS

1. The greatly improved resolution of the PSII-WOC atomic structure (O atom chemical

specification and coordination revealed) enables a structure-based assignment of the

chemical bonding between Mn and O and gives the location of many water molecules.

2. The PSII reaction center core is remarkably conserved across cyanobacteria, algae, and

higher plants, but significant differences in low-molecular-weight and extrinsic subunits

exist.

3. New information identifying the oxidation states of the Mn atoms in the WOC has come

from spectroscopic, computation, and photoassembly studies and indicates discrepancies

that are still under debate.

4. Consideration of the improved atomic structure and oxidation states data, together with

numerous other studies, has provided new insights that enable formation of likely chem-

ical mechanisms of water oxidation and substrate water exchange.

5. Short-circuiting electron transfer pathways occur within PSII that lower the efficiency

of WOC cycling while serving roles in photoprotection.

6. The PSII-WOCs from plants, algae, and cyanobacteria operate at light-saturated rates

that are remarkably consistent in vitro and in vivo (25–88 s−1).

FUTURE ISSUES

1. Can a high-resolution XRD structure of a green algal or plant PSII be obtained? How

would it differ from the thermophilic cyanobacterial structures?

2. Can high-resolution XRD structures of S0, S2, S3, and S4 be obtained?

3. What spectroscopic, computational, and reconstitution experiments are needed for the

field to arrive at a consensus mechanism for WOC turnover?

4. Can the efficiency of PSII turnover in vivo be improved from less than 100 s−1 to approach

the intrinsic WOC turnover limit of 500–1,000 s−1?

5. What additional principles can our current understanding of PSII offer to scientists

designing more efficient abiotic catalysts using Earth-abundant materials?
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