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ABSTRACT Solar energy is the key to clean energy, which can generate large amounts of electricity for

the future smart grid. Unfortunately, the randomness and intermittency of solar energy resources bring

difficulties to the stable operation and management of the power systems. To reduce the negative impact

of photovoltaic (PV) plants accessing on the power systems, it is great significant to predict PV power

accurately. In light of this, we propose a hybrid deep learning approach based on convolutional neural

network (CNN) and long-short term memory recurrent neural network (LSTM) for the PV output power

forecasting. The CNNmodel is leveraged to discover the nonlinear features and invariant structures exhibited

in the previous output power data, thereby facilitating the prediction of PV power. The LSTM is used tomodel

the temporal changes in the latest PV data, and predict the PV power of next time step. Then, the prediction

results in the two models are comprehensively considered to obtain the expected output power. The proposed

approach is extensively evaluated on real PV data in Limberg, Belgium, and numerical results demonstrate

that the proposed approach can provide good prediction performance in PV systems.

INDEX TERMS Solar energy, deep learning, photovoltaic (PV) power forecasting, power systems.

I. INTRODUCTION

Distributed energy resources (DERs), such as wind energy

and solar energy, have developed rapidly across the world and

played an important role in the power systems [1], [2]. Espe-

cially, solar energy, as a renewable energy source, is complete

free, accessible and scalable [3]. Meanwhile, solar energy

is the key to clean energy future, which can generate large

amounts of electricity via the solar panels without burning

fossil fuels. Many energy legislations and incentives have

been established worldwide to improve the penetration rate

of solar power in future smart grid [4]. However, the ran-

domness and intermittency of solar power bring difficulties

to the stable operation and management of the power grid [5].

These uncertainties will also reduce the real-time control per-

formance and economic benefits, which is not conducive to
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the large-scale expansion of photovoltaic (PV) power plants.

The prediction methods for forecasting the PV power accu-

rately have become important tool to solve PV planning and

modeling problems, which can alleviate the negative impacts

on the entire power system and improve the stability of the

system [6]. With the development of advanced electricity

meters in current power grid, richer source data can be used to

build more sophisticated forecasting models to achieve more

accurate PV power forecasting [7].

Generally, more accurate forecasting of solar power plays

a crucial role in smart grids. In the grid-connected PV sys-

tems, the efficiency of the forecasting schedule depends

on the accuracy of the forecasting, and the reliable pre-

diction results of PV load are utilized to calculate some

multi-objective tasks [8]. In [9], the accurate prediction of PV

power generation has positive effects on the control strategies

of PV-battery energy storage systems, such as improving the

self-consumption of PV systems and reducing power flows
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to the grid. In [10], a deterministic forecasting module is

presented in a smart energy management system to optimize

the operation of the microgrid. In addition, the PV forecasting

technology is widely used in hybrid integrated energy sys-

tems [11]–[13], real-time electric vehicle charging schedul-

ing and management [14], [15], multi-objective optimization

tasks [16], [17], robust planning electric vehicle charging

facilities [18], and smart home energy management [19].

So far, the PV power forecasting approaches are divided

into three categories: 1) statistical methods; 2) physical meth-

ods; 3) artificial intelligent learning methods [20]. Statistical

methods try to establish the functional mapping relation-

ship between historical data and output power, such instance

time series method [21], regression analysis method [22],

gray theory [23]. The statistical models often rely on his-

torical data and need to exclude morbid data points that

are not conducive to these models. Unlike the statistical

methods, physical methods do not require the support of a

large amount of historical data, but it studies the charac-

teristics of PV power generation equipment and establishes

the corresponding mathematical model for power forecast-

ing [24]. The meteorological and geological parameters used

for physical mathematical models are usually measured by

numerical weather prediction (NWP) or groundmeasurement

devices. However, physical methods require appropriate and

frequently calibrated service facilities [25], [26]. Artificial

intelligent learning methods benefit from the rapid growth of

computing power and exploit artificial intelligence algorithm

to learn a mapping relationship between input and output,

mainly focusing on nonlinear mapping models [27]–[29].

Artificial intelligence methods have been widely used in var-

ious domains, ranging from abnormal detection [30], power

grids [31], [32], energy consumption [33], pattern recogni-

tion [34]–[36], and have become an excellent tool for PV

power generation prediction [37], [38].

With PV power generation prediction technology as the

core, artificial intelligence methods extract the nonlinear

features of historical data related to PV system effectively,

thus leading more competitive prediction performance than

statistical and physical methods [39]. In addition, artificial

intelligence methods can predict PV output power directly

from readily accessible data without complex calculations

and other high costs. For example, in [40], a high-precision

deep neural network model was proposed to forecast the

output power of the PV system. Moreover, a BPNN predic-

tion model considering seasonal weather classification was

established to forecast the PV power outputs [41]. In [42], the

authors proposed a simplified approach to predict the 24-h

ahead of PV power in an experimental roof-top PV system

by using radial basis function neural network (RBFNN).

In [43], three distinct artificial neural network (ANN) models

were developed to forecast the PV production accurately.

In [4], wavelet decomposition and convolutional neural net-

work (CNN) were used to predict PV power for 2-hours

ahead. The authors in [44] utilized long-short term memory

recurrent neural network (LSTM) to forecast the power of PV

systems accurately.

However, the above-mentioned methods do not take into

account the prior information of adjacent days, and thus

discard the critical weather changes of the PV data. A natural

extension in this context is that more accurate prediction

performance is explored if the forecasting model considers

the prior information of adjacent days. Therefore, we orig-

inally propose a hybrid method based on CNN and LSTM

to forecast the PV output power. Herein, the CNN is used

to discover the nonlinear features and invariant structures

of the prior power data that are exhibited simultaneously

on different dates. The LSTM based prediction model takes

the previous PV power data on the same date as input and

predicts the PV power of next time. After that, the predicted

PV power is reconstructed according to prediction results of

CNN and LSTM. The main contributions of this article can

be summarized as follows:

(1) We analysis the PV output power of adjacent days and

show the prior power data simultaneously on different dates,

which are conducive to improve prediction performance of

PV systems.

(2) We propose a hybrid deep learning framework based

on CNN and LSTM. The proposedmethod considers the prior

data of adjacent days when constructing the predictionmodel.

(3) We take the real PV data in Limberg, Belgium, and

numerical results demonstrate the effectiveness of the pro-

posed method.

The paper is organized as follows. In Section II, we anal-

ysis the historical data of PV output power. In Section III,

a hybrid architecture based on CNN and LSTM for predicting

PV output power is proposed. Numerical results and analysis

are given in Section IV. We conclude this work in Section V.

II. PHOTOVOLTAIC POWER DATA ANALYSIS

A. THE PV POWER DATA

We consider a historical PV power dataset over one year,

the daily data covers the time period from 5:00 to 19:00, with

a 15-min resolution. Let D be the number of days in a period

of PV data, and M be the number of power points in a day.

pmd ∈ R for m ∈ [1, . . . ,M ] and d ∈ [1, . . . ,D] be the m

th power point of the d th day. By putting {pmd }d,m together,

we can get an output power matrix P̃ ∈ RD×M , ie.,

P̃ =





p11 . . . pM1
. . . . . . . . .

p1D . . . pMD



 (1)

Denote pd = [p1d , . . . , p
M
d ]T ∈ RM as the output power of the

d th day. pm = [pm1 , . . . , pmD]
T ∈ RD is the mth column vector

of P̃, which includes the mth output power point on different

days. As shown in Fig. 1, the PV output power in Flanders

from July 1 to July 10 is given. Fig. 2 shows the PV output

power in July from 10:00 o’clock to 14:00 o’clock.

In Fig. 1, it can be seen that the PV power sequence changes

in the adjacent days have a certain continuity. For instance,
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FIGURE 1. The output PV power curves of adjacent days in Limberg.

FIGURE 2. The output PV power at the same time on different dates.

for the seventh and eighth sequences, the output power in

these two days is similar, and it can be inferred that the

weather in these two days is also similar. For the eighth,

ninth and tenth sequences, the output power of these days

has increased significantly over time, and maybe the weather

condition on the tenth day is more suitable for the production

of PV plants. That is to say the output power sequences

of adjacent days can reflect the changing trend of weather

conditions.With a high chance, the day after a sunny day may

also be a sunny day, and the day after a rainy day may become

another rainy day instead of a sunny day [45]. Inevitably,

the output power of the second day may be quite different

from that of the previous day due to the chaotic nature of

the weather conditions, as seen in the fifth, sixth and seventh

sequences. However, the output power sequences of adjacent

days can provide more weather information for future PV

power forecasting.

Moreover, the output power point at the same time on

different days is plotted in Fig. 2. Obviously, the output power

points at the same has a strong uncertainty on different dates,

and the sequence is not stable. This makes sense that the

weather conditions are the essential determinant of the solar

energy. From the red dotted lines, the output power increases

approximately linearly with the increase of the date. As can

be seen that the PV power point at the same time of previous

days can be used to predict the PV power of the next day

for short-term prediction. In addition, an artificial intelligence

method is leveraged to learn a mapping relationship between

input and output.

B. CORRELATION BETWEEN THE ADJACENT DAYS

To explore the correlation between the output power of dif-

ferent dates, we consider a historical output power dataset P̃

over one year,D = 360. The data resolution is 15 minutes per

day, covering a period from 5:00 o’clock to 19:00 o’clock,

M = 60. The output power for the ith day is pi =

[p1i , . . . , p
M
i ]T , ∀i ∈ [1, . . . ,D]. Then, the PV output power

of adjacent days is evaluated by cosine similarity [46] and cor-

relation coefficient [47]. The metrics are defined as follows:

cij =

∑M
m=1 p

m
i p

m
j

√

∑M
m=1 (p

m
i )

2
√

∑M
m=1 (p

m
j )

2

(2)

rij =

∑M
m=1 (p

m
i − p

avg
i )(pmj − p

avg
j )

√

∑M
m=1 (p

m
i − p

avg
i )2(pmj − p

avg
j )2

(3)

Ck =
1

D− k

D−k
∑

i=1,j=i+k

cij, Rk =
1

D− k

D−k
∑

i=1,j=i+k

rij (4)

where j ∈ [1, . . . ,D] and pmj is the mth output power point in

the jth day, pj = [p1j , . . . , p
M
j ]T . k is an interval value between

the ith day and the jth day, i + k = j. p
avg
i and p

avg
j are the

average values of the ith day and jth day respectively. cij and

rij are cosine similarity and correlation coefficient between

the ith day and jth day, respectively.Ck is the average value of

cosine similarity with the same k . Similarly, Rk is the average

value of correlation coefficient.

FIGURE 3. The average similarity degree.

In Fig. 3, we calculate the Ck and Rk with k ∈ [1, . . . ,K ],

and K = 60. The results of the polynomial regression are

also plotted in the figure. As shown in the plots, both the
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metrics decrease with the increase of k . It can be inferred

that the weather conditions may differ greatly when k is

large. Especially when k is small, the adjacent days have a

higher cosine similarity and correlation coefficient, that is,

weather conditions may change little in these days. This

implies that considering the PV data of the adjacent days can

provide more information to forecast the future output power.

Hence, the PV data of the adjacent days to improve prediction

performance of PV systems is utilized.

FIGURE 4. The structure of CNN.

III. THE FORECASTING ARCHITECTURE BASED ON CNN

AND LSTM

A. CONVOLUTIONAL NEURAL NETWORK

CNN is a class of deep learning architecture that has

been applied in various domains and achieved good perfor-

mance [48], [49]. Generally, CNN is regarded as a hierarchi-

cal feature extractor, which can automatically learn high-level

features from original sequences. The basic structure of CNN

is shown in Fig. 4, including several types of layers, such

as convolutional layer, pooling layer, and fully connected

layer [50], [51]. The tasks of each layer are summarized as

follows:

• Convolution layer is a fundamental component of

CNN, which contains several convolution kernels to

generate new feature maps. The convolution operation

performs well in local feature extraction, where the ker-

nel weights are shared across all input maps.

• Pooling layer is usually used to reduce the in-plane

dimensionality of input maps, thereby decreasing the

number of learnable parameters and helping to avoid

overfitting. The pooling operations can be different

types, such as max pooling, and average pooling.

• Fully connected layer is often used for high-level infer-

ence, which maps the features processed by the convo-

lution layers and the pooling layers to the output layer.

In addition, the convolution layers (or pooling layer) is

equipped with a nonlinear activation function, such as

hyperbolic tangent function (tanh), and rectified linear unit

(ReLU).

B. LONG-SHORT-TERM MEMORY NEURAL NETWORK

LSTM is an advanced architecture of recurrent neural

networks (RNN) which can learn long-range dependen-

cies [44], [52]. Fig. 5 shows the structure of an LSTM block,

FIGURE 5. The structure of an LSTM block.

which contains an input gate it , a forget gate ft , an output

gate ot , amemory cell ct , and an outputs ht . The current inputs

xt and the previous outputs ht−1 are the two external sources

for the block. Input gate governs the inputs to update the

memory cell, and forget gate sets what information to throw

away from the block. The output gate controls what to output

based on the inputs xt , previous outputs ht−1 and memory

cell ct . The recursive computations of the LSTM block are as

follow:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (5)

ft = σ
(

Wxf xt +Whf +Wcf ct−1 + bf
)

(6)

ct = ft ⊙ ct−1 + it ⊙ tanh (Wxcxt +Whcht−1 + bc) (7)

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (8)

ht = ot ⊙ tanh (ct) (9)

where ⊙ denotes element-wise product, σ (·) is the sigmoid

function, ie., σ (x) = 1
/

(1 + e−x). Wxi is the weight matrix

between current inputs xt and input gate it . bi is the bias term.

Similarly, the other weight matrixes in the forget gate, output

gate, and memory cell have the same conditions. Unlike the

traditional RNN, the memory cell ct of LSTM will accumu-

late activities over time, ensuring the gradient can pass across

multiple time steps.

C. IMPLEMENTATION OF THE HYBRID METHOD

To predict PV power accurately, we employ a hybrid

approach based on CNN and LSTM to learn the specific

input/output relationships automatically and adaptively. The

architecture of the proposed method is shown in Fig. 6.

We leverage a CNN model to forecast the output power pm+1
d

by the previous output power at m + 1 in adjacent days. We

believe that these PV power, such as pm+1
d−1 and pm+1

d−2 , can

provide more information about the weather conditions, and

also facilitate the prediction of pm+1
d . From the output power

matrix P̃ ∈ RD×M , we can get a vector of the previous output

power data, i.e.,

Xd = [pm+1
d−1 , pm+1

d−2 . . . , pm+1
d−K ]

T ∈ RK (10)

where pm+1
d−1 is the output power at the (m + 1)th time on

(d-1)th day. Next, Xd ∈ RK is reshaped into an image

Xc ∈ RH×W with height H and width W . Note that the
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FIGURE 6. The architecture of the proposed method for PV power
forecasting.

window size is immutable once the input size of the CNN

is determined. As depicted in Fig. 6, LSTM predicts the next

output power pm+1
d by the latest output power, such as pmd .

LSTM can model the temporal changes of the latest data

to obtain good forecasting results. Similarly, the inputs of

LSTM are as follows,

Xm=[p
m
d , pm−1

d . . . , pm−F
d ]T ∈ RF (11)

where pmd is the output power at the mth time on d th day.

Xm ∈ RF and F are the inputs and the window size of LSTM

respectively.

Then, the prediction results of the proposed method take

the CNN and LSTM models into consideration comprehen-

sively. The true regression is estimated by fusing the estimates

from CNN and LSTM, expressed as,

Pf = αP
f
CNN + βP

f
LSTM (12)

where Pf is the predicted output power of the proposed

method. P
f
CNN and P

f
LSTM are the prediction results of CNN

and LSTM respectively. Two non-negative weights α and β

are assigned to the CNN and LSTM, respectively. Typically,

the non-negative weight satisfies α +β = 1, and it is a better

idea to take the average of the prediction results. In addition,

all parameters of CNN are jointly optimized through back

propagation by minimizing the loss function defined on the

dedicated task, and the parameters of LSTM are optimized by

back propagation through time (BPTT).

D. PERFORMANCE EVALUATION SCHEME

Usually, the prediction performance of the models is eval-

uated by comparing the difference between the predicted

value and the measured value. The precision of the estimation

of PV output power can be investigated by mean absolute

error (MAE) and root mean square error (RMSE) [4], and

coefficient of determination (R2) [53]. The evaluation criteria

are as follows:

MAE =
1

N

∑

n∈N

∣

∣

∣
Pmn − Pfn

∣

∣

∣
(13)

RMSE =

√

1

N

∑

n∈N

(

Pmn − P
f
n

)2
(14)

R2 = 1 −

∑

n∈N

(

Pmn − P
f
n

)2

∑

n∈N

(

Pmn − Pmavg

)2
, Pmavg =

1

N

∑

n∈N

Pmn (15)

where N is the total number of test samples, Pmn and P
f
n are

themeasured and predicted output power, respectively.Pmavg is

the average of the measured power in the test set. It is worth

noting that the predictive model has higher accuracy when

MAE and RMSE are smaller, and the predictive model is

more efficient when R2 closer to 1.

IV. NUMERICAL RESULTS AND ANALYSIS

A. THE DESCRIPTION OF DATASET

In the simulation, the historical PV output power data were

collected by Elia, the Belgium’s electricity transmission sys-

tem operator, which can be downloaded for free and found in

the literature [54]. The prediction model is trained and tested

by using the dataset of Limberg PV power plant. Note that

the active power flow meter is used to measure the active

power of the PV plants in real time, and the measurement

error of the power flow meter is within 0.5%. Since the

measurement error is usually small, the measured power used

in this article is regarded as the actual output power of the PV

plants. Hence, just like other PV power prediction articles, the

measurement errors are not considered in the experiments.

For the data sets, the rated capacity of the PV power plant

is 451.82 MW, and the minimum output power is 0 MW. The

dataset covers the period from March 2015 to March 2016,

with a resolution of 15minutes. To evaluate the generalization

capabilities of these forecasting methods comprehensively,

the forecasting horizons range from 15-min ahead to 180-min

ahead is considered. The data set is divided into four cases

by season, namely spring, summer, fall and winter. For each

season, the data set is divided two subsets: the training set and

testing set are used to train prediction models and evaluate

the forecasting performance of prediction models, respec-

tively. Herein, each season contains three months of data,

wherein the first two months of data are used for training,

and remaining data is used for testing. In addition, three

benchmark methods based on Persistence [55], BPNN [41],

and RBFNN [42] are selected to compare with the proposed

method. Note that the prediction model is trained and tested

independently in each season.

B. 15-MIN AHEAD FORECAST RESULTS

In each of the four seasons, the MAE and RMSE metrics

of 15-min ahead are shown in Table 1. From Table 1, the met-

rics fluctuate obviously in different seasons, the MAE of the

VOLUME 8, 2020 175875
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TABLE 1. Performance evaluation for the 15-min ahead forecast.

proposed method ranges from a low of 0.0.876 to a high

of 1.654, with an average of 1.028. While the average MAE

of Persistence, BPNN, RBFNN are 4.134, 1.880, and 1.641,

respectively. For the RMSE metric, the average values of

Persistence, BPNN, RBFNN and the proposed method are

7.104, 4.160, 3.292, and 2.095, respectively. Compared with

the Persistence, BPNN, RBFNN methods, the MAE metric

has been averagely decreased by 3.016, 0.852, and 0.613,

respectively, and RMSE by 5.009, 2.065, and 1.197, respec-

tively. It turns out that the proposed method outperforms

three benchmark methods and has good performance in the

prediction horizon of 15-min ahead.

TABLE 2. Performance evaluation for the 45-min ahead forecast.

C. 45-MIN AHEAD FORECAST RESULTS

For the 45-min ahead forecast, we show the MAE and RMSE

metrics of these forecasting methods in Table 2. Obviously,

the error of these methods increase as the prediction horizon

increases. Table 2 shows that for the Persistence, BPNN,

RBFNN and the proposed method, the average MAE metrics

are 12.068, 5.978, 5.528, and 3.484, respectively. Similarly,

the average RMSE metrics by 20.401, 11.219, 10.248, and

6.404, respectively. From the average metrics, the Persistence

model is the worst and has large prediction errors, which

may be caused by its prediction mechanism. The Persistence

model is not suitable for multi-step prediction because it

assumes that the output power at t + 1 is equal to the output

power at t . As for BPNN and RBFNN, they provide better

prediction performance than Persistence method for 45-min

ahead prediction horizon. However, these shallow forecast-

ing models cannot effectively extract the non-linearity and

complexity features exhibited in the PV data. Compared with

the Persistence, BPNN, RBFNNmethods, theMAEmetric of

the proposed method has been averagely decreased by 8.584,

2.494, and 2.004, respectively, and RMSE by 13.997, 4.185,

and 3.844, respectively. These results reveal the effectiveness

of the proposed method further.

FIGURE 7. The Scatter plot of predicted power and measured power in
summer.

FIGURE 8. The Scatter plot of predicted power and measured power in
winter.

D. SCATTER PLOT OF FORECAST RESULTS

Then, the scatter plots of the proposedmethod in Summer and

Winter are shown in Fig. 7 and Fig. 8. The prediction horizons

range from 15-min ahead to 90-min ahead, and the baselines

are black in the plots. We remark that the horizontal axis of

these subgraphs is the predicted power and the vertical axis

is the measured power. For 15-min ahead forecast, the scatter

plot converges well to the baseline, which demonstrates that

the predicted results match with the measured results exactly.

For 45-min ahead forecast, some blue points deviate signif-

icantly from the baseline. From the Fig. 7 and Fig. 8, it is

obvious that the deviation between the predicted power and

175876 VOLUME 8, 2020
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FIGURE 9. The RMSE statistics for various forecasting horizons in spring.

FIGURE 10. The RMSE statistics for various forecasting horizons in summer.

the measured power increases with the increase of the pre-

diction horizon. In addition, the performance of the proposed

method is better in summer than that in winter because of

the solar irradiance of Limberg in summer is stronger than in

winter.

TABLE 3. The coefficient of determination R2.

In practice, accurate prediction of PV power helps to

reduce the uncertainty and volatility in the estimation of

PV power. To verify the competitiveness of the proposed

method further, R2 is used to measure the goodness-of-fit

in the four seasons. Note that the predictive model will be

more effective when R2 closer to 1. Table 3 shows the R2

for the four seasons, with the prediction horizon ranges from

15-min ahead to 90-min ahead. In the table, the proposed

method exhibits the values of R2 (0.9180∼0.9984) in spring,

R2 (0.9642∼0.9993) in summer, R2 (0.9070∼0.9966) in fall,

and R2 (0.9057∼0.9974) in winter. The R2 metric obtained

from these seasons varies from a low of 0.9057 to a high

of 0.9993. These results indicate that the proposed method

has a higher forecast capability in term of various prediction

horizons. Meanwhile, R2 will be affected by the local season

in Limberg, as the solar irradiance and temperature vary

significantly from season to season. The R2 of summer and

winter can be proved in Fig. 7 and Fig. 8.

E. MUTI-STEP AHEAD FORECAST FOR LIMBERG

Furthermore, Fig. 9, Fig. 10, Fig. 11, and Fig. 12 show the

RMSE for spring, summer, fall, and winter, respectively.

In each season, the forecasting horizons range from 15-min

ahead to 180-min ahead, and the Persistence, BPNN, RBFNN

are plotted as benchmarks. Obviously, the RMSE of these

methods increases linearly with the increase of prediction

horizon. The results at each prediction horizon generated by

Persistence method are the worst compared to other bench-

marks. It can be seen that the proposed method can provide

good forecasting performance in the four seasons. Moreover,

at all prediction horizons in the case studies, the proposed

method has the smallest RMSEmetrics, which shows the best

forecasting performance compared to other methods. Statis-

tically, the RMSE obtained from the proposed method ranges

from 3.206 to 33.405 in spring, from 1.664 to 25.166 in sum-

mer, from 1.448 to 19.806 in fall, and from 2.062 to 21.223 in

winter. Compared with averagely RMSEmetrics from BPNN

and RBFNN methods, the improvement grows from 2.065 to

17.766, and from 1.197 to 1.867, respectively. The RMSE

of the proposed method has a minimum value of 1.448 and

a maximum value of 33.405 in all seasons, which is much

better than BPNN and RBFNN. Furthermore, Table 4 shows

the average MAE metric for Persistence, BPNN, RBFNN,

and the proposed method in different prediction horizons.

The results in Table 4 also show that the proposed method

outperforms the other methods in all the time horizons.
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FIGURE 11. The RMSE statistics for various forecasting horizons in fall.

FIGURE 12. The RMSE statistics for various forecasting horizons in winter.

TABLE 4. Average MAE statistics in terms of various prediction horizons.

V. CONCLUSION

This article addresses the short-term prediction problem in

PV power generation systems through the artificial intelligent

technology. We establish a hybrid deep learning framework

and associate the previous data of adjacent days that can

prove to be extremely useful in practice. Unlike the traditional

short-term prediction methods, CNN is employed to extract

key weather change features of PV power from the sequences

at the same time on different dates. LSTM also efficiently

provide reliable estimates of the next time by the previous PV

power data on the same date due to their recurrent architecture

and memory units. The proposed hybrid method is compared

with three benchmark methods based on Persistence, BPNN,

and RBFNN. The solar power dataset used for these forecast-

ing methods is collected from actual wind plants in Limberg.

Relevant simulation results demonstrate that the proposed

method provides very small prediction errors compared with

the benchmark methods. In addition, we would like to point

out that while the focus of this work is on the short-term

prediction problem of PV power generation, the proposed

method can be used to promote the future application of solar

energy in electrical power and energy systems.
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