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Abstract In order to develop predictive control algorithms

for efficient energy management and monitoring for resi-

dential grid connected photovoltaic systems, accurate and

reliable photovoltaic (PV) power forecasts are required.

A PV yield prediction system is presented based on an

irradiance forecast model and a PV model. The PV power

forecast is obtained from the irradiance forecast using the

PV model. The proposed irradiance forecast model is based

on multiple feed-forward neural networks. The global

horizontal irradiance forecast has a mean absolute per-

centage error of 3.4% on a sunny day and 23% on a cloudy

day for Stuttgart. PV power forecasts based on the neural

network irradiance forecast have performed much better

than the PV power persistence forecast model.

Keywords Grid connected photovoltaic (GCPV),

Photovoltaic (PV), PV power prediction, Irradiance

forecast, Neural network (NN)

1 Introduction

Photovoltaic (PV) systems convert the radiation coming

from the Sun to the Earth’s surface into electricity.

Nowadays, PV systems are popular because they are pol-

lution free, noise-free, reliable and durable. Due to global

climate change, declining costs and financial incentives by

governments for PV systems, the tendency of integrating

photovoltaic systems into the grid has increased in the last

decades. The high penetration of energy from PV systems

makes smart grid management more challenging.

PV power generation depends upon meteorological

conditions. When the weather is sunny, the power gener-

ated by the PV system is high; when the weather is partly

cloudy or cloudy, it is low. Therefore, PV power generation

is uncertain, intermittent and variable. In order to manage

the uncertain and variable power generation by PV sys-

tems, PV power forecasts are used by grid operators for

smart grid management. Transmission system operators

also use PV power forecasts for grid maintenance

scheduling. In this research, our motivation is to use PV

power forecasts for energy monitoring and management for

residential grid connected PV systems. The paper is divi-

ded into ten sections.

We have developed a daily PV power forecast model for

monitoring and managing residential grid connected PV

systems considering limitations of feed in tariff. In Ger-

many, public funding of feed in tariffs for PV system is

going to be decreased in the next few years. Photovoltaic

systems will not be allowed to feed in more than 70% of

their maximum power generation. This limit is even lower

for PV systems with batteries. The main objectives of this

policy are to ensure grid stability and to promote self-

consumption of energy produced by grid connected PV

systems. To achieve this on days when the power
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generation will exceed the feed-in limitation, a controller

shall be able to adjust and shift residential loads and

manage battery charging based on the day ahead PV power

forecast. For this reason, it is necessary to have an accurate

and reliable PV yield prediction over at least 24 hours.

In Section 2, state of the art PV yield prediction

methodology is reviewed. In Section 3, the new PV yield

prediction methodology is proposed. The measures of

accuracy used for evaluation and verification of the PV

power global horizontal irradiance forecast are presented in

Section 4. The meteorological data from Deustcher Wet-

terdienst used for forecasting the PV power and irradiance

are discussed in Section 5. In Section 6, an irradiance

forecast model based on neural network technology is

presented. Feed forward neural network architecture is

presented in Section 7. In Section 8, a PV model is pre-

sented which is used to convert an irradiance forecast into a

PV power forecast. In Section 9, irradiance forecast and

PV power forecast results and figures are presented.

Finally, Section 10 concludes this paper.

2 State of the art photovoltaic yield prediction

review

Solar irradiance forecasts are important for solar

resource assesment and management of energy demand. To

encourage the solar forecasting development suitable for

smart grid technologies and renewable integration, the

Global Energy Forecasting Competition (GEFCom) was

conducted by a team led by Dr. Tao Hong in 2012 and

2014 [1]. The techniques presented in these competitions

were based on probabilistic forecasting. In this research,

we present an artificial neural network (ANN) for fore-

casting irradiance, and particularly global horizontal irra-

diance. The reason for using an ANN is that they can learn

meteorological conditions from the historic meteorological

data and have better accuracy compared to conventional

forecasting techniques. ANNs can determine the complex

relationships among the dependent and independent vari-

ables and have the ability to solve nonlinear problems. But

before presenting the methodology proposed for the irra-

diance forecast model, we outline the research done so far

for forecasting irradiance using neural network

approaches.

In [2] the authors used the air temperature and relative

humidity as predictors for daily forecasting of the irradi-

ance in (kWh=m2=day) for Saudi Arabia using a feed

forward neural network. They used four years of historic

meteorological data (1998–2002) for training the network

using the back propagation algorithm. The forecast model

predicted the dayly irradiance with an absolute percentage

error of 4.49%, but it lacked the ability to model the day

ahead irradiance profile. Moreover, the model was not

tested for the entire year because only 240 days in the year

2002 were used for testing.

In [3] the authors proposed a the nonlinear auto-re-

gressive neural network for predicting the irradiance at

Sepang. They set the training sample size to 80%, valida-

tion sample size to 10% and testing sample size to 10% of

one-year of historical global horizontal irradiance data. The

number of neurons was set to 20 in the hidden layer and

there were 20 delays on the predictor side. They achieved

normalized mean square error of 16:51� 10�3 in Jan-

March, 5:871� 10�3 in Apr-Jun, 18:24� 10�3 in Jul-Sep

and 9:12� 10�3 in Oct-Dec.

Kardaskos and Alexiadis [4] proposed two seasonal

auto-regressive integrated moving average (SARIMA)

models and two artificial neural network models with

multiple inputs for forecasting the photovoltaic power at

different PV power plants in Greece. Two SARIMA

models were compared with the persistence forecast

model: a SARIMA model with an exogenous factor pre-

dicted the PV power with yearly normalized root mean

square error of 12.89%, an improvement of approximately

1% over the SARIMA model without the exogenous factor

13.71%. Neural Network models gave significantly better

accuracy with normalized root mean square error of

11.42% and 11.24%. The SARIMA model and neural

network model that use solar radiation forecasts as input

performed better than other SARIMA and neural network

models.

In [5] the author presented a multi-regression technique

and an Elman backpropagation neural network for the

prediction of PV power for various locations in Italy. One

year’s data of the PV plant are used for forecasting. Three

neural network models were discussed based on different

input vectors. The neural network model that includes

several meteorological parameters (ambient temperature,

module temperature, irradiance at tilt angles of 3 and 15)

and PV power as inputs has a lower normalized root mean

square error (NRMSE) of 23.99% compared to the other

models using fewer weather parameters as inputs

(NRMSE ¼ 25:05% and NRMSE ¼ 24:33%).

Mohana Alanazi and Amin Khodaei [6] suggested a

nonlinear autoregressive neural network with external

inputs for the prediction of irradiance. They used 15 years

of meterological data, historical global horizontal irradi-

ance data and clear sky irradiance data for training the

neural network. Their forecast model achieved a mean

absolute percentage error (MAPE) of 9.9%.

Adel Mellit and Massi Pavan [7] suggested mean daily

irradiance, mean daily air temperature and day of the

month as important predictors for day ahead irradiance
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forecasting in Trieste, Italy. The model achieved a corre-

lation coefficient greater than 98% for sunny days and less

than 95% for cloudy days. The author suggests the usage of

genetic algorithms in future research for multilayer per-

ceptron forecasts, as this model is slow for forecasting the

irradiance.

Alzaharni [8] implemented a nonlinear autoregressive

exogenous (NARX) model with external inputs for fore-

casting the global solar radiation using meteorological

parameters. The data from 1991 to 2005 for Vichy National

Airport in Rolla was used. The model achieved a mean

square error ranging from 5.7% to 15.33%.

Christophe Paoli and his team [9] demonstrated that

their artificial neural network model outperforms ARIMA,

Bayesian interference, Markov chains, and K-Nearest

Neighbors methods. They utilized 19 years of meteoro-

logical station data of Ajaccio for the implementation of

their simulator.

M.E El-Hawary and his students [10] performed a

comparison to determine the selection of predictors (me-

teorological variables) for their neural network model.

Historical data from the Solar Village in Riyadh between

2007 and 2010 were used to examine the influence of seven

weather variables. The neural network models achieved

accuracies ranging from 3% to 10% depending on the

combination of predictors such as ambient temperature,

pressure, relative humidity, cloudiness, wind speed and

wind direction.

Watetakarn [11] presented a forecast of solar irradiation

using a feed forward neural network. The inputs to the

neural network are one week of historical irradiation data

and the average values of weather parameters such as

temperature, humidity, rainfall, and average cloud cover-

age for Thailand. The model achieved mean absolute per-

centage errors ranging from 3% to 6% for the day ahead

prediction.

In research described above, only meteorological data is

used for training and testing the neural network forecast

models and a single neural network is designed and trained

with the meteorological data. Moreover, some researchers

used more than five years of meteorological data for

training the neural network. Large meteorological data sets

are usually unavailable. In this research, the proposed

model uses only five years of meteorological data for

training the neural network. Due to training with a rela-

tively small meteorological data set, multiple feed-forward

neural network models are proposed to avoid the over fit-

ting problem. Moreover, the proposed neural network

model also includes three more predictors for forecasting

the irradiation: the sun’s zenith angle, azimuth angle, and

extraterrestrial irradiation apart from the meteorological

data.

3 PV yield prediction methodology

The methodology proposed for predicting the yield of

the grid-connected photovoltaic system is shown in Fig. 1.

The forecasting of the PV power starts with the prediction

of global horizontal irradiance (GHI) and direct irradi-

ance (DI), which are based on a machine learning tech-

nique. In this research, two forecast models for irradiation

are presented: a irradiance forecast model based on artifi-

cial neural networks (multiple feed-forward networks using

historical meteorological data and weather forecast data)

and another persistence irradiance forecast model. The

latter is used as reference forecast model for evaluation and

verification of the irradiance forecast based on artificial

neural networks. The persistence forecast assumes that the

conditions remain as they were the day before [12].

After forecasting the global horizontal irradiance and

direct irradiance, a PV irradiance model based on the Hay

& Davies model (discussed in Section 9.3) computes the

tilted global irradiance. Then we compute global irradiance

absorbed by the PV panel. The absorbed irradiance,

ambient temperature and wind speed are the inputs for a

model which predicts the PV module temperature. A

photovoltaic electric model based on the five parameters

single diode model computes the DC power generated by

the PV panel according to the panel orientation and PV

Irradiance
NN

forecast
model

Irradiance
model for

tilted plane

Electric
model

Historic
weather

(Training
NN)

Weather
forecast

(Test NN)

Absorbed
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PV panel
material 

used etc.

T,WS

PV power
forecast

PV model
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mounting

PV panel
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Temperature
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GHI: Global horizontal irradiance; NN: Neural network; T: Temperature

DI: Direct irradiance; PV: Photovolatic; WS: Wind speed

Fig. 1 Photovoltaic yield prediction methodology
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system specifications. Finally, the photovoltaic DC power

forecast is obtained.

4 Measures of forecast accuracy

In this section, we describe the parameters used for the

evaluation of the forecasts. We use mean absolute error

(MAE), root mean square error (RMSE), mean absolute

percentage error (MAPE), correlation coefficient and skill

score for analyzing the accuracy of the global solar irra-

diance and PV power forecasts.

Let yi be the target time series and byi be the forecast

time series for a day ahead hourly forecast (N ¼ 24).

MAE ¼

PN

i¼1

jyi � byi j

N

ð1Þ

MAPE ¼

PN

i¼1

jyi � byi j

N
� 100%

ð2Þ

Smaller values of the MAE and MAPE indicate better

forecast accuracy.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1

�
yi � byi

�2

N

vuuut ð3Þ

Smaller values of RMSE indicate that the forecast is a

closer approximation of the measured value.

R ¼

PN

i¼1

�
yi � y

��
byi � by

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1

�
yi � y

�2 PN

i¼1

�
byi � by

�2

s ð4Þ

The correlation coefficient is defined in the range

�1�R� 1 as:

1) If R ¼ �1, then there is a perfect negative linear

relationship between yi and byi .
2) If R ¼ 1, then there is a perfect positive linear

relationship between yi and byi .
3) If R ¼ 0, then there is no linear relationship between yi

and byi .

5 Deutscher Wetterdienst (DWD) weather stations

The numerical weather prediction (NWP) forecast of

meteorological variables could be used as input to the PV

model for PV power prediction, but numerical weather

prediction methods are computationally expensive and

only a few institutes have this facility. The main idea

behind a solar irradiance forecast based on artificial neural

network is that they are less computationally expensive

compared to NWP methods. Also we could forecast solar

resource using open source historical solar irradiance data

and meteorological data from the German Weather services

(Deutscher Wetterdienst (DWD)). At this first stage of

research, an irradiance forecast model for the Stuttgart

weather station is examined; the analysis of more areas is

planned using interpolation and advanced machine learning

techniques. In this research, we use meterological data

from the DWD. The meterological data are in the public

domain and can be downloaded [13]. The irradiance data

are available in hourly, daily, monthly and yearly resolu-

tion for 56 weather stations in Germany. In addition, data

for other meterological parameters e.g. temperature, pres-

sure, cloudiness, also available for different weather sta-

tions. Hourly meterological data of variables such as

temperature, pressure, relative humidity, wind speed, wind

direction, sunshine duration and cloudiness from the Ger-

many Weather Station at Stuttgart are used for training and

testing the neural network for forecasting solar irradiance.

6 Irradiance neural network forecast model

methodology

The six years of weather data (from 2010 to 2015) are

first divided into two subsets. The first subset of five years

(from 2010 till 2014) is used for the design and training of

the neural network. The second data set of one year (year

2015) is used to test the prediction of the neural

network.

The inputs of each neural networks are the meteoro-

logical parameters such as date number, temperature,

pressure, relative humidity, wind speed, wind direction,

sunshine duration, cloudiness, azimuth angle, zenith angle

and extraterrestrial solar radiation. The variables such as

temperature, pressure, relative humidity, wind speed, wind

direction, sunshine duration and cloudiness are obtained

from DWD weather data.

The zenith angle, azimuth angle and extra-terrestrial

radiation values are calculated using the equations pre-

sented in the Appendix A.

The data sets are initially pre-processed before feeding

to each neural network. In the pre-processing stage, the

training data set and test data set are reduced by removing

the night time hours because solar radiation at night time is

zero. The data sets are then normalized into a range [0, 1]

using:

XN ¼
X � Xmin

Xmax � Xmin

ð5Þ
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The data sets are normalized because artificial neural net-

works work with data values in the range of ½�1; 1�. After
normalization, the training data are fed into multiple neural

networks.

Each neural network is trained with the five years of

data. The training algorithm used is Lavenberg Marquardt.

After training the 15 neural networks selected for fore-

casting global solar radiation, each one is applied to the one

test data to calculate a prediction. Each Feed Forward

network is initialized with random weights and biases and

returns a different output with different performance. After

training the multiple neural networks they are tested with

an unseen test data set. Solar radiation is predicted by

taking the average of the outputs of all 15 neural networks.

The error for the average output of the multiple neural

networks is likely to be small compared to the error of the

individual neural networks [14, 15]. The average output is

then de-normalized using the equation given below

resulting in the values in units of irradiance.

X ¼ XNðXmax � XminÞ þ Xmin ð6Þ

7 Feed forward network architecture

A feed forward neural network has no feedback paths

and inputs are processed in the forward direction. For

forecasting GHI, we have implemented a three-layer feed

forward neural network consisting of an input layer, a

hidden layer and an output layer.

7.1 Input layer

An input layer is a passive layer and its function is to

transmit the input signals to the hidden layer. The number

of neurons in the input layer corresponds to the number of

input signals. Here we have used 11 input signals: tem-

perature (T), pressure (P), relative humidity (RH), cloudi-

ness (CC), sunshine duration (SS), wind speed (WS), wind

direction (WD), zenith angle (ZA), azimuth angle (AA),

extra-terrestrial irradiance (E) and date number (DN), a

numerical representation of the timestamp.

7.2 Hidden layer

The hidden layer is active and the number of neurons in

the hidden layer is arbitrary. The hidden layer is important

because it performs the necessary signal modification: the

weights and biases of the neurons in the hidden layer are

modified during the training to achieve the desired per-

formance. The activation function used in the hidden layer

is log-sigmoid function due to its differentiated nature.

7.3 Output layer

The output layer is also active in its nature and the

neurons in the output layer correspond to the number of

outputs.The function used in the output layer is the linear

function. Output in our case is the global horizontal irra-

diance (GHI).

8 Photovoltaic model

In this section, we describe the photovoltaic model

developed in MATLAB. It is composed of three parts: the

photovoltaic irradiance model, the photovoltaic tempera-

ture model and the photovoltaic electric model.

8.1 Photovoltaic irradiance model

The photovoltaic irradiance model consists of two parts.

The first part computes the amount of global irradiance

incident on the tilted PV module, the second part computes

the amount of the global irradiance absorbed by the PV

module.

8.1.1 Global irradiance on the tilted PV module

We can compute the amount of global irradiance inci-

dent on the tilted PV module using the Hay & Davies

model [16]. The meterological data usually includes the

global irradiance on a horizontal surface. This is the sum of

direct and the diffuse irradiance. The idea is to convert the

global irradiance on the horizontal surface into tilted irra-

diance values based on the tilt of the PV panel. We present

the irradiance model for an isotropic and an ansisotropic

sky. The isotropic sky model assumes a uniform distribu-

tion of diffuse irradiance from the sky. For an isotropic sky

model, global irradiance on the tilted surface is defined in

[17] by the equation below with g represents global, d

represents direct, df represents diffuse, r represents reflec-

ted, t represents tilted, gr represents ground.

Gg;t ¼ Gd;t þ Gdf;t þ Gr;t ð7Þ

For an anisotropic sky model, the global irradiance on the

tilted surface is given in [17, 18] by:

Gg;t ¼ Gd;t þ Ganiso;d;t þ Gr;t ð8Þ

The beam irradiance on the tilted surface can be expressed

in [17] as:

Gd;t ¼ RdGd;t ð9Þ

where Rd is the geometric factor, defined in [17] as:
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Rd ¼
cosH

cosHz

ð10Þ

where H is the incidence angle and Hz is the zenith angle.

The incidence angle can be calculated by using the

equation in [19] below.

cosH ¼ cosHz cos bþ sinHz sinbþ cos ðc� csÞ ð11Þ

where b is the tilt angle; c is the azimuth angle of the sun

and cs is the PV panel azimuth angle. The diffuse

irradiance on the tilted surface in [17] is given by the

expression:

Gdf;t ¼ RdfGdf;horizontal ð12Þ

where the geometric factor Rdf is defined in [17] by:

Rdf ¼
1

2
ð1þ cos bÞ ð13Þ

For an anisotropic sky model, the geometric factor of the

diffused irradiance on the tilted surface is slightly modified

and is defined in [17] as:

Raniso;df ¼
1

2
ð1� AiÞð1þ cos bÞ þ AiRd ð14Þ

where Ai is an anisotropic index, which is a function of

transmittance of the atmosphere for the beam radiation and

is defined in [17] as:

Ai ¼
Gd;horizontal

Gext cosHz

ð15Þ

The reflected irradiance from the ground can be calculated

in [17] by:

Ggr;t ¼ RgrqgGg;horizontal ð16Þ

where Rgr is a geometric factor and is defined in [17] by the

equation below and qg is the Albedo coefficient.

Rgr ¼
1

2
ð1� cos bÞ ð17Þ

8.1.2 Global irradiance absorbed by the tilted PV module

The output power of the photovoltaic system depends

directly on the amount of tilted global irradiance absorbed

by the surface which is a function of the incident tilted

global irradiance, air mass and angle of incidence [20].

We can approximate the amount of the irradiance

absorbed by the photovoltaic module by (as shown

in [20]):

Gabsorbed ¼ Gd;tðsaÞ þ Gdf;tðsaÞ þ Gg;tðsaÞ ð18Þ

where a is transmittance absorption product. The transmittance-

absorption product is based on Snell’s law, Fresnel’s law

and Boughers’s law (compare to [20]):

saðhÞ ¼ e�
KL

cos hr
ð Þ 1�

1

2

sin2 hr þ hið Þ

sin2 hr þ hið Þ
þ
tan2 hr þ hið Þ

tan2 hr þ hið Þ

� �� �

ð19Þ

where hr is the refraction angle; hi is the incidence angle

and is computed for direct, diffuse and reflected radiation;

K is the glazing extinction coefficient and L is the glazing

thickness. For most PV systems K ¼ 4m�1 and L ¼ 2mm

are used.

For direct irradiance, the incidence angle hi;d is com-

puted using (11):

hi;d ¼ arccos ðcos a cos ðcsun � cpÞ sin bþ sin a cos bÞ

ð20Þ

where csun is the azimuth angle of the sun and cp is the

azimuth angle of the panel. For diffused irradiance

(isotropic sky is assumed), the incidence angle is

computed in [20] using:

hi;df ¼ 59:7� 0:1388bþ 0:001497b2 ð21Þ

For reflected irradiance (isotropic sky is assumed), the

incidence angle is calculated in [20] in accordance to:

hi;r ¼ 90� 0:5788bþ 0:002693b2 ð22Þ

The refraction angle for the direct, diffuse and reflected

irradiance is given in [20] by:

hr ¼ arcsin
n2 sin h2

n1

� �
ð23Þ

where n1 is the refractive index of the air and n2 is the

refractive index of the PV glazing.

8.2 Photovoltaic temperature model

Photovoltaic module efficiency and performance

depends, besides other effects, on the temperature of the

module/cell. The photovoltaic cell temperature changes

during operation either due to changes in the ambient

temperature ðTambÞ or due to the radiation absorbed by the

PV module [21, 22].

The PV module temperature ðTModuleÞ can be calculated

by using the ambient temperature for any type of PV array

mounting [23]:

TModule ¼ Tamb þ x
0:32G

8:91þ 2:0 vw
0:67

� �
ð24Þ

The reason for using (24) for modeling the PV module

temperature is that it is a preferred model for size

optimization, simulation and design of PV systems [24].
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8.3 Photovoltaic electric model

The power produced by the photovoltaic module is a

function of the irradiance absorbed by the PV module and

PV module temperature. The irradiance absorbed by the

PV module is obtained from the photovoltaic irradiance

model. The PV temperature model accounts for the varia-

tion in the PV module temperature due to changes in the

ambient temperature and the amount of the global irradi-

ance absorbed by the PV module. A PV electric model is

based on a single diode model of the solar cell [20, 25].

The equivalent circuit consists of a current source (Iph)

dependent upon the absorbed irradiance Gabsorbed, which is

in parallel with the diode D. The series resistance (Rseries) is

due to resistance between metal contacts and silicon. The

shunt resistance (Rshunt) is due to defects created in the PV

module during the manufacturing. The equation of the one

diode model for the current I is given in [20] by:

I ¼ Iph þ Io exp
Vdiode

VtÞ
� 1

� �
�
Vdiode

Rshunt

Þ

��
ð25Þ

where Io is the reverse saturation current of the diode, the

diode thermal voltage.

The photocurrent Iph is given in [20] by:

Iph ¼
Gabsorbed

Gref

Iph;ref þ lSC Tamb � Trefð Þ
	 


ð26Þ

where Tamb is the ambient temperature; Iph;ref is the photo-

current at standard test conditions and Tref is the temper-

ature at standard test conditions (STC) which is 25�C; Gref

is the reference irradiance at STC, 1000 W=m2; Gabsorbed is

the irradiation absorbed at the surface and lSC is the rel-

ative temperature coefficient of the short-circuit current,

which represents the rate of change of the short-circuit

current with respect to temperature.

The equation for the saturation current Io is therefore

given in [20] by:

Io

Io;ref
¼

Tamb

Tref

� �3
exp

1

k

Eg;ref

Tref
�

Eg

Tamb

� �� �
ð27Þ

where Io;ref represents the reference diode reverse

saturation current; Eg;ref is the reference band gap energy

and k is the Boltzman constant

ðk ¼ 1:38� 10�23m2kgs�2K�1Þ. The values of the

reference diode reverse saturation current and reference

band gap energy can be obtained from PV panel data

sheets. The band gap energy is given in [20] by the

expression:

Eg

Eg;ref
¼ 1� 0:0002677 T � Trefð Þ ð28Þ

One way of calulating the current I of the one diode

model is to solve the equation numerically using the

Newton’s method. Ihþ1 is the approximate solution of

f ðIhÞ ¼ 0 and if f 0ðIhÞ 6¼ 0 then the next approximation is

given by:

Ihþ1 ¼ Ih �
f ðIhÞ

f 0ðIhÞ
ð29Þ

Another way is to use the voltage over the diode, Vdiode.

For the results presented here we have used the second

method for calulating the current I. The shunt resistance

Rshunt at operating conditions is given in [20] by:

Rshunt ¼
Gabsorbed

Gref

Rshunt;ref ð30Þ

where Rshunt;ref is the shunt resistance at STC. The series

resistance is assumed to be independent of temperature and

irradiation at both operating conditions and STC [20]:

Rseries ¼ Rseries;ref ð31Þ

The values of the series resistance Rseries;ref and shunt

resistance Rshunt;ref for different PV panels are obtained

from a Bosch PV Panel database.

V ¼ Vdiode � IRseries ð32Þ

Let Np be the number of PV modules in a string and Ns

be the number of the strings in the PV array, then the power

of the PV array (PPV;DC) is calculated under the assumption

of no mismatch and shading effects as follows:

IPV;DC ¼ INs ð33Þ

VPV;DC ¼VNp ð34Þ

PPV;DC ¼VPV;DCIPV;DC ð35Þ

A maximum power point tracker is usually used to

ensure that the PV panels operate close to their the

maximum power point. The maximum power point of the

array is defined here as:

PMPP;PV ¼ maxðPPV;DCÞ ð36Þ

If we assume the constant efficiency of the PV panels,

then the power can be computed using the equation in

[26] given below:

PPV;DC ¼ gPVGabsorbed 1� bPV TMod � Trefð Þð Þ ð37Þ

where gPV is the PV module efficiency; APV is the PV

module surface area and bPV is the temperature coefficient

for the power of the PV panel.
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9 Irradiance forecast and photovoltaic power

forecast results

In this section we present global horizontal irradiance

(GHI) and photovoltaic forecast results respectively. The

irradiance forecast is converted into a PV power forecast

using the PV model as explained in the section above.

9.1 Global horizontal irradiance forecast

The global horizontal irradiance forecast is obtained by

averaging the output of the 15 feed-forward neural net-

works trained with five years of meteorological data. Each

feed forward neural network has 3 layers with 11 meteo-

rological parameters as inputs. In this section, we compare

the global horizontal irradiance (GHI) forecast based on

networks with a persistence forecast (as shown

in Fig. 2).

Table 1 shows the accuracy comparison of the GHI

neural network forecast model compared to the GHI per-

sistence forecast model several meteorological conditions

(days types). The type of the day is classified by cloudi-

ness: clear sky, partly cloudy and cloudy. The GHI neural

network forecast model has much better accuracy in all day

types in comparison to the GHI persistence model. The

regression values of the GHI persistence model are mod-

erate but it has much higher mean absolute errors and root

mean squared error values. Overall, the GHI neural net-

work forecast model has strong regression values in com-

parison to GHI persistence forecast model (as shown

in Fig. 3) [20].

Figure 4 shows that the GHI neural network forecast on

a clear sky day is quite accurate and is in line with the

measured GHI profile, whereas the GHI persistence fore-

cast underestimates the GHI.

Figure 5 shows the GHI forecast based on the neural

network during a partly cloudy day. It can be seen that the

measured GHI from DWD data and the predicted GHI are

quite congruent compared to the GHI persistence forecast.

Train set

Data pre-processing

● Night time hours removal
● Data normalization

Designing & training

● Neural network (NN) design
● Setting the number of neuron 

in the hidden layer 
● Selecting activation function 

in the hidden layer and output 
layer

● Selecting the training 
algorithm

Training multiple NN 

● Training each neural network
with the historic 
meteorological data

Data post-processing

● Night time hours addition

Data pre-processing

● Night time hours removal
● Data normalization

Prediction accuracy

computation 

● Compute MAE, RMSE and R
values 

Data post-processing

● Data de-normalization

Test set

Neural network prediction

● Take mean of the outputs of
multiple NN s

Testing multiple trained

neural network

● Test the multiple trained 
neural network with test data

Irradiance

forecast

Multiple trained neural 

network

set

Fig. 2 Irradiance forecast methodology using multiple feed-forward

neural networks

Table 1 Accuracy comparison of global horizontal irradiance(GHI) forecast models under different day types for Stuttgart

Forecast Weather condition

model Clear sky ðDOY ¼ 191Þ Partly cloudy ðDOY ¼ 176Þ Cloudy day ðDOY ¼ 117Þ

MAE RMSE MAPE R MAE RMSE MAPE R MAE RMSE MAPE R

ðW/m2Þ ðW/m2Þ (%) ðW/m2Þ ðW/m2Þ (%) ðW/m2Þ ðW/m2Þ (%)

Neural network 7.03 8.60 3.41 0.99 26.06 37.06 7.90 0.99 30.42 38.52 23.07 0.99

Persistence 275.54 361.11 47.91 0.65 56.25 78.55 14.0 0.95 111.12 149.87 100.86 0.77

Note: DOY means day of the year (1 to 365)

Rseries

Rshunt

Gabsorbed

Iph I

Ish

V

+

Fig. 3 Single diode model
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Figure 6 shows that the measured GHI has lower values on

a cloudy day compared to clear sky and partly cloudy days.

However the GHI neural network forecast still follows the

measured GHI profile more closely in comparison to the

GHI persistence forecast. The GHI persistence forecast

overestimates the GHI on a cloudy day. The accuracy of

the GHI neural network forecast decreases as the weather

changes from clear sky to cloudy.

9.2 Sensitivity analysis neural network irradiance

forecast model

A sensitivity analysis of the global horizontal irradiance

neural network forecast model has been performed for

different weather variables, solar angles, and extraterres-

trial irradiance to determine which are good predictors for

forecasting the global horizontal irradiance. In the first

case, each weather variable is excluded from the input set,

one by one, while all other variables are included and

accuracy is computed.

The GHI neural network forecast model is more sensi-

tive to the sunshine variable which is a very important

predictor for forecasting GHI, as the accuracy of the model

deteriorates if it is not included as input, MAE increases in

Fig. 7 when sunshine is excluded. The interquartile range

of the MAE box labeled as SS (sunshine not included in the

input set) is greater than rest of the boxes and the median

value of the MAE box labelled SS is larger than the median

values for rest of the box plots.

In another sensitivity test the GHI neural network

forecast model is given a different combination of the

weather variables as shown in Table 2.

As shown in the Fig. 7, the median value of the MAE

decreases as wind speed is added to the smallest input set

(case 2). MAE decreases further if cloudiness is included as

an input (case 4). This shows that temperature, relative

humidity, cloudiness and the sunshine are important

weather variables for forecasting the GHI. But if all the

weather variables are included (case ALL) as input, the

median value of the GHI neural network forecast error

decreases and the maximum value of the MAE also

decreases (as shown in Fig. 8).
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Fig. 4 A comparison between global horizontal irradiance (GHI)

neural network forecast, persistence forecast and measured global

horizontal irradiance (GHI) on clear sky day (day of the year ¼ 191)

25151050 20

200

100

400

600

800

300

500

700

900

Time (hour)

G
lo

b
al

 h
o
ri

zo
n
ta

l 
ir

ra
d
ia

n
ce

(W
/m

2
)

GHI neural network forecast
GHI persistence forecast
Measured GHI

Fig. 5 A comparison between global horizontal irradiance (GHI)

neural network forecast, persistence forecast and measured global

horizontal irradiance (GHI) on a day with a partly cloudy sky (day of

the year ¼ 176)
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Fig. 6 A comparison between global horizontal irradiance (GHI)

neural network forecast, persistence forecast and measured global

horizontal irradiance (GHI) on a day with a cloudy sky (day of the

year ¼ 117)
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Fig. 7 Sensitivity analysis of the GHI neural network forecast model

for different weather variables
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Apart from the weather variables, three more predictors

are proposed for forecasting the solar irradiance. As shown

in Fig. 9, the MAE decreases if we include extraterrestrial

irradiance (case E) in addition to weather data as inputs.

The MAE decreases even further if we add azimuth angle

(case AZ) and zenith angle (case ZA) in addition to the

weather data and extraterrestrial irradiance. Hence, it

shows that azimuth angle, zenith angle and extraterrestrial

irradiance are important predictors in addition to weather

variables.

9.3 Photovoltaic power forecast

The PV power forecast is obtained after performing the

PV simulation using an irradiance forecast obtained from

the neural network model. The PV power forecast analysis
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Fig. 8 Sensitivity analysis of the GHI neural network forecast model

for different combination of weather variables (see Table 2 for the

box-labels)
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Fig. 9 Sensitivity analysis of the GHI neural network forecast model

for different combination of weather variables
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Fig. 10 A comparison between PV power neural network forecast,

PV power persistence forecast and target PV power on clear sky day

(day of the year ¼ 191)

Table 2 Different combinations of weather variables as inputs to

irradiance neural network model

Box plot label Variables included

1 Temperature & Relative humidity

2 Temperature, Relative humidity & Wind speed

3 Temperature, Relative humidity,

Wind speed & Wind direction

4 Temperature, Relative humidity,

Wind speed, Wind direction & Cloudiness

5 Temperature, Relative humidity,

Wind speed, Wind direction,

Cloudiness & Sun shine

6 Temperature, Relative humidity,

Cloudiness & Sun shine

7 Temperature, Relative humidity and pressure

ALL All weather variables included

(08 weather parameters)
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Fig. 11 A comparison between PV power neural network forecast,

PV power persistence forecast and target PV power on partly cloudy

day (day of the year ¼ 176)
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is performed for different day types and then compared

with the PV power persistence forecast. The actual PV

power time series is estimated by performing a PV simu-

lation using meteorological data.

Fig. 10 shows that the PV power forecast by the irra-

diance neural network model follows the estimated PV

power on clear sky day whereas the PV power persistence

forecast underestimates the PV power.

Figure 11 shows that the PV power forecast based on the

irradiance neural network model follows the estimated PV

power quite accurately in comparison to the persistence PV

power forecast.

Figure 12 shows that on a cloudy day the PV power

forecast based on the irradiance neural network model still

follows the target PV power accurately compared to the PV

power persistence forecast, but the accuracy of the PV

power forecast based on the irradiance neural network

model decreases as the weather changes from a clear sky to

a cloudy day.

Table 3 shows that PV DC power forecasts based on the

neural network irradiance model are more accurate for all

day types, i.e. clear sky, partly cloudy and cloudy, than the

PV power persistence forecast. The mean absolute error

(MAE) is quite small for the PV power neural network

forecast compared to PV power persistence forecast. Also,

the PV power neural network forecast has strong regression

values on all day types whereas the PV power persistence

forecast has modest regression values on clear sky and

cloudy days. Moreover, the PV power persistence forecast

also has a mean absolute percentage error of more than

50% on a clear sky and cloudy days. Therefore, the PV

power persistence forecast could be used as approximate

tool, but for an accurate prediction of the PV power the

neural network model is the preferred choice.

10 Conclusion and future work

In this research, we proposed a PV yield prediction

system based on multiple feed-forward neural network

irradiance forecast models. The PV power forecast based

on this system outperforms the PV persistence power

forecast model.

The multiple feed-forward models predict the GHI with

a mean absolute percentage error of 3% on a sunny day and

a mean absolute percentage error of approximately 23% on

a cloudy day for Stuttgart. The mean absolute error is

analyzed for the entire year and its average is 25W=m2
for

the day ahead forecast horizon. Hence, the GHI forecast

based on multiple neural networka is selected for predict-

ing the yield of the PV system. From the sensitivity anal-

ysis of the multiple feed-forward neural network GHI

forecast model, it can be concluded that apart from weather

variables, solar angles (azimuth angle and zenith angle)

and extraterrestrial irradiance are possible predictors for

forecasting the GHI. It can also be concluded that the GHI

neural network forecast model is more sensitive to sun-

shine, cloudiness and temperature than to other inputs.

PV DC power forecasts are obtained by converting

irradiance to power using a PV model. PV power forecasts

based on the multiple feed forward irradiance forecast

model outperform the PV power persistence forecasts. The

PV Power neural network forecast model has a MAPE of

18% to 21% in summer and spring and an overall MAPE of

26%.
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Fig. 12 A comparison between PV power neural network forecast,

PV power persistence forecast and target PV power on cloudy day

(day of the year ¼ 117)

Table 3 Accuracy comparison PV DC power forecast models under different day types for Stuttgart

Forecast Weather condition

model Clear sky ðDOY ¼ 191Þ Partly cloudy ðDOY ¼ 176Þ Cloudy day ðDOY ¼ 117Þ

MAE RMSE MAPE R MAE RMSE MAPE R MAE RMSE MAPE R

(W) (W) (%) (W) (W) (%) (W) (W) (%)

Neural network 99.10 122.98 12.79 0.99 110.73 148.07 12.20 0.98 164.88 198.84 13.83 0.99

Persistence 846.47 1050.80 51.96 0.65 203.91 262.95 13.33 0.96 437.54 517.23 66.12 0.69

Note: DOY means day of the year (1 to 365)
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Upcoming work is the implementation of a controller

that uses the PV power and load forecasts for efficient

operational strategies for battery charging and load

scheduling.

The proposed irradiance forecast model based on mul-

tiple feed-forward neural networks uses five years of his-

torical meteorological data for training the neural

networks. Such a large meteorological data set for the

location under observation is usually unavailable, so

upcoming work includes the development of prediction

algorithms capable of handling small data sets. This may

use an irradiance forecast model based on other advanced

neural network techniques. On the other hand, upcoming

work will also include large-data approaches for accurate

irradiance prediction development of a hybrid prediction

algorithm based on satellite images, historical meteoro-

logical data and numerical weather prediction forecast

models.
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Appendix A

The sun’s zenith angle is defined as [27]:

cos hz ¼ cos ðdÞ cos ðLÞ cos ðHRAÞ þ sin ðdÞ sin ðLÞ ðA1Þ

where L is the latitude; d is the sun’s declination angle and

HRA is the hour angle.

The sun’s declination angle is defined as [27]:

d ¼ 23:45 sin
360

365
ð284þ nÞ

� �
ðA2Þ

where n is the day of the year ð1� n� 365Þ. The hour

angle is defined as [27]:

HRA ¼ 15ðLST � 12Þ ðA3Þ

where LST is the local solar time in hours. Hour angle is

zero at local noon. The local solar time (LST) is defined as

[27]:

LST ¼
TC

60
þ LT ðA4Þ

where LT is the local time; TC is time correction factor and

is defined as [27]:

TC ¼ 4 Longitude� 15DTGMTð Þ
TC

60
þ EoT ðA5Þ

where DTGMT is the time difference between local time and

Greenwich Mean Time (GMT) in hours. We use the sign

convention that longitude is positive if the location lies to

the East of the Prime Meridian, and negative if the location

lies to the West of the Prime Meridian. The equation of

time (EoT) is defined as [27]:

EoT ¼ 9:87 sinð2BÞ � 7:53 cosðBÞ � 1:5 sinðBÞ ðA6Þ

B ¼
360

365
ðn� 81Þ ðA7Þ

The extra-terrestrial irradiance on the horizontal can be

computed using the following equation [27].

Gext;horizontal ¼ 1367 1þ 0:033 cos
2pn

365

� �� �
ðcos hzÞ

ðA8Þ
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