
PHRED: A GENERATOR FOR NATURAL LANGUAGE INTERFACES 1

Paul S. Jacobs 2

Berke ley Artificial Intelligence Research

Division of Computer Science

Depar tmen t of E E C S

University of California

Berkeley, CA, USA

PHRED (PHRasal English Diction is a natural language generator designed for use in a variety of

domains. It was constructed to share a knowledge base with PHRAN (PHRasal ANalyzer) as part of a

real-time user-friendly interface. The knowledge base consists of pattern-concept pairs, i.e., associ-

ations between linguistic structures and conceptual templates. Using this knowledge base, PHRED

produces appropriate and grammatical natural language output from a conceptual representation.

PHRED and PHRAN are currently used as central components of the user interface to the UNIX

Consultant System (UC). This system answers questions and solves problems related to the UNIX 3

operating system. UC passes the conceptual form of its responses, usually either questions or answers

to questions, to the PHRED generator, which expresses them in the user's language. Currently the

consultant can answer questions and produce its responses in either English or Spanish.

There are a number of practical advantages to PHRED as the generation component of a natural

language system. Having a knowledge base shared between analyzer and generator eliminates the

redundancy of having separate grammars and lexicons for input and output. It avoids possibly awkward

inconsistencies caused by such a separation, and allows for interchangeable interfaces, such as the

English and Spanish versions of the UC interface.

The phrasal approach to language processing realized in PHRED has proven helpful in generation as

in analysis. PHRED commands the use of idioms, grammatical constructions, and canned phrases with-

out a specialized mechanism or data structure. This is accomplished without restricting the ability of

the generator to utilize more general linguistic knowledge.

As the generation component of a natural language interface, PHRED affords extensibility, simplici-

ty, and processing speed. Its design incorporates a cognitive motivation as well. It diverges from the

traditional computational approach by focusing on the use of specialized phrasal knowledge. This phra-

sal approach minimizes the autonomy of the individual word, the bane of some earlier approaches to

language processing. The two-stage process used by PHRED to select appropriate linguistic structures

also fits well with cognitive theories of language and memory.

1 INTRODUCTION

The PHRED (PHRasal English Diction) system is a

language generation module for natural language inter-

faces. The generator operates from a declarative know-

ledge base of linguistic knowledge, common to that used

by PHRAN (PHRasal ANalyzer; Wilensky and Arens,

1980). PHRED and PHRAN together form an interface

for analyzing natural language and producing natural

language responses. This interface serves as the linguistic

component to the UNIX Consultant system (UC) (Wilen-

sky, Arens, and Chin 1984), a program for responding to

inquiries about the UNIX operating system. As the entire

UC system operates in several seconds of CPU time, it is

an important feature of PHRED that it requires no more

than two or three seconds to produce a complete

sentence.

The principal knowledge structure used by PHRAN

and PHRED is the pattern-concept pair, which links a

phrasal pattern to a conceptual template. This structure

has proven particularly effective in the encoding of

specialized linguistic knowledge, i.e., knowledge about

Copyright1985 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided that

the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To copy

otherwise, or to republish, requires a fee and /o r specific permission.

0362-613X/85/040219-242503.00

Computational Linguistics, Volume 11, Number 4, October-December 1985 2 1 9

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

particular phrases and their specialized meanings. Part of

the theoretical basis of PHRED is the notion that such

specialized constructs are an essential component of

language use. This idea has among its advocates Chafe

(1968), Harris (1968), and Kittredge and Lehrberger

(1983), and is behind other generation systems such as

Kukich's Ana (1983).

The shared linguistic knowledge base is an unusual

feature of PHRED and PHRAN. Computer programs that

can effectively communicate in natural language must be

capable both of analyzing a range of utterances to derive

their meaning or intent, and of producing appropriate

and intelligible responses. Historically these two tasks

have been treated independently, principally because

some of the hard problems in language production differ

from those of language analysis. In the MARGIE system,

for example, the BABEL generator (Goldman 1975)

employed a discrimination net as its principal data struc-

ture to facilitate the selection of an appropriate verb and

an ATN grammar to apply syntactic constraints, while the

ELI analyzer (Riesbeck 1975) in the same system

attached routines to individual words to control the inter-

pretations considered during the parsing process.

Throughout the short history of natural language

generation systems, programs that produce language have

treated generation as a process of decision making

(McDonald 1980), choice (Mann and Matthiessen 1983),

or planning (Appelt 1982). These systems have

employed knowledge structures specifically geared, to

varying degrees, to the task of constraining the selection

of lexical and grammatical elements. The design of

analyzers, on the other hand, focuses on the problem of

ambiguity in natural language and makes use of know-

ledge structures designed to constrain the consideration

of alternative interpretations. While the tasks of analysis

and generation are thus inescapably different, much of

the same knowledge can be used in performing both

tasks.

Even in systems with both analysis and generation

components, the knowledge used to derive meaning from

language is not used to produce language from meaning.

Such systems may be able to use a word or grammatical

structure without being able to recognize the same struc-

ture, or vice versa, and must duplicate a great deal of

information if the generator uses language similar to that

understood by the analyzer. Intuitively, it seems that the

knowledge used to constrain the interpretation of

language can be used to constrain the choice of language.

A natural language system with a parsimonious know-

ledge representation could encompass an interface capa-

ble of both analysis and production without excessive

duplication, with knowledge about language as well as

mechanisms for its analysis and generation.

PHRED was conceived as the generation component of

such an interface. PHRED, along with its companion

analysis program PHRAN, embodies an approach to

natural language processing founded on the principle that

knowledge about language is in essence declarative,

consisting of associations between linguistic and concep-

tual structures of varying degrees of specificity (Wilensky

1981). Such declarative knowledge should be used for

both analysis and generation, and the form of the know-

ledge should be independent of the particular language.

From its initial conception the "English" part of

PHRED's acronym was anomalous, as both the analyzer

and generator were envisioned as being able to utilize

knowledge bases of multiple languages.

The UNIX Consultant, designed to aid novice users of

the UNIX operating system by conversing in natural

language, is one application of the PHRED generator.

The PHRAN analyzer receives the user's input and passes

a conceptual interpretation to UC, which then passes its

response in conceptual form to PHRED to be Converted

into natural language output. Below are some examples

of questions to UC, with the responses generated by

PHRED:

User: How do I delete a file?

UC: Typing 'rm filename' causes the file filename to be

removed from the current directory.

User: C6mo se borra un archivo?

UC: Para borrar el archivo de hombre filename del espa-

cio de trabajo, se escribe 'rm filename'.

User: How do I delete all the files from a directory?

UC: Typing 'rm *' will remove all files within the current

directory from the current directory.

Typing 'rm -r directoryname' will cause all files and

directories recursively inside of directoryname to be

deleted from directoryname and removes the direc-

tory directoryname from the working directory.

The Spanish example above, a rough paraphrase of the

first English question, illustrates the ability of UC to

answer questions posed in either language, using the

same knowledge about UNIX. The PHRAN/PHRED

knowledge base includes the information that borrar and

escribe used with certain objects refer to specific concepts

in the UNIX world, the same concepts as deleting and

typing, respectively. Also in the phrasal knowledge base

is knowledge that espacio de trabajo and working directory

have a specialized denotation in the UNIX world. Such

specialized linguistic knowledge is common in this

domain.

While PHRAN and PHRED were originally tested using

an English vocabulary used for various stories and news

articles, it was a relatively easy task to accommodate

linguistic knowledge bases for English and Spanish in

order for the same programs to operate in the UC

domain. Adding a new vocabulary or language capability

to the UC system has required no modification to the

program, although the system has not had extensive test-

ing with many languages.

PHRED is implemented in Franz LISP and runs

compiled on a VAX 11/780. The English linguistic know-

ledge base of UC contains about 150 patterns, in addition

to knowledge of the morphological characteristics of 30

220 Computational Linguistics, Volume 11, Number 4, October-December 1985

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

verbs and 50 nouns commonly used in communicating

UNIX information. The compiled program occupies about

100K bytes of memory, of which about 20K is code used

also by PHRAN. Output from PHRED in the UC system

requires 1-3 seconds of CPU time, roughly a third of the

total time used by the system. For sentences of the

length typically produced by the generator, the amount

of time used is roughly proportional to the length of

output. Experiments with larger knowledge bases have

suggested that the time used by the generator is not

heavily dependent on the size of the knowledge base.

The next section describes the PHRED knowledge

base and outlines its role in the generation process.

Section 3 covers this process in more detail, and Section

4 traces a complete example of generation using PHRED.

Section 5 compares the PHRED approach with other

research. Section 6 discusses some current and future

research directions.

2 THE P H R E D KNOWLEDGE BASE

The knowledge base shared by the phrasal analyzer

(PHRAN) and phrasal generator (PHRED) consists of

pattern-concept pairs, where the pattern contains a

linguistic structure and the concept its internal represen-

tation. While this representation may be classified as

within the systemic/functional tradition (cf. Halliday

1968, Kay 1979) the implementation of the PHRED

knowledge base differs in certain important details. The

use of the PC pair in PHRED may be distinguished from

some other language production mechanisms (McDonald

1980, Mann and Matthiessen 1983, McKeown 1982) in

which grammatical information and conceptual informa-

tion are separated: The "pat tern" component of each PC

pair may include conceptual information, and the proper-

ties associated with each PC pair may combine linguistic

and conceptual attributes. Like the systems described

above, however, PHRED uses these properties for index-

ing and applying each pattern, particularly using informa-

tion about agreement among constituents of the pattern

and relationships between properties of constituents and

properties of the entire pattern.

The following is a simple example of a pattern-concept

pair, representing some of the knowledge about the use

of the verb remove:

PATTERN:

<agent> <root = remove> <physob>

<<word = from> <container>>

CONCEPT:

(state-change (object ?rem-object)

(state-name location)

(from (inside-of (object ?cont)))

(to (not (concept (inside-of

(object ?cont))))))

PROPERTIES:

tense = (value 2 tense)

rem-object = (value 3)

cont = (value 5)

forms = (active-s passive-s)

Specifications of components of the pattern in angle

brackets (< >) include linguistic information (root =

remove) or conceptual categories (agent, container) or a

combination of linguistic and conceptual specifications.

Additional information associated with each PC pair

determines the correspondences between elements of the

conceptual structure and constituents of the linguistic

structure: The special "value" indicator designates the

association of a property of the PC pair with a property

of one of its constituents, specified by number. Thus

"tense = (value 2 tense)" implies that the tense of the

pattern is the tense of the second constituent, the verb.

"cont = (value 5)" indicates that the token unified with

the variable "?cont" in the conceptual template corre-

sponds to the fifth constituent, the object of from. The

above PC pair can be used by PHRED, depending on the

concept being expressed, to produce the sentence You

shouM remove the files f rom your directory, or the infini-

tive phrase to remove a f i le f rom the top level directory.

The final output is determined by the combination of this

PC pair with the input attributes and one or more order-

ing patterns, which embody general linguistic constraints

and constraints on surface order.

In addition to the linguistic patterns and associated

conceptual representation, PC pairs contain a set of prop-

erties, or attributes, and other information that guides

their use. Some of this information, such as "tense =

(value 2 tense)" above, is used to determine correspond-

ences between a pattern and its constituents. Other

properties are used for indexing purposes. There is also a

facility for "escapes , , or the ability to call a special

procedure from within the declarative knowledge repre-

sentation. While this facility was often exploited in early

versions of PHRAN, it is problematic for knowledge bases

shared with PHRED. Procedures called during analysis

are seldom useful to the generator or vice versa. There-

fore such procedure calls have seldom been used in

PHRED, and an at tempt has been made to encode all

knowledge in a declarative form that can be used by both

the generator and the analyzer.

The "pat te rn" part of the PC pairs is a list of constitu-

ents, where each constituent in a pattern is generally

described either as a pattern of speech (p-o-s) or as a

member of a descriptive category (e.g., person, physical

object). Patterns may also be formed by conjunction and

disjunction of other patterns and may contain specifica-

tions of constraints. For example, the constituent

<and root = remove voice = active form = infinitive>

is a single-constituent pattern that would generate the

infinitive verb to remove, while

<and p-o-s = noun-phrase> <or person physob>>

Computational Linguistics, Volume 11, Number 4, October-December 1985 221

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

represents a noun-phrase that refers to a person or phys-

ical object.

Patterns are used to represent lexical entries, deter-

miners and particles which refer to nothing, as well as

very specific phrases which refer to particular objects.

The pattern

<word = the> <word = big> <word = apple>

represents the phrase the big apple used to refer to New

York City. This phrase can also be produced by the

general pattern

<p-o-s = article> <p-o-s = np2>

when used to refer to an apple.

Specialized linguistic constructs are often partially

frozen patterns that behave as a particular grammatical

unit. The phrase kick the bucket behaves as a verb that

conjugates but does not passivize. It corresponds to the

pattern

<and p-o-s = verb root = kick>

<word = the> <word = bucket>

which functions as an intransitive verb.

Part of the knowledge associated with a pattern-con-

cept pair is the correspondence between the properties of

the pattern's constituents and the properties of the entire

pattern. Associated with the kick the bucket pattern

above is the knowledge that the person, number, and

tense of the pattern correspond to the person, number

and tense of the first constituent, the form of the verb

kick. In generation, this results in the recursive applica-

tion of constraints from a pattern to its components: To

generate a past-tense verb meaning died, the system will

operate recursively on the pattern above to generate a

past-tense form of kick.

Patterns do not necessarily represent a fixed word

order. For example, in

<person> <root = tell> <person>

<word = to> <word = get> <word = lost>

the pattern retains its meaning when used in a passive

form or infinitive phrase. Such patterns are used in

combination with ordering patterns, which control the

various ways in which a pattern may be linguistically

realized. An example of an ordering pattern that could be

used in conjunction with the get lost pattern above is the

passive infinitive ordering, used to produce, for example,

the man to be told to get lost or the f i le to be removed from

the current directory:

PATTERN:

<and #3 p-o-s = noun-phrase case = objective>

<and #2 p-o-s = verb form = infinitive voice = passive>

<<word = by>

<and #1 p-o-s = noun-phrase case = objective>>

<<#rest> >

PROPERTIES:

p -o - s = in f -phrase

voice = passive

forms = (passive-s)

The "#2" and "#3" within the ordering pattern indicate

that the constraints on the second and third constituents

of the coordinated pattern are conjoined with the first

and second constituents of the ordering pattern, respec-

tively. The "#rest" indicates where additional constitu-

ents are generally inserted. This information guides the

combination of the ordering pattern with other PC pairs.

An extra set of angle brackets is used to mark a constitu-

ent that is optional to the pattern, such as the by phrase.

The "p-o-s = inf-phrase" property specifies that the

pattern produces an infinitive phrase, and the "forms =

(passive-s)" property restricts the use of this ordering to

patterns which have "passive-s" among their forms.

Patterns that have an unspecified word order do not

have a "p-o-s" attribute, and thus do not produce a

particular pattern of speech independently. These are

combined by PHRED with ordering patterns to allow for

idioms or expressions which may appear in various forms,

such as bury the hatchet in The hatchet was buried at Appo-

mattox. The same effect could be accomplished without

ordering rules by increasing the number of fixed-word-

order patterns combinatorially. The use of the ordering

patterns, however, has a certain elegance as well as a

practical value: it allows the specification of certain

specialized constructs as relations among particular

constituents, regardless of where the constituents appear

in the actual output. In this case, the specialized meaning

of telling someone to get lost is effectively represented by

the relationship between the verb tell and its complement

to get lost. This meaning may be realized in a variety of

forms; for example, the combination of the get lost

pattern with a passive ordering may produce the sentence

John was told by Bill to get lost.

• While there are similarities between the ordering rules

used by PHRED and transformational grammar rules,

there are some important differences: PHRED assumes

no syntactic derivation; rather, the final ordering of a

pattern of speech is produced by combining a set of

linguistic patterns. Furthermore, there is no strict

sequence in which the patterns must be applied: A given

ordering pattern may be chosen either before or after a

pattern with which it is to be combined. The combina-

222 Computational Linguistics, Volume 11, Number 4, October-December 1985

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

tion of ordering patterns is constrained by the inter-

actions among the properties of the patterns, instead of

by controlling the order in which they are used. In this

way PHRED is more flexible than other systems that

handle word order as a final phase of the generation

process (cf. Goldman 1975).

The pattern-concept pair representation falls into a

class of linguistic representations known as f e a t u r e

systems, including lexical functional grammar (Bresnan

1982), functional grammar (Kay 1979) and functional

unification grammar (Kay 1984). These systems, which

developed in parallel, may be described using a common

notation, and vary mostly in the way in which they are

typically applied. Pattern-concept pairs have been

applied primarily to the problem of representing the

specialized linguistic knowledge that seems necessary to

use language as a communicative tool. This emphasis

causes minor variations to seem important. For example,

most unification grammar implementations require that a

syntactic category be among the features, or attributes,

of every linguistic pattern. The omission of this require-

ment for pattern-concept pairs facilitates the represen-

tation of patterns that have a specialized meaning but do

not have rigid surface structures. This is illustrated by

the get lost pattern and by the specialized knowledge

about borrar and escribe in the UNIX domain.

The next section describes how the knowledge base

described here is utilized as part of a real-time generation

system.

3 THE GENERATION PROCESS

The production of an utterance in PHRED is a recursive

process which can be divided into three phases:

• Fetching is the retrieval of pattern-concept pairs from

the knowledge base.

• Restriction consists of validating a potential pattern-

concept pair to confirm that it fulfills a given set of

constraints and adding new constraints to the pattern.

• I n t e r p r e t a t i o n is the generation of lexical items that

match the constraints of the restricted pattern.

The generation algorithm implemented in PHRED is simi-

lar to those used in other unification-based systems (cf.

McKeown 1982, Appelt 1983). Because of the expecta-

tion that PHRED would serve as part of a real-time inter-

face, however, the system was designed to avoid the

expensive unification process. Thus the fetching phase of

PHRED accomplishes much of the task of checking the

constraints of a pattern against the constraints to be

satisfied, a function that could be performed by unifica-

tion. The more time-consuming unification process is

applied only after the fetching phase has produced a

candidate pattern.

A second important aspect of the PHRED algorithm,

also addressed to the problem of avoiding unnecessary

computation, is the overall strategy for handling alterna-

tive patterns. Once the fetching mechanism has retrieved

a pattern, PHRED uses this pattern unless it is found to

violate a constraint. This is similar to the strategy imple-

mented in MUMBLE (McDonald 1980), which also

avoids comparisons of linguistic structures of comparable

validity. Unlike MUMBLE, PHRED does limited back-

tracking under some circumstances. The backtracking

mechanism, however, relies on the fact that the fetching

mechanism generally produces some useful patterns and

that most constraint violations are due to incorrect

selections among ordering patterns.

Each of these phases and its role in the generation

process will now be discussed in further detail.

3.1 FETCHING

While PHRAN and PHRED use the same knowledge

structures, the way in which these structures are accessed

for the purpose of generation naturally differs from their

access by the analyzer. PHRAN must recognize a set of

lexemes as possibly corresponding to a pattern and there-

by retrieve an appropriate pattern-concept pair from the

knowledge base. PHRED, on the other hand, accesses

the knowledge base by fetching pattern-concept pairs

whose template fits the concept and constraints to be

expressed.

Because fetching can be a time-consuming part of the

generation process, it is important for the fetching mech-

anism to operate efficiently, but also to produce only

those PC pairs likely to be useful. For this purpose,

PHRED uses a hashing scheme designed to produce an

ordering, or stream, of candidate patterns with a mini-

mum of computation. Specifically, it performs some

quick computation to select a sequence of PC pairs that

might be of help in constructing a particular utterance.

These pairs are then considered as PHRED continues its

work. As the generator uses the first available appropri-

ate utterance rather than evaluate all potential candi-

dates, the ordering of this stream influences the choice

process as well as the number of patterns ultimately

considered.

The implementation of PHRED permits conceptual

attributes to influence the search of linguistic alterna-

tives, but separates this process from other aspects of

language planning. High-level text goals are not included

in the knowledge structures that influence the fetching

process. In this regard, the system within which PHRED

operates does not promote the desirable interaction

among text planning and structural choices, as suggested

by Appelt (1982) and Danlos (1984). Higher-level plan-

ning in the UNIX Consultant, for modularity, is

performed by a separable planning component.

The role of fetching in PHRED is to provide access to

the pattern-concept pairs in the knowledge base. The

input to the fetching mechanism is a set of constraints

and conceptual attributes. Using this input as a guide,

the fetching mechanism chooses PC pairs that serve as

building blocks for the language produced. The pattern

components of these PC pairs may include general

Computational Linguistics, Volume 1 I , Number 4, October-December 1985 223

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

patterns and ordering patterns as well as specialized

phrases and lexical choices.

In producing the phrase the f i le f i lename to be removed

f rom the current directory, the fetching stage is given the

following input:

p-o-s = inf-phrase
voice = passive

concept = (state-change (object filet)

(state-name location)
(from (inside-of (object current-directory)))
(to (not (concept (inside-of (object current-directory))))))

From this input, the fetching mechanism must retrieve

the remove pattern shown earlier as well as the ordering

patterns necessary to produce a passive infinitive phrase.

The design of the hashing scheme that accomplishes

this retrieval is based on the following reasoning: The

input to the fetching mechanism may be described at

least in part by a set of conceptual and linguistic proper-

ties, as may the pattern-concept pairs in the data base.

The process of restriction, described in section 3.2, relies

heavily on matching these two sets of properties. This

process may therefore be expedited by computing an

address in memory that "points" to PC pairs with a

particular set of attributes. Since there are combina-

torially many such sets, there must be (1) a large number

of addresses, or "buckets" , and (2) an effective means of

selecting which sets of " important" properties to use in

computing each address.

The selection of " important" properties is determined

as follows: All conceptual attributes, including those

included within the concept part of the input, are consid-

ered important, and the linguistic attributes used for each

p-o-s type are specified in the knowledge base. The

fetching mechanism first searches buckets found through

large sets of attributes, then buckets that correspond to

smaller sets of attributes. The idea of this process is to

consider first the PC pairs that most closely fit the input

to the fetching mechanism. Since a hash into an empty

bucket takes very little time, there is no great loss of time

efficiency in using a fairly large number of hashes.

Although the access to a PC pair through multiple buck-

ets requires some additional space, this space is negligible

compared to the size of the knowledge structures them-

selves.

The fetching component of PHRED, like the other

parts of the system, is geared towards simplicity and

uniformity. In spite of some of the differences among,

for example, the selection of a verb, the choice of a refer-

ring expression and the selection of an article that agrees

with its head noun, the same method is used for fetching

in all three cases. The same hashing scheme is employed

also to retrieve ordering patterns from the knowledge

base. Such orderings can be effectively retrieved from

their attributes in the same manner that any other PC

pair is fetched. Thus, while the nature of the knowledge

contained in the attributes of a lexical structure is argu-

ably different from the knowledge within an ordering PC

pair, these different types of knowledge may be accessed

through the same mechanism. The principle behind this

uniformity is that the level of specificity of the knowledge

required to realize particular concepts and constraint

cannot be predetermined; thus general and specific

knowledge should be accessed in the same fashion.

The main loop of PHRED passes to the fetching

component the set of constraints a PC pair must satisfy.

Typically, if there is a specific phrase, structural formula

or other pattern that directly satisfies these constraints, it

will appear in the stream before more general patterns.

A pattern of unfixed word order will generally appear in

the stream before an ordering pattern, because the order-

ing patterns tend to have few or no conceptual attributes.

Most often, the unfixed pattern is chosen based on the

concept passed to the fetching mechanism, while the

ordering pattern is chosen to select an ordering that

produces the appropriate pattern-of-speech. The manner

in which these patterns are combined is discussed in

section 3.2. The fetching mechanism is repeatedly called

to return patterns from the stream until all possible

constraints are satisfied. For example, to produce the

phrase ... not to remove the file, a negative ordering,

infinitive, and remove pattern must all be fetched before

the phrase can be restricted.

The construction of hash keys based on successively

smaller sets of attributes assures that the PC pairs whose

concept most closely matches the input concept will be

considered first. The fetching mechanism produces a

stream of pattern-concept pairs which are returned one

at a time as they are requested by the generator. The

rest of the program is insulated from the retrieval proc-

ess. This way, some of the hashing computation can be

postponed until it is required.

In the case of the remove example given above, the PC

pair is indexed according to a combination of the seman-

tic attributes "state-change", "location", "inside-of", and

"not-inside-of". This combination is used at the time the

PC pair is read in to determine which buckets should

include the PC pair. The indexing mechanism ignores

variables (e.g., "?actor") . During generation, a bucket

indicating this PC pair will be found, based on the same

semantic attributes. Some empty buckets, based on

different combinations of attributes, will be searched

also. A bucket including the passive infinitive ordering

pattern is found by using the p-o-s and voice attributes.

224 Computational Linguistics, Volume l 1, Number 4, October-December 1985

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

Buckets that correspond to more complete sets of

attributes are searched first. For example, if the "delete"

pattern were constrained to be used only for the deletion

of files, it would be retrieved before the r e m o v e PC pair

because the bucket identified by the conjunction of the

"file" attribute of filel with the other semantic attributes

of the concept is searched first.

A simple pattern, such as the word t h e , does not really

have a concept associated with it, and thus is indexed

according to sets of its linguistic attributes only: A search

for a definite article would find a bucket based on the

properties "p-o-s = article" and "ref = def" and would

thereby yield the pattern for "the".

The fetching component of PHRED constitutes about

10K bytes of object code, one tenth of the total program.

A profile of PHRED shows that more than half of the

CPU time consumed by the generator is spent in the

fetching process. Earlier versions of the program, which

did no ordering of candidate patterns in the fetching

phases, spent less time fetching but more time overall.

When the fetching mechanism retrieves a pattern

which has the appropriate "p-o-s" attribute, control is

passed to the restriction phase. This phase is considered

below.

3.2 RESTRICTION

Each time a candidate pattern is returned from the

stream by the fetching mechanism, it is passed to the

restriction phase, along with any other unfixed-order

patterns which have been retrieved. The restriction

mechanism creates an instance of the pattern, adding

new constraints to the pattern constituents while verify-

ing that the PC pair meets the constraints given. There

are three main aspects of this process:

• unification of the variables within the PC pair's concep-

tual template and its associated properties with the

target concept and properties,

• elaboration of the pattern constituents to include prop-

erties from corresponding properties in the pattern indi-

cated by the "value" marker, and

• combination of the properties of constituents among the

pattern and ordering patterns.

The following is an example of an instance of the

r e m o v e PC pair given earlier, after restriction:

PATTERN:

<and object concept = filel p-o-s = noun-phrase case = objective>

<and root = remove form :- infinitive voice = passive>

<<word = by>
<and agent concept = userl case = objective>>

<<word = from>
<and container concept = directoryl case = objective>>

CONCEPT:

(s t a t e - c h a n g e (ob j ec t f i l e l)

(state-name location)

(from (inside-of (object directory 1)))

(to (not (concept (inside-of (object directoryl))))))

PROPERTIES:

p-o-s = inf-phrase

tense = (value 2 tense)

rein-object = filel

eont = directoryl

forms = (passive-s)

This PC pair is the product of applying the restriction

process twice in succession, once to the passive infinitive

ordering and once to the r e m o v e pattern. Unification has

occurred to bind the variables "?cont" and "?rem-

object". Elaboration has added the tokens bound to

these variables to the individual constituents. Combina-

tion of the r e m o v e pattern with the passive infinitive

ordering has produced a pattern whose constituents are

specified by the conglomeration of constraints of the PC

pairs used.

Any of these three aspects of the restriction phase

may result in failure. In the above example, unification

would fail in an attempt to bind the multiple occurrences

of "?cont" to different tokens, or if some variable bind-

ing violated an input constraint. Elaboration results in

failure if a property to be added to a constituent does not

fit the other properties. For example, if "directoryl" in

the example is not a container, the pattern would be

judged inappropriate. Combination could likewise result

in failure if the constraints from the ordering rule were

incompatible with those from the r e m o v e pattern, for

example, if it had no passive form.

Properties marked by "value" in the PC pair are treat-

ed as variables and unified along with the other proper-

ties. If these variables remain unbound throughout the

restriction process, however, the pattern retains the prop-

erty with its "value" marker. This is necessary for future

stages of the production process to obtain the property

on demand. For example, a noun-phrase pattern in

Spanish, where there is gender agreement between the

subject of a passive infinitive phrase and the past partici-

ple, maintains the "gender = (value 2)" property to

Computational Linguistics, Volume 1 I, Number 4, October-December 1985 2 2 5

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

reflect that the gender of the NP is the gender of its NP2

This property is not determined until the head noun is

chosen, after which it can be retrieved through the NP if

necessary.

Restriction uses about 60% of the code of the genera-

tor and most of the CPU time not consumed by fetching.

The bulk of this time is spent doing repeated unification

when a large number of patterns are required. Because

the nature of the knowledge structures in the system

seems to require such unification, the fetching mech-

anism, as described in section 3.1, is designed to prevent

the consideration of patterns which might lead to failure

during unification.

The next step in the generation process, after

restriction, is to go through each constituent of the

restricted pattern and invoke the generation process on

the individual constituents, if necessary. This phase is

described in the next section.

3.3 INTERPRETATION

The third major phase in PHRED is interpretation, the

application of constraints to a restricted pattern to

produce a surface structure suitable for output.

The process of interpreting a given constituent may

have three possible results:

1) the successful completion of an element of surface

structure,

2) the recursive application of the fetch-restrict-inter-

pret sequence on the given constituent, or

3) failure, if the generator is unable to produce a speci-

fied pattern of speech.

The first result occurs when the pattern provides a

complete specification of a word or words for output,

such as the big apple, which is specified by the pattern

<word = the> <word = big> <word = apple>

The second case occurs if a constituent contains a more

general set of constraints, for example,

<and p-o-s = verb root = remove tense = past>

which requires another recurrence of the fetch-restrict-

interpret sequence.

In the third result, where no output produces the

desired pattern of speech subject to the constraints given

by the uninterpreted pattern, the system must back up to

select an alternate pattern. To be efficient, the system

must utilize as much as possible the patterns already

selected. If the constituent that fails in the interpretation

phase is optional to the pattern to which it belongs, it is

deleted. Otherwise, failure results in backing up to the

level where the failed patter~ was fetched, getting anoth-

er pattern from the stream, and attempting restriction of

the new pattern. Most often this new pattern will be an

ordering rule, and most of the failed pattern will be used

in the restriction of the ordering pattern. A simple case

of this is where the generator fails to produce a pattern

of speech for the subject of a sentence and instead gener-

ates a passive sentence. In this case the restricted version

of the PC pair as it was before the combination with the

active ordering pattern is backed up on a stack so that

the passive ordering can be tried.

Failure during interpretation is rare, and generally

results from an insufficiency of the knowledge base in

producing a reference. While a better model of the

generation process might allow for the anticipation of

such failures, such anticipation would in general require

decisions considerably more complex than those made by

PHRED. This complexity would be underutilized in light

of the infrequency with which back-up is necessary.

Although the back-up algorithm employed in these fail-

ures is time-consuming, it increases the likelihood that

some successful utterance will be produced.

The agreement of constituents within a pattern is

assured during the interpretation phase. A constituent

that must agree with another has a form such as the

following:

<and p-o-s = verb root = remove tense = past

number = (matches 1) person = (matches 1)>

This specifies a past tense form of remove that matches

its subject in person and number. Interpretation results

in the substitution of properties from the matched

constituent to produce, for example,

<and p-o-s = verb root = remove tense = past

number = singular person = third>

In English there are only limited forms of agreement.

There are few examples where it passes from right to left,

such as in subject-aux inversion where the verb agrees

with a subject that follows it. In other languages agree-

ment within a pattern may be much more complex. In

the Spanish example

Juan les habld a sus amigos

('John spoke to his friends'), the indirect pronoun les,

which precedes the verb, agrees with the indirect object,

which follows the verb.

In all cases PHRED can ensure proper agreement if

some order of interpreting the constituents allows the

correct application of constraints. The surface order of

the constituents is the default order for their interpreta-

tion, but interpretation of a constituent where necessary

is done only after that of constituents with which it must

agree. In English, nouns within noun phrases are inter-

preted before their attached determiners, because the

determiner must sometime agree in number with the head

noun. In more inflected languages verbs must generally

be produced last.

Anaphora are handled specially during interpretation.

In the case of constituents for which PHRED has already

produced references, the generator applies a set of

heuristics that will remove the constituent entirely if it is

not necessary to the utterance, pronominalize, or regen-

erate the entire constituent. The principal heuristics are

226 Computational Linguistics, Volume 11, Number 4, October-December 1985

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

1) If the anaphoric constituent is optional, remove it

from the current pattern, and

2) pronominalize other anaphoric constituents wherever

possible.

There are of course many cases in which an alternative

reference would be preferable, but the method used by

PHRED is generally effective in producing coherent refer-

ences. The heuristics lead, for example, to the

production of Mary was tom by John that he wanted the

book to be given to him rather than Mary was tom by John

that John wanted the book to be given to John by Mary. It

is apparent that these heuristics would break down in the

generation of longer texts, a task for which neither

PHRED nor the PHRAN/PHRED knowledge base was

designed.

The interpretation mechanism occupies about 2 0 % of

the code of the generator, and requires a small amount of

time relative to the rest of the program.

This discussion has described the overall design of

PHRED and presented some details of its implementation.

The next section traces an example of the generation

process and discusses the role of each of the three phases

considered here.

4 A DETAILED EXAMPLE

Below is a trace of PHRED while generating the sentence,

Typing "'rm f i lename" causes the file filename to be

removed from the current directory. This is a fairly simple

example, but demonstrates well the process used by

PHRED to produce an output. At each step in the trace,

the generator prints out which phase it is going through,

and what the input to that phase is. Ellipses (. . .) are

used to indicate information that has been omitted

because it reduplicates other material. As earlier in the

text, symbols preceded by a question mark indicate vari-

ables, such as "?actor". Symbols surrounded by aster-

isks, e.g., "*user*", are tokens that have special

processing implications in the UNIX Consultant. Other

special tokens are indicated by atoms followed by numer-

als, such as " f i le l" .

The input to the generator is the concept

which the UNIX consultant has chosen to
express, in response to a question about

removing files in UNIX. The concept

represents UC's knowledge that using the

'rm' command is an established plan (here
"planfor") for deleting a file (here

"filel"):

FETCHING

concept =
(planfor

(result
(state-change (object filel)

(state-name location)
(from (inside-of (object current-directory)))
(to (not (concept (inside-of (object current-directory)))))))

(method
(mtrans (actor *user*)

(object
(command (name rm)

(args (filename))))

(from *user*)
(to *UNIX*))))

Computational Linguistics, Volume 11, Number 4, October-December 1985 2 2 7

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

There are a number of patterns tha t could

potentially be used to express the concept

that an action is a plan for something.

Two of the possible constructs in the

PHRED knowledge base are an imperative,

e.g., Use "rm" to delete a f i le , and a future

or present tense declarative, e.g., "Rm" will

delete a fi le. In this case, PHRED selects

another pattern with the verb cause. The

stream of candidate patterns includes first

the constructs found in a bucket reached

through the "planfor" concept, followed

by other sentence-level PC pairs. In exam-

ples such as this one, where PHRED's

fetching mechanism reaches several

constructs through the same bucket, the

generator selects a random order in the

stream for the alternatives. For this exam-

ple, therefore, a random selection ultimate-

ly determines the form of the output.

After the selection is made, the restriction

process is applied to the first pattern.

RESTRICTING

PATTERN:

<p-o-s = act-phrase>

<and p-o-s = verb root = cause>

<and p-o-s = inf-phrase voice = passive>

CONCEPT:

(planfor (result ?result) (method ?method))

PROPERTIES:

method = (value 1)

result = (value 3)

p-o-s = sentence

form = (declarative active)

tense = (value 2)

The restriction process here results in the

addition of the appropriate conceptual

components to the constituents of the

restricted pattern. The conceptual content

of the first and third constituents, which

will produce a gerund phrase and passive

infinitive phrase, respectively, have been

added. This results from the unification of

the variables "me thod" and "resul t" in the

list of properties above and the elaboration

of the constituents specified by the terms

"(value 1)" and "(value 3)" attached to

these variables. Combination with an

active sentence pattern adds the subject-

verb agreement, and the restricted pattern

enters the interpretation phase:

INTERPRETING

PATTERN:

<and p-o-s = act-phrase

concept =

(mtrans (actor *user*)

(object

(command (name rm) (args (fitename))))

(from *user*)

(to *UNIX*))>

<and p-o-s = verb root = cause

person = (matches 1) number = (matches 1)>

<and p-o-s = inf-phrase

voice = passive

concept = (state-change (object f i le l)

(state-name location)

(from (inside-of (object current-directory)))

(to (not (concept (inside-of (object current-di rectory))))))>

PROPERTIES:

tense = value 2

form = (declarative active)

p-o-s = sentence

result = value 3

method = value 1

concept = ...

method

result = ...

At this point the generator has successfully

applied the input concept to restrict the

surface structure chosen, and recursively

interprets this structure, starting with the

gerund phrase:

INTERPRETING

PATTERN:

<and p-o-s = act-phrase

concept = (mtrans (actor *user*)

(object

(command (name rm) (args (fi lename))))

(from *user*)

(to *UNIX*))>

2 2 8 Computational Linguistics, Volume 11, Number 4, October-December 1985

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

Interpreting a simple constituent results in

a reinvocation of the fetch-restrict-inter-

pret sequence on that constituent:

FETCHING

concept = (mtrans (actor*user*)

(object

(command (name rm) (args (filename))))

(from *user*)

(to *UNIX*)))

p-o-s = act-phrase

Since there is no pattern that directly

generates a gerund phrase (here "p-o-s =

act-phrase") with the given concept, the

fetch above yields an ordering pattern

which can be used for combination with

other patterns to produce the final phrase.

Thus another fetch is performed before

any restriction is done, this time without

the "p-o-s" attribute.

FETCHING

concept = (mtrans ...)

PHRED searches for a way of expressing

the "mtrans", or communicative transfer,

of the 'rm' command to the operating

system. The hashing mechanism gives

preference to the terms for technical trans-

mission of commands, because the

concepts associated with these terms match

the input concept more closely, but a prob-

lematic pattern still results:

RESTRICTING

PATTERN:

<person> <root do> <command>

CONCEPT:

(mtrans (actor ?actor)

(object ?command)

(from 7actor)

(to *UNIX*))

PROPERTIES:

command = (command (name ?name) (args nil))

name = (value 3 command-name)

This pattern fails during unification

because it requires that the command not

have arguments, something which the

fetching mechanism failed to detect

because the bucket that includes the

pattern is found by considering less specif-

ic attributes. This failure is illustrative of a

class of examples where PHRED's hashing

mechanism, in short-cutting the complexity

of unification, picks the wrong pattern.

With the gerund ordering pattern still

being saved, the fetching mechanism is

called again for another candidate. The

pattern returned here by the fetching

mechanism is the next one in the stream

after the failed "do" pattern. This new

pattern, with the verb type, is then passed

through restriction:

RESTRICTING

PATFERN:

<person> <root = type> <command-spec>

CONCEPT:

(mtrans (actor ?actor)

(object ?command)

(from ?actor)

(to *UNIX*))

PROPERTIES:

command = (value 3)

Unification of the variables in the above

PC-pair with those in the input concept is

followed by elaboration of the constituents

and combination with the gerund ordering

pattern. This yields the following result:

RESTRICTING

PATTERN:

<and root = type form = progressive>

<and command-spec

concept = (command (name rm) (args (filename)))>

PROPERTIES:

p-o-s = act-phrase

Computational Linguistics, Volume 11, Number 4, October-December 1985 2 2 9

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

The combina t ion of the " t y p e " pa t tern

with the gerund ordering satisfies the

necessary constraints , producing a two-

const i tuent pa t te rn which then proceeds to

the in terpre ta t ion phase:

INTERPRETING

PATTERN:

< a n d p-o-s = verb root = type form = progress ive>

< a n d command-spec

concept = (command (name rm) (args (f i l ename)))>

PHRED recursively invokes the interpreta-

t ion procedure on each of the two const i tu-

ents, start ing with the progressive verb:

INTERPRETING

PATTERN:

< a n d p-o-s = verb root = type form = progress ive>

FETCHING

p-o-s = verb form = progressive root = type

This fetch uses a hash on the root and

form of the verb given to retr ieve the

progressive form typing, whose propert ies

unify trivially with the given constraints:

RESTRICTING

PATTERN:

< w o r d = typ ing>

PROPERTIES:

form = progressive p-o-s ---- verb

INTERPRETING

PA'I~ERN:

< w o r d = typ ing>

PROPERTIES:

root = type p-o-s = verb

root = type

form = progressive

The word typing and its propert ies are now

completely specified, so no fur ther

restr ict ion is needed. The next cons t i tuent

in the gerund phrase, the noun phrase t h a t

describes the command ' rm' , is thus passed

to the in terpre ta t ion mechanism:

INTERPRETING

PATTERN:

< p - o - s = noun-phrase command-spec

concept = (command (name rm) (args (f i l ename)))>

As usual, in terpre ta t ion first results in a

fetch:

FETCHING

concept = (command (name rm) (args (f i lename)))

p-o-s = noun-phrase

The pa t te rn selected for the command is a

specific formula for expressing commands

to UNIX, the command name following by

its arguments , in quotes:

RESTRICTING

PATTERN:

< w o r d = I '] > < c o m m a n d > < p - o - s = a rgs> < w o r d = I ' l >

PROPERTIES:

p-o-s = noun-phrase

concept = (command (name ?command) (args ?args))

args -- (value 3 name)

com mand = (value 2 c o m m a n d - n a m e))

The formula for producing ' rm f i lename' is

s t raightforward, and results in very little

addit ional work by the generator:

INTERPRETING

PATI'ERN:

< w o r d = I ' l >

< a n d command c o m m a n d - n a m e = r m >

< a n d p-o-s = args name -- f i l ename>

< w o r d = I ' [>

PROPERTIES:

p-o-s = noun-phrase

230 Computational Linguistics, Volume 11, Number 4, October-December 1985

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

INTERPRETING

PAT'FERN:

< w o r d = I'1 >

INTERPRETING

PA'ITERN:

< c o m m a n d c o m m a n d - n a m e = r m >

FETCHING

c o m m a n d - n a m e = r m

RESTRICTING

PATTERN:

< w o r d = r m >

INTERPRETING

PATTERN:

< w o r d = r m >

INTERPRETING

PATTERN:

< a n d p - o - s = a rgs n a m e = (f i l e n a m e) >

INTERPRETING

PATTERN:

< w o r d = I'1 >

H a v i n g c o m p l e t e d the c l ause Typing "rm

filename" t he g e n e r a t o r n o w r e t u r n s to the

h ighes t level o f the s u r f a c e s t r u c t u r e to

f in ish the s e n t e n c e . T h e n e x t c o n s t i t u e n t

in th is su r f ace s t r uc t u r e is the c o n j u g a t e d

f o r m of t he ve rb cause:

INTERPRETING

PATYERN:

< p - o - s = ve rb roo t = c a u s e p e r s o n = (m a t c h e s 1) n u m b e r = (m a t c h e s 1) >

T h e i n t e r p r e t a t i o n m e c h a n i s m f inds t he

p e r s o n a n d n u m b e r o f t he f irst c o n s t i t u e n t

of the s u r f a c e s t ruc tu re . Since this is a

s ingu la r g e r u n d ph ra se , it h a s t he th i rd

p e r s o n a n d s ingu la r p roper t ies . T h e s e a re

t h e n u s e d in f e t c h i n g t he a p p r o p r i a t e ve rb

fo rm:

FETCHING

p - o - s = ve rb roo t = c a u s e f o r m = bas ic p e r s o n = th i rd n u m b e r = s ingu la r

As wi th typing, h a s h i n g resu l t s in t he

re t r ieval o f the co r rec t ve rb , a n d res t r i c t ion

is a s imple p rocess :

RESTRICTING

PATYERN:

< w o r d = c a u s e s >

PROPERTIES:

t e n s e = p r e s e n t roo t = c a u s e

INTERPRETING

PATTERN:

< w o r d = c a u s e s >

PROPERTIES:

p e r s o n = th i rd n u m b e r = s ingu la r f o r m = bas i c

Computational Linguistics, Volume 11, Number 4, October-December 1985 231

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

Having completed the specification of the

verb causes , PHRED cont inues its depth-

first in terpreta t ion with the third and final

top-level const i tuent , the infinitive phrase:

INTERPRETING

PATTERN:

< a n d p-o-s = inf-phrase

concept =

(s ta te-change

FETCHING

concept = (s ta te-change ...)

p-o-s = inf-phrase

voice = passive

FETCHING

voice = passive

(object f i l e d

(s ta te-name location)

(f rom (inside-of (object cur rent -d i rec tory)))

(to (not (concept (inside-of (object cu r r en t -d i r ec to ry))))))>

The first fetch in this case again brings the

ordering pat tern, the second the " r e m o v e "

pat tern. The restr ict ion process is applied

first to the " r e m o v e " pat tern:

RESTRICTING

PATTERN:

< p e r s o n > < r o o t = r e m o v e > < p h y s o b > < < w o r d = f r o m > < c o n t a i n e r > >

CONCEPT:

(s ta te-change (object ? rem-objec t))

(s ta te -name location)

(from (inside-of (objec t ?conta iner)))

(to (not (concept (inside-of (object ?con ta ine r))))))

PROPERTIES:

rem-objec t = (value 3)

At this point, the genera tor is producing an

expression for the passive infinitive phrase

following the verb causes . After unifica-

tion and e laborat ion of the pa t te rn above,

the pa t te rn is then combined with the

ordering pat tern for the passive infinitive

phrase, a somewhat more specialized

pat tern than is necessary for the

const ruct ion of such phrases. The

restrict ion process results in the determi-

nat ion of the final ordering of the const i tu-

ents, and ano ther round of restriction:

RESTRICTING

PATTERN:

< a n d physob concept = f i l e l >

< a n d p-o-s = verb root = be form = inf in i t ive>

< a n d p-o-s = verb root = remove form = per fee t ive>

< < w o r d = f r o m >

< a n d conta iner concept = c u r r e n t - d i r e c t o r y > >

PROPERTIES:

subject = ? inf-phrase-subject

voice = passive

object -- ? inf-phrase-object

p-o-s = inf-phrase

form = (passive)

Having completed the restr ict ion of the

infinitive, PHRED passes control to the

in terpre ta t ion mechanism, which then

proceeds to generate each par t of the infin-

itive phrase pat tern:

INTERPRETING

PATTERN:

< a n d physob c o n c e p t = f i l e l >

< a n d p-o-s = verb root = be form = inf in i t ive>

< a n d p-o-s = verb root = remove form = per fec t ive>

< < w o r d = f r o m >

< a n d conta iner concept = c u r r e n t - d i r e c t o r y > >

PROPERTIES:

p-o-s = inf-phrase

concept = ...

232 Computational Linguistics, Volume 11, Number 4, October-December 1985

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

As the in te rp re ta t ion s tar ts wi th the first

cons t i t uen t o f the infini t ive phrase , PHRED

n o w mus t p roduce a r e f e r ence to the speci-

f ied file. To do this, it expands the t oken

" f i l e l " to get the necessa ry i n fo rma t ion

f rom its a t t r ibutes .

INTERPRETING

PATTERN:

< a n d p h y s o b c o n c e p t = (file (n a m e (f i l ename)))

PROPERTIES:

c o n c e p t = ...

p - o - s = n o u n - p h r a s e

FETCHING

p - o - s = n o u n - p h r a s e

c o n c e p t = . . .

PHRED uses a s t ructural formula , di rect ly

assoc ia ted by a PC pair wi th the c o n c e p t o f

a file, to refer to the hypo the t i ca l file:

RESTRICTING

PATTERN:

< w o r d = t h e > < w o r d = f i l e> < n a m e >

CONCEPT:

(file (name (f i l ename)))

PROPERTIES:

ref = de f

p - o - s = n o u n - p h r a s e

pe r son = third

n u m b e r = s ingular

n a m e = (value 3 n a m e)

This pa t t e r n is the defaul t r e f e r ence for

files, which is supe r seded w h e n m o r e infor -

ma t ion abou t a given file mus t be

conveyed . The n o u n phrase n o w reaches

the in te rp re ta t ion phase , resul t ing in the

simple ver i f icat ion tha t its cons t i tuen t s are

comple te :

INTERPRETING

PATTERN:

< w o r d = t h e > < w o r d = f i l e> < a n d p - o - s = args n a m e = (f i l e n a m e) >

PROPERTIES:

c o n c e p t p - o - s = n o u n - p h r a s e ref = def

Hav ing c o m p l e t e d the r e fe rence , the

sys tem n o w con t inues wi th the infini t ive

phrase . The s ec ond cons t i t uen t o f the

infinit ive phrase is the infini t ive of the ve rb

be:

INTERPRETING

PATTERN:

< a n d p - o - s = verb roo t = be fo rm = in f in i t ive>

As wi th the o the r verbs , f e t ch ing yields the

appropr ia te form:

FETCHING

p - o - s = verb roo t = be fo rm = infinit ive

RESTRICTING

PATTERN:

< w o r d = t o > < w o r d = b e >

PROPERTIES:

p -o - s = verb roo t = be fo rm = infinit ive

INTERPRETING

PATTERN:

< w o r d = t o > < w o r d = b e >

PROPERTIES:

voice = act ive

Computational Linguistics, Volume 11, Number 4, October-December 1985 233

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

The third consti tuent of the passive infini-

tive phrase is the past participle of the verb

remove, which is interpreted next. This

process similarly results in the completed

verb form:

INTERPRETING

PATTERN:

<p-o - s = verb root = remove form = perfec t ive>

FETCHING

p-o-s = verb

root = remove

form = perfective

INTERPRETING

PATTERN:

< r e m o v e d >

PROPERTIES:

o o .

The final consti tuent of the infinitive

phrase and of the sentence is the optional

prepositional phrase specifying from where

the file is being deleted. The extra angle

brackets in the pattern below indicate to

the interpretation mechanism that if it fails

to produce a reference or if the reference

in the prepositional phrase is anaphoric,

the entire consti tuent may be omitted:

INTERPRETING

PATTERN:

< < w o r d = f rom> < a n d container concept = cur ren t -d i rec to ry>>

The first consti tuent of the prepositional

phrase, the word from, is already

complete:

INTERPRETING

PATTERN:

< w o r d = f r o m >

The second constituent, the referent for

the c u r r e n t - d i r e c t o r y , is interpreted next:

INTERPRETING

PATTERN:

< a n d p-o-s = noun-phrase container concept = current-di rectory>

FETCHING

p-o-s = noun-phrase concept = current-directory ref = def

Unlike the previous noun phrase, there is

no specific structural formula for referring

to the current directory. PHRED thus uses

a general noun phrase pattern:

RESTRICTING

PATTERN:

< a n d p-o-s = article

< a n d p-o-s = noun

PROPERTIES:

p-o-s = noun-phrase

person = third

number = singular

concept = (value 2)

number = (value 2 number)

person = (value 2 person)

consonance = (matches 2) number = (matches 2) >

number = singular>

2 3 4 Computational Linguistics, Volume 1 I , Number 4, October-December 1985

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

"Consonance" here is the property used to

handle the distinction between a and an,

which depends on the choice of noun.

"Hard" consonance is used for nouns or

adjectives beginning with a consonant

sound, and "sof t" for those beginning with

a vowel sound. For definite articles, the

property is not used.

Elaboration of the pattern above results

in a two-constituent pattern to be inter-

preted, the second constituent of which

must refer to the current-directory

concept.

INTERPRETING

PATTERN:

<and p-o-s = article consonance = (matches 2)

number = (matches 2) ref = def>

<and p-o-s = noun concept = current-directory

number = singular>

PROPERTIES:

Properties:

While there is no special noun phrase for

referring to the current-directory con- cept,

there are special noun constructs. PHRED

selects randomly between two ways of

referring to this concept, current directory

and working directory.

INTERPRETING

PATTERN:

<and p-o-s = noun concept = current-directory number = singular>

FETCHING

p-o-s = noun number = singular person = third concept = current-directory

The reference selected for the directory is

the compound noun current directory.

This is interpreted before the article within

the noun phrase, since articles are

produced after head nouns to ensure

agreement:

RESTRICTING

PATTERN:

<word = current> <word = directory>

PROPERTIES:

~oncept consonance = hard person = third

INTERPRETING

PATTERN:

<word = current> <word = directory>

PROPERTIES:

Properties:

number = singular p-o-s = noun

The interpretation mechanism judges the

noun compound to be completed, and the

final determiner is then interpreted:

INTERPRETING

PA'ITERN:

<and p-o-s = article ref = d e f number = singular

INTERPRETING

PATTERN:

<word = the>

PROPERTIES:

consonance = hard>

After the final part of the surface structure

is complete, a walk through the surface

structure tree is used to produce the final

output:

Typing ' rm filename' causes the file filename to be removed from the current directory.

5 COMPARISON WITH OTHER RESEARCH

PHRED di f fers in des ign f r o m m o s t o t h e r na tu ra l

l anguage g e n e r a t i o n sys tems because o f its c o n c e p t i o n as

a g e n e r a t o r to a c c o m p a n y P H R A N as par t o f a l anguage

in te r face . T h e app l i ca t ion of spec ia l i zed phrasa l k n o w -

ledge s eems to be an e f f e c t i v e m e a n s o f sa t i s fy ing the

d e m a n d s on a g e n e r a t o r in a d o m a i n such as tha t of the

UNIX C o n s u l t a n t . T h e use o f a dec l a r a t i ve k n o w l e d g e

base sha red b e t w e e n a n a l y z e r and g e n e r a t o r has h e l p e d

to m a k e the sys t em prac t i ca l and easi ly ex tens ib le .

P H R E D ' s s impl ic i ty and the speed wi th wh ich it appl ies

this k n o w l e d g e h a v e m a d e it we l l - su i t ed fo r use in rea l -

t ime na tu ra l l anguage in te r faces .

P r imar i ly fo r h i s to r ica l r easons , m o s t r e s e a r c h in

c o m p u t a t i o n a l l inguist ics has f o c u s e d on rules g o v e r n i n g

syntax . In l anguage analysis , it is o f t e n p rac t i ca l to

des ign sys t ems w h o s e p r inc ipa l f u n c t i o n is to app ly and

Computational Linguistics, Volume I I, Number 4, October-December 1985 2 3 5

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

test such rules by determining the grammaticality of the

input. Such systems generally use compositional rules, if

any, for determining the semantic content of the input.

The task of language generation, however, is inextricably

tied to the appropriateness of the linguistic output as well

as to its grammaticality. Because of this, work in gener-

ation focuses not on the representation of core syntactic

rules but on the means by which a choice is made among

syntactic and lexical constructs. Compositional rules

generally fail to constrain this choice adequately. For

this reason systems which are designed for language

generation have often employed either special choice

systems of the type found in systemic grammar (Halliday

1968), or have had pattern-based grammars of the type

found in PHRAN/PHRED and in unification grammar

(Kay 1984), which require a sophisticated mechanism for

dealing with the interaction of the patterns. Thus

PHRAN/PHRED is the first interface in a natural

language-based artificial intelligence system to use an

entirely common representation and knowledge base for

linguistic knowledge employed in both analysis and

production.

The declarative pattern-concept pair representation,

its theory, and its role in PHRED, are considered in the

discussion that follows.

5.1 THE PC PAIR

The pattern-concept pair representation differs on the

surface from traditional grammars because the grammar

is embedded implicitly in the knowledge structures.

These knowledge structures often require the combina-

tion of a number of patterns to produce an utterance. In

this way the representation is comparable to unification

grammar, which contains patterns associated with func-

tional descriptions. The restriction process described in

this paper is similar to the unification procedure in TELE-

GRAM (Appelt 1983), which employs a unification gram-

mar.

One difference between PHRED's knowledge struc-

tures and those in unification grammar is that conceptual

attributes of the PC pairs, as well as functional attributes,

or properties, are used to constrain a pattern. Unifica-

tion grammar, like most feature systems, generally fosters

the separation of conceptual and functional components.

Another distinction is that, in unification grammar, the

syntactic category is given special status; in pattern-con-

cept pairs it is treated as an attribute, and does not

necessarily have to be specified for every pattern. This is

important for patterns that can be used in conjunction

with many different orderings to produce a variety of

syntactic structures.

A general difference between the PC pair and other

representations lies in the level of specificity of the

patterns. The PC pair makes it easy to encode special-

ized phrases and constructs to be used by the generator.

It allows the generator to apply the same mechanisms to

both general and specific constructions, and to choose PC

pairs based on their conceptual attributes. This is,

naturally, a distinction based on how the pattern-concept

pairs are used rather than on their basic structure. The

same result might well be achieved within the basic

framework of lexical functional grammar or unification

grammar.

Semantic grammar (Burton 1976) is another represen-

tation scheme which, like that of PHRED, facilitates the

use of semantic attributes in language processing. There

are versions of such grammars that allow for varying

degrees of interaction between syntax, semantics, and

pragmatics. PHRED differs from true semantic grammars

primarily in that it facilitates the interaction of the more

general patterns with the more specialized. Semantic

grammars are often too constrained to be adapted to a

new domain. Many of the knowledge structures in

PHRED, by comparison, are general enough so that much

of the linguistic knowledge used within the UNIX domain

existed in the PHRAN/PHRED knowledge base before

UC was even conceived.

The pattern-concept pair representation has developed

in parallel with research on idiomatic and specialized use

of language, done primarily by cognitive linguists. Simi-

lar ideas may be found in a variety of grammatical theo-

ries emphasizing the study of levels of linguistic and

conceptual knowledge and the relations between them

(cf. Lockwood 1972, Makkai 1972). The concept of

units of meaning linked to lexical units is described, for

example, by Pike (1962) and Lamb (1973).

Much of the work on specialized language questions

the cognitive validity of traditional generative theories of

grammar. Chafe (1968) identifies certain idioms, such as

by and large and all of a sudden, which would be ungram-

matical were they not given special status as idiomatic

constructions. Other expressions, such as kick the buck-

et, are grammatical, but have a meaning that is not deter-

mined by any compositional relationship among their

components. Chafe argues that these idiomatic

constructs sufficiently pervade everyday language to

warrant an approach to language that handles these

constructs not as special cases or exceptions but as an

integral part of a language.

Becker (1975) presents the idea of the phrasal lexicon

as a means of handling canned and idiomatic phrases.

Becker identifies in particular a range of phrases which

are grammatical and even comprehensible via composi-

tional rules, yet which suggest specialized contextual

knowledge. The expression It only hurts when I laugh

can theoretically be handled using traditional theories of

grammar, but treating it as such would be ignoring an

important component of the expression's meaning. The

existence of such expressions, which involve either

partially or entirely specialized knowledge, has generally

been treated as of minor importance in computational

theories of language. However, a cognitively realistic

representation must take into account the role of both

general syntactic knowledge and specialized knowledge

about particular phrases.

236 Computational Linguistics, Volume 11, Number 4, October-December 1985

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

While these arguments are directed at developing

cognitively valid theories of linguistic representation, the

handling of idiomatic constructs and of specialized phras-

al knowledge has a substantial influence on the robust-

ness and efficiency of a system. If specialized linguistic

knowledge is indeed as pervasive as Chafe argues, a

system that deals only with "core" grammatical and

productive constructs will handle but a small portion of a

language. A generator working within such a system

would be severely limited in the range of utterances it

could produce and in its ability to produce an output

appropriate to a given context. On the other hand, fail-

ing to take advantage of linguistic generalizations can

introduce redundancy and possibly inefficiency into the

knowledge base. Robust and efficient language process-

ing therefore demands a representation that takes advan-

tage of both specialized idiomatic and general syntactic

knowledge. Experience with the UNIX Consultant has

suggested that the interaction of specialized and general

linguistic knowledge is important for a natural language

interface. This interaction is accomplished in PHRED by

allowing the generator to combine ordering patterns with

patterns used to relate linguistic constructs to their

particular meanings.

Fillmore (1979) gives arguments for the idea of the

structural formula, a phrase or construction that cannot

be described strictly as the composition of its compo-

nents but may still have a certain degree of structural

freedom. Fillmore presents "<Time unit> in and <Time

unit> out" as an example of such a formula, manifest in

expressions such as day in and day out and week in and

week out. More recently, Fillmore and others extend this

idea to a theory of grammatical constructions (cf. Fill-

more, Kay, and O'Connor 1984; Lakoff 1984), focusing

on expressions that exhibit certain regularities and obey

some grammatical constraints but whose behavior cannot

be determined by "core" grammar. Examples of such

expressions are let alone as in He didn't make first lieuten-

ant, let alone general, and the deictic there, as in There

goes Harry, shootin.g his mouth o f f again Fillmore, Kay,

and O'Connor point out the difference between attempt-

ing to develop a minimal base of knowledge from which a

linguistic competence can be computed, and attempting to

develop a knowledge base that represents how human

linguistic knowledge is in fact stored.

As an example of this distinction, consider the division

drawn by Fillmore, Kay, and O'Connor between idioms

of decoding, such as kick the bucket, and spill the beans,

and idioms of encoding only, such as answer the door, and

wide awake. All of these are grammatical idioms; that is,

they have a syntactic structure and word order compat-

ible with core grammatical constructs. The idioms of

decoding, however, require specialized knowledge both

for the comprehension of their meaning and their appro-

priate use. The idioms of encoding could possibly be

comprehended using knowledge about their components

only, but specialized knowledge is required to predict

their use. Whether this specialized knowledge is to be

stored in a given representational model therefore

depends on what problem the model is addressing:

competence, comprehension, or production. We have

thus distinguished three potential classes of linguistic

knowledge:

1) the knowledge required to determine the membership

of a given phrase or sentence in a language,

2) the knowledge necessary to determine the meaning of

a phrase, and

3) the knowledge that determines appropriate use of the

phrase.

Computational linguistics has emphasized the first class,

and thus many systems have attempted to define the

second and third knowledge classes by adding auxiliary

knowledge to a grammar for a linguistic competence.

The PHRAN/PHRED pattern-concept pair represen-

tation, on the other hand, attempts to subsume the three

classes into a single framework. Since the goal of

PHRAN and PHRED is proficient analysis and use of

language, the distinction between grammatical and extra-

grammatical idioms becomes of minor importance. It

seems counterintuitive to treat phrases such as all o f a

sudden as of a different nature from kick the bucket

simply because the former is extragrammatical. Further,

the emphasis on the ability to compute a linguistic

competence using a small set of rules is diminished. If

specialized knowledge about a given phrase is required

for its appropriate use, there is no reason why this know-

ledge cannot also be used for its syntactic analysis, even

if, in a system that performs analysis alone, such know-

ledge would be redundant.

Consider the phrase answer the door. A pure syntactic

analyzer would require no special knowledge to recog-

nize the construct as a valid verb phrase. It is possible as

well that the meaning of the phrase could be determined

based on the structure of the verb phrase and its constit-

uents. However, in order for PHRED to give the phrase

its deserved distinction from respond to the door or other

less appropriate utterances, special knowledge, that

answer the door means to open a door in response to a

knock or doorbell, is required. Since this knowledge is

encoded into the common knowledge base, it may also be

used by PHRAN to determine the meaning of the phrase.

The development of a knowledge base for the

purposes of both language analysis and language

production therefore changes the nature of the linguistic

knowledge base and its use. Information that is redun-

dant when considered from a formal linguistic standpoint

may be important for a particular aspect of language

processing. Such specialized knowledge may then be

used by other components of the system. Thus the

emphasis in the PHRAN/PHRED representation is on the

storage of such redundant information rather than on its

computation.

Specialized knowledge about phrases and

constructions is an integral part of the knowledge base

and is used preferentially to general knowledge which

Computational Linguistics, Volume 11, Number 4, October-December 1985 2 3 7

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

requires more computation, both for analysis and

production.

Of course, fundamental differences between analysis

and generation still exist in PHRAN and PHRED. While

the two programs have a shared knowledge base, they

have entirely independent methods of accessing and

applying their linguistic knowledge. PHRAN accesses

patterns by recognizing sequences of constituents;

PHRED must select a pattern based on the concept it is to

express and the constraints which the pattern must satis-

fy. The PHRED approach to language generation is

committed to the representation of linguistic knowledge

in a declarative form which can be shared by the analyz-

er. The knowledge structures used by the generator are

the same as those used by the analyzer, but the process

that makes use of this knowledge to produce an utterance

still reflects the basic choice problem.

The appropriateness of natural language output seems

enhanced by the pattern-concept pair representation.

Much of the knowledge used to produce language, partic-

ularly in specialized domains, is specialized knowledge.

A natural language program that treats grammatical

constructions and canned or idiomatic phrases independ-

ently of "core" grammar requires special rules and proce-

dures to make use of such phrases. In PHRED

specialized constructs are selected and produced using

the same mechanism as the more productive constructs,

facilitating the interaction of linguistic knowledge of

varying levels of generality. In this way a wider range of

appropriate utterances may be produced from a given

conceptual form.

This discussion has focussed on the general represen-

tational aspects of PHRED. The next section concen-

trates on the details which relate specifically to other

generation systems.

5.2. PHRED AND OTHER GENERATION SYSTEMS

PHRED differs from other generation systems primarily

in the way it applies its knowledge to the generation task.

Many language generation systems used in conjunction

with large programs separate the linguistic knowledge

base and lexicon from the conceptual knowledge base of

the system (McDonald 1980, Mann and Matthiessen

1983, McKeown 1982). This has a variety of advan-

tages, particularly the ability to develop and modify one

module without affecting another. It also has the disad-

vantage of inhibiting the use of conceptual information

by the generator, or of requiring redundant represen-

tation of such information, unless the modules are specif-

ically designed to utilize common knowledge. In PHRED,

linguistic knowledge, e.g., pattern concept pairs, is main-

tained separately from world knowledge, e.g., knowledge

about the UNIX domain, to permit such advantages as the

interchangeability of English and Spanish knowledge

bases in UC. However, the generator may access the

conceptual knowledge base of the system and such

knowledge may interact with the syntactic knowledge.

For example, the verbs remove and delete are synonymous

when used to refer to actions on files, but delete may not

generally be used with physical objects. PHRED restricts

the use of delete during elaboration by examining the

semantic nature of its object. If the object is not a file,

the use of delete to refer to the action of removing it is

prohibited.

Certain other complete natural language systems, like

PHRAN/PHRED, exploit knowledge shared between

analyzer and generator. The HAM-ANS question-an-

swerer (Wahlster et al. 1983, Busemann 1984) makes

use of a shared lexicon. The VIE-LANG system (Stein-

acker and Buchberger 1983) shares a "syntactico-

semantic" lexicon, but the generator accesses this lexicon

using a discrimination net with specialized choice know-

ledge.

A notable difference in implementation between

PHRED and other generators is in the fetching mech-

anism. The division of the choice problem into an initial

biasing and an evaluation component allows PHRED to

bias its construction of utterances using a specialized

hashing scheme. This has proven a boon for both

simplicity and efficiency, as some of the rules which

govern choice are carried out by a simple hashing process

and thus fewer patterns reach the restriction phase. The

basic choice mechanism as implemented in PHRED there-

fore encompasses two different phenomena, which may

be viewed as predisposition and selection.

Predisposition is the process by which access to a

knowledge base is influenced by various factors - such as

the context, the concept to be expressed, or specific

constraints on the desired output - to influence the order

or priority in which elements of the knowledge base are

considered. Selection is the evaluation of an element

from the knowledge base. Intuitively, predisposition is

the underlying access process that influences the likeli-

hood of considering a particular word or phrase;

selection is the judgement process which determines

whether the word or phrase is appropriate. This resem-

bles the notion of "register" in the systemic tradition (cf.

Halliday 1978), but the biasing is not limited to situation-

al influences.

There are three motivations for a design that provides

for both a predisposition and a selection phase of the

choice process. First, a system that employs as its princi-

pal choice mechanism, for example, a discrimination net

such as Goldman's (Goldman 1975) or a unification

scheme such as McKeown's (McKeown 1982) may apply

its choice algorithm to many unlikely candidates, some-

times causing inefficiency. For example, the system

might consider the verbs smoke and inhale every time it

chooses the verb breathe. A fast indexing mechanism that

quickly selects candidates trims the time spent evaluating

inappropriate choices.

The second motivating force lies in the distinction

between utterances that are technically correct in

expressing a given concept and those that are generally

appropriate to a given context. John inhaled air is techni-

2 3 8 Computational Linguistics, Volume 11, Number 4, October-December 1985

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

cally correct but generally inappropriate in place of John

breathed. This type of distinction can be embedded in a

choice mechanism by attempting to axiomatize the rules

that determine appropriateness, or it can be embedded in

a predisposition mechanism which happens to order the

choices according to the context. Predisposition thus

provides a means for biasing choice without blurring the

distinction between correctness and appropriateness.

The third motivation is cognitive validity. The predis-

position-selection distinction fits the intuition that people

have when they hear an unusual sentence: It's okay but I

wouldn't say it. In the example of breathe and inhale air

both utterances may fit the input conceptualization, but

fluent speakers tend to choose the former. Fluent speak-

ers also bias their predisposition mechanisms according

to the nature and formality of the context. Pawley and

Syder (1980) find that one of the differences between

native and non-native speakers of a language is that

non-native speakers take a long time to develop the

predisposition component necessary for fluency. Chafe

(1984) has pointed out some of the influential factors in

the variations between spoken and written, or informal

and formal, language. While some of this work is still in

its early stages, the evidence strongly suggests a contex-

tual biasing component distinct from the selection or

evaluation phase of production.

The goal behind the PHRED indexing scheme is to

incorporate as much of the choice problem as possible

into the fetching, or predisposition, phase. Some

language generators (Goldman 1975, McDonald 1980)

use indexing tools that model choice as a multistage eval-

uation or decision-making process. The division of this

process in PHRED into an "automatic" biasing compo-

nent and a judgment component has some practical

advantages. The hashing algorithm which drives the

fetching mechanism orders the stream of patterns

retrieved before any of them is actually evaluated, and

thus the more time-consuming restriction process is

spared having to apply heuristics to make certain choices.

For example, a general heuristic used by a number of

language generators can be expressed as "Choose the

most specific pattern which matches the input

constraints". In PHRED, this heuristic is realized by the

hashing mechanism, which orders candidate patterns in

terms of the number of buckets that yield them. In this

way the sentence John asked Bill to leave is generally

produced without considering the alternative John

informed Bill that he wanted him to leave.

Appelt (1982) has presented language generation as

the multi-level process of planning utterances to satisfy

multiple goals. A division in this multi-stage process can

be made between the task domain and the linguistic

domain, i.e., between the system level and the interface

level. PHRED operates at the interface level. User input

to the UNIX consultant system is first analyzed by

PHRAN, producing a conceptual knowledge structure

which motivates the system's response (Wilensky, Arens,

and Chin 1984). The planning component of the system

exists entirely within the task domain of UC. Independ-

ent of the language being used, the UC planner makes the

choice of illocutionary act, speech act, and the message

to be conveyed. PHRED expresses the message in natural

language.

While the ability to handle complex problems in

language planning, such as the generation of references

requiring knowledge about the hearer's knowledge, might

be desirable even at the PHRED level, it is difficult to

perform such planning within a real-time system. It is

both counter-intuitive and inefficient to treat language

production as primarily a reasoning process involving

complex inference mechanisms. In fact, the need for

such reasoning in language production seems rare. Thus

the UC system draws a convenient, if arbitrary, division

between the choices of responses and speech acts made

by the UC planner and the lexical and structural choices

made by PHRED.

Other systems such as Penman (Mann 1983), and

TEXT (McKeown 1982) attack the problem of generat-

ing coherent multisentential text. This involves the influ-

ence of linguistic rules governing reference and focus on

the process of deciding what to say. PHRED is not well

equipped for this problem. While PHRED produces

multisentential text when UC passes it successive

concepts to express, it has no knowledge of coherence.

Nor is there substantial communication between the

PHRED level of production and the higher levels of

language planning. Such communication, as described by

Appelt (1982), would allow the generator to subsume

multiple UC goals. In PHRED and UC much of the proc-

ess of producing utterances is not considered as planning

per se, but as the application of prestored knowledge

about how language is used. The distinction between this

prestored knowledge and general planning is analogous

to the difference between compiled and interpreted code

in programs. More research is required on how know-

ledge is compiled and on how the use of prestored know-

ledge about patterns of speech can be used in

conjunction with general knowledge about planning.

This discussion has described some of the advantages

of the PHRED approach to language generation, as well

as some of the areas not really addressed in PHRED. The

next section considers some of the promising ways in

which the research described here can be extended.

6 FUTURE DIRECTIONS

PHRED is a successful implementation of a real-time

generation system covering a range of linguistic phenom-

ena, and has served also to open up new ground for

further work. This work involves aspects of language

processing not directly involved in PHRED as well as

problems with the PHRED approach and implementation.

Computational Linguistics, Volume I I, Number 4, October-December 1985 2 3 9

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

6.1 STRUCTURED ASSOCIATIONS

Much of the work on specialized language discussed

earlier, as well as research on metaphor by Lakoff and

others (Lakoff 1977, Lakoff and Johnson 1980) has

suggested that there exist a range of underlying moti-

vations 4 for many idioms and grammatical constructions,

knowledge of which can help govern the use of language.

For example, PHRED in its current form has the know-

ledge that the phrase kick the bucket does not passivize

but bury the hatchet does, without any attempt to repre-

sent the motivation for the latter phrase. Knowing that

bury the hatchet is motivated, i.e., that bury refers to

terminating and hatchet to war, helps to explain the gram-

matical properties of the phrase. Ross (1981) has

suggested that in many cases the variety of forms in

which idioms of this type can appear depends on the abil-

ity of the noun component of the idiom to function inde-

pendently as a noun. Passivization, however, seems

subject to a more specific constraint; that is, the ability of

the noun component of the idiom to refer.

To take advantage of this knowledge, a representation

of the bury the hatchet idiom must encode the information

not only that the expression refers to making peace, but

that the hatchet part of the idiom refers to war or to the

tools of war.

As another example where motivation might be useful,

PHRED now generates John took a punch from Mary and

Mary gave John a punch without representing the

common metaphorical derivation of the two sentences.

For example, PHRED might have a pattern

<person> <root = give> <person> <striking-action>

to produce the sentence Ali gave Frazier a punch. This is

thus specialized knowledge about giving and a potential

object. There might also be a pattern

<person> <root --- take> <striking-action> <<word =
from> <person>>

used to produce Frazier took a punch from Ali. Similar

patterns might exist for getting a punch and receiving a

punch. Treating these patterns independently seems

cognitively unrealistic, because motivated phrases are in

general easier to use and remember, and inefficient, since

a more general representation of the striking as transfer

metaphor might eliminate the need for some of the

specialized knowledge about each of the patterns. While

knowing the motivation does not obviate entirely the

need for specialized knowledge, it can lead to a more

parsimonious encoding of the specialized knowledge.

A potential improvement to the PHRAN/PHRED

representation is the treatment of knowledge used to

associate language and meaning as structured

associations. 5 The structured association is an explicit

relation between two knowledge structures that also

associates their corresponding "components" . These

components may be aspectuals, or attributes, of the two

structures or other arbitrarily related structures. A struc-

tured association may be used to relate the concept of a

striking action to the concept of a transfer, with the

patient of the action corresponding to the recipient of the

transfer and the actor of the striking action correspond-

ing to the source of the transfer. A structured associ-

ation might also relate linguistic structures to associated

concepts. The bury the hatchet expression may be related

to a concept by a structured association, with the hatchet

part corresponding to the war part of the concept and

bury corresponding to the action of terminating the war.

Metaphors and pattern-concept pairs alike may thus be

represented as types of structured associations (cf.

Jacobs 1985).

The structured association derives from the idea of a

"view" (cf. Moore and Newell 1973, Bobrow and Wino-

grad 1977, Wilensky 1984, Jacobs and Rau 1984), but is

more general. The term view is used principally to

describe relationships used to understand analogous

concepts, while the structured association relates arbi-

trary knowledge structures. Also, the structured associ-

ation is not a primitive relation, as structured associations

themselves are a conceptual hierarchy.

Gentner 's structure-mapping theory (Gentner 1983)

addresses problems in understanding analogy that are

comparable to some of the metaphorical issues discussed

above. Gentner focuses on the process by which struc-

ture-mappings are synthesized rather than on the explicit

representation of associations that may be used for such

mappings.

Incorporating structured associations into a hierarchi-

cal knowledge base could further facilitate the interaction

of general and specialized linguistic knowledge. Thus

PHRED, and PHRAN as well, could gain efficiency in

representation from the generalizations which apply

without losing the advantages of having specialized

patterns.

6.2 CONTEXT AND MEMORY MODELS

Another major area for future work is in the development

of models of memory that help account for the role of

context in language processing. A kind of spreading acti-

vation model (Arens 1982) was used in UC to help

resolve references and to activate particular goals, plans

and speech acts. The idea behind an activation-based

model is that subtle changes in context can influence

language processing without requiring the addition of

large amounts of conceptual information to all of the

linguistic knowledge structures.

A spreading-activation model has the potential of

being especially useful in the predisposition, or fetching

phase, of generation. Information about objects and

events that have been explicitly referred to or activated

in the current context, as well as about the topic of

conversation and the participants in the conversation, can

influence the language considered. There are, however,

three major practical difficulties with using spreading

activation as a means of controlling the effect of context

on language production. First, the spreading activation

240 Computational Linguistics, Volume 1 I, Number 4, October-December 1985

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

model is a parallel one which tends to produce slow,

awkward simulations. Second, the encoding of know-

ledge into a network suitable for such a memory model

must involve either a complex method of acquiring the

knowledge from data or a contrived set of associative

strengths based on introspection. Finally, while spread-

ing activation is often effective in describing subcon-

scious effects such as associative priming, it is difficult to

account for the interaction of such effects with conscious

or planned behavior. Most likely, a memory model will

prove useful as a means of modeling the predisposition

process and will simplify, but not replace, language plan-

ning and language selection.

7 CONCLUSION

PHRED is a practical language generator for use in

natural language interfaces. The phrasal approach to

language processing allows the generator to serve as an

effective communicative tool within specialized domains

without sacrificing the ability to adapt the system to new

functions. The simple and efficient design of the

program, particularly the process by which PHRED

avoids expensive unification, allows it to serve as; part of

a real-time user interface. The use of a knowledge base

shared with the PHRAN analyzer makes it easy to adapt

the interface to a variety of domains in which under-

standing and production of fairly robust language is

required.

In addition to its value as a useful language processing

mechanism, PHRED has paved for the way for better

models of language generation and linguistic represen-

tation. The PHRED approach supports a view of gener-

ation as a knowledge-intensive process in which the

knowledge structures that relate language to meaning

play a key role. The way in which these knowledge

structures are accessed and applied emerges as the

central issue in this model. The construction of robust,

efficient and extensible natural language interfaces

demands continued work at refining the means by which

this "knowledge about language" is captured.

R E F E R E N C E S

Appelt, D. 1982 Planning Natural Language Utterances to Satisfy

Multiple Goals. SRI International A1 Center Technical Note 259.

Appelt, D. 1983 Telegram: A Grammar Formalism for Language

Planning. In Proceedings of the 21st Annual Meeting of the Associ-

ation for Computational Linguistics, Cambridge, Massachusetts.

Arens, Y. 1982 The context model: language and understanding in

context. In Proceedings of the Fourth Annual Conference of the Cogni-

tive Science Society, Ann Arbor, Michigan.

Becker, .I.D. 1975 The Phrasal Lexicon. In Schank, R. and Webber,

B.L., Eds., Theoretical Issues in Natural Language Processing.

(publisher?): Cambridge, Massachusetts.

Bobrow, D. and Winograd, T. 1977 An Overview of KRL, a Know-

ledge Representation Language. Cognitive Science 1 (1).

Bresnan, J., Ed. 1983 The Mental Representation of Grammatical

Relations. MIT Press, Cambridge.

Burton, R. 1976 Semantic Grammar: an Engineering Technique for

Constructing Natural Language Understanding Systems. Bolt Bera-

nek and Newman Report No. 3453.

Busemann, S. 1984 Topicalization and Pronominalization. Extending

a Natural Language Generation System. In Proceedings of the Sixth

European Conference on Artificial Intelligence, Pisa, Italy.

Chafe, W.L. 1968 Idiomaticity as an Anomaly in the Chomskyan Para-

digm. Foundations of Language 6(1).

Chafe, W. L. 1984 Integration and Involvement in Speaking, Writing,

and Oral Literature. In Tannen, D., Ed., Oral and Written Language.

Ablex, Norwood, New Jersey.

Danlos, L. 1984 Conceptual and Linguistic Decisions in Generation.

In Proceedings of the Tenth International Conference on Computational

Linguistics, Stanford, California.

Fillmore, C.,I. 1968 The Case for Case. In Bach, E. and Harms, R.,

Eds., Universals in Linguistic Theory. Holt, Rinehart and Winston,

New York.
Fillmore, C.J. 1979 Innocence: a Second Idealization for Linguistics.

In Proceedings of the Fifth Berkeley Linguistics Symposium, Berkeley,

California.

Fillmore, C.J.; Kay, P.; and O' Connor, M.C. 1984 Regularity and

Idiomaticity in Grammar: The Case of Let Alone. University of

California, Cognitive Science Working Paper.

Gentner, D. 1983 Structure-Mapping: A Theoretical Framework for

Analogy. Cognitive Science 7:155-170.

Goldman, N. 1975 Conceptual Generation. In Schank, R.C., Ed.,

Conceptual Information Processing. American Elsevier Publishing

Company, Inc., New York.

Halliday, M.A.K. 1968 Notes on Transitivity and Theme in English.

Journal of Linguistics 4.

Halliday, M.A.K. 1978 Language as Social Semiotic. University Park

Press, Baltimore.

Harris, Z. 1968 Mathematical Structures of Language. John Wiley and

Sons, New York.

Hudson, R. 1976 Arguments for a Non-Transformational Grammar.

University of Chicago Press, Chicago.

,iacobs, P. 1983 Generation in a Natural Language Interface. In

Proceedings of the Eighth International Joint Conference on Artificial

Intelligence, Karlsruhe, Germany.

Jacobs, P. and Rau, L. 1984 Ace: Associating Language with Mean-

ing. In Proceedings of the Sixth European Conference on Artificial

Intelligence, Pisa, Italy.

Jacobs, P. 1985 A Knowledge-Based Approach to Language

Production. University of California at Berkeley, Computer Science

Division Report #UCB/CSD 86/254.

Kay, M. 1979 Functional Grammar. In Proceedings of the Fifth Annual

Meeting of the Berkeley Linguistic Society.

Kay, M. 1984 Functional Unification Grammar: A formalism for

Machine Translation. In Proceedings of the Tenth International

Conference on Computational Linguistics, Stanford, California.

Kempen, G. and Hoenkamp, E. 1982 An Incremental Procedural

Grammar for Sentence Formulation. University of Nijmegen (the

Netherlands) Department of Psychology, Internal Report 82-FU-14.

Kittredge, R. and Lehrberger, J. 1983 Sublanguages: Studies of

Language in Restricted Domains. Walter DeGruyter, New York.

Lakoff, G. 1977 Linguistic Gestalts. In Proceedings of the Thirteenth

Regional Meeting of the Chicago Linguistics Society.

Lakoff, G. and Johnson, D. 1980 Metaphors We Live By. University of

Chicago Press, Chicago.

Lakoff, G. 1984 There-constructions: A Case Study in Grammatical

Construction Theory. University of California, Linguistics Working

Paper.

Lamb, S. The Crooked Path of Progress in Cognitive Linguistics. In

Makkai, A. and Lockwood, D., Eds., Readings in Stratificational

Linguistics. University of Alabama Press, University, Alabama.

Lockwood, D. 1972 Introduction to Stratiftcational Linguistics. Harc-

ourt Brace and Jovanovich, New York.

Makkai, A. 1972 Idiom Structure in English. Mouton, The Hague.

Makkai, A., Ed. 1975 ,4 Dictionary of American ldioms. Barron's

Educational Series, New York.
Mann, W. 1983 An Overview of the Penman Text Generation System.

In Proceedings of the National Conference on Artificial Intelligence,

Washington, D. C.

Computational Linguistics, Volume 11, Number 4, October-December 1985 241

Paul S. Jacobs PHRED: A Generator for Natural Language Interfaces

Mann, W. and Matthiessen, C. 1983 Nigel: A Systemic Grammar for

Text Generation. University of Southern California, ISI Technical
Report #1SI/RR-83-105.

McDonald, D.D. 1980 Language Production as a Process of Decision-

making Under Constraints. Ph.D. dissertation, MIT.

McKeown, K. 1982 Generating Natural Language Text in Response

to Questions about Database Structure. Ph.D. thesis, University of
Pennsylvania.

Moore, J. and Newell, A. 1974 How can MERLIN Understand? In

Gregg, L., Ed., Knowledge and Cognition. Erlbaum Associates, Inc.

Pawley, A. and Syder, F.H. 1980 Two Puzzles for Linguistic Theory:

Nativelike Selection and Nativelike Fluency. Unpublished manu-

script.

Pike, K. 1962 Dimensions of Grammatical Constructions. In Brand,

R., Ed., Kenneth L. Pike: Selected Writings. Mouton, The Hague.

Riesbeck, C. 1975 Conceptual Analysis. In Schank, R.C., Ed., Concep-

tual Information Processing. American Elsevier Publishing Company,

Inc., New York.

Rosch, E. 1977 Human Categorization. In Warren, N., Ed., Studies in

Cross-Cultural Psychology (Vol. I). London, Academic Press.

Ross, John Robert 1973 Nouniness. In Fujimura, Osamu, Ed., Three

Dimensions of Linguistic Theory. TECCorporation, Tokyo.

Ross, John Robert 1981 Nominal Decay. Unpublished manuscript.

Schank, R.C., Ed. 1975 Conceptual Information Processing. American

Elsevier Publishing Company, Inc., New York.

Steinacker, I. and Buchberger, E. 1983 Relating Syntax and Seman-

tics: The Syntactico-semantic Lexicon of the System VIE-LANG. In

Proceedings of the First European Meeting of the ACL, Pisa, Italy.

Wahlster, W.; Marburger, H.; Jameson, A.; and Busemann, S. 1983

Overanswering Yes-No Questions: Extended Responses in a

Natural Language Interface to a Vision System. In Proceedings of

the Eighth International Joint Conference on Artificial Intelligence,
Karlsruhe, W. Germany.

Wilensky, R. and Arens, Y. 1980 PHRAN - A Knowledge-Based

Approach to Natural Language Analysis. University of California at

Berkeley, Electronics Research Laboratory Memorandum

#UCB/ERL M80/34.

Wilensky, R. 1981 A Knowledge-Based Approach to Natural

Language Processing: A Progress Report. In Proceedings of the

Seventh International Joint Conference on Artificial Intelligence,
Vancouver, British Columbia.

Wilensky, R. 1984 KODIAK - A Knowledge Representation Language.

In Proceedings of the Sixth Annual Conference of the Cognitive Science
Society, Boulder, Colorado.

Wilensky, R.; Arens, Y.; and Chin, D. 1984 Talking to UNIX in

English: An Overview of UC. Communications of the Association for

Computing Machinery 27(6).

NOTES

1. This research was sponsored in par t by the Office of Naval

Research under cont rac t 00014-80-C-0732, the Nat ional

Science Founda t ion under grants IST-8007045 and

IST-8208602, and the Defense Advanced Research Projects

Agency (DOD), ARPA Order No. 3041, Moni to red by the

Naval Electronic Systems C o m m a n d under cont rac t

N00039-82-C-0235.

I am grateful to Robe r t Wilensky for his guidance and

for his impor tan t comments on numerous drafts of this

paper, and to Lisa Rau for many helpful suggestions.

2. Au thor ' s current address: Knowledge-Based Systems

Branch, Genera l Electric Corpora te Research and Develop-

ment , Schenectady, NY 12301.

3. UNIX is a t rademark of AT&T Bell Laborator ies .

4. The term motivat ion, as employed here, is due to Char les

Fil lmore and George Lakoff , personal communica t ion .

5. The te rm s t ructured associat ion and the use of s t ructured

associat ions in language processing were suggested by

Robe r t Wilensky, personal communicat ion.

242 Computational Linguistics, Volume 1 I, Number 4, October-December 1985

