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Abstract

A fundamental challenge in analyzing next-generation sequencing data is to determine an 

individual’s genotype accurately, as the accuracy of the inferred genotype is essential to 

downstream analyses. Correctly estimating the base-calling error rate is critical to accurate 

genotype calls. Phred scores that accompany each call can be used to decide which calls are 

reliable. Some genotype callers, such as GATK and SAMtools, directly calculate the base-calling 

error rates from phred scores or recalibrated base quality scores. Others, such as SeqEM, estimate 

error rates from the read data without using any quality scores. It is also a common quality control 

procedure to filter out reads with low phred scores. However, choosing an appropriate phred score 

threshold is problematic as a too-high threshold may lose data while a too-low threshold may 

introduce errors. We propose a new likelihood-based genotype-calling approach that exploits all 

reads and estimates the per-base error rates by incorporating phred scores through a logistic 

regression model. The approach, which we call PhredEM, uses the Expectation-Maximization 

(EM) algorithm to obtain consistent estimates of genotype frequencies and logistic regression 

parameters. It also includes a simple, computationally efficient screening algorithm to identify loci 

that are estimated to be monomorphic, so that only loci estimated to be non-monomorphic require 

application of the EM algorithm. Like GATK, PhredEM can be used together with a linkage-

disequilibrium-based method such as Beagle, which can further improve genotype calling as a 

refinement step. We evaluate the performance of PhredEM using both simulated data and real 

sequencing data from the UK10K project and the 1000 Genomes project. The results demonstrate 

that PhredEM performs better than either GATK or SeqEM, and that PhredEM is an improved, 

robust and widely applicable genotype-calling approach for next-generation sequencing studies. 

The relevant software is freely available.
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INTRODUCTION

The recent advancement of next-generation sequencing (NGS) technologies and the rapid 

reduction of sequencing costs have led to extensive use of sequencing data in disease 

association studies and population genetic studies [Ng et al., 2010; The 1000 Genomes 

Project Consortium, 2015]. However, it is still difficult and costly to perform whole-genome 

sequencing (WGS) at high depth in large cohorts [Sims et al., 2014]. Instead, many studies 

have adopted whole-exome sequencing (WES) [The 1000 Genomes Project Consortium, 

2015; Muddyman et al., 2013]. Despite the high average depth that is typically attainable in 

WES studies, some regions within a gene may still have much lower depth than the average 

due to the inefficiency of exome capture technologies [Do et al., 2012]. Other studies have 

kept the design of WGS but have chosen low or moderate depths. For example, the UK10K 

project (www.uk10k.org) sequenced the two population cohorts genome wide at depth of 

~6x. Although sequencing costs are declining, we anticipate that many NGS studies will 

continue to employ WES or WGS with low or medium depth for some time to come.

A fundamental challenge in analyzing NGS data is to determine an individual’s genotype 

correctly, as the accuracy of the inferred genotype is essential to downstream analyses. It is 

difficult to call genotypes for two reasons. First, NGS data can suffer from errors introduced 

in the base-calling process. The base-calling error rate ranges from a few tenths of a percent 

to several percent [Nielsen et al., 2011], can vary from base to base as a result of machine 

cycle and sequence context [Kircher et al., 2009], and also varies dramatically across 

different sequencing platforms. For instance, the Illumina MiSeq platform has an error rate 

of ~0.8% [Quail et al., 2012] whereas the Roche 454 System has ~0.1% error rate [Liu et al., 

2012]. Second, the quality of called genotypes depends heavily on the read depth. Genotypes 

covered by many reads can typically be called reliably. However, when a locus is covered by 

only a few reads, genotype calling is challenging because minor allele reads are 

indistinguishable from sequencing errors.

All major sequencing platforms assign each called base of a raw sequence a phred score, 3 a 

widely-accepted measure of the probability that the base is called incorrectly [Ewing et al., 

1998; Ewing and Green, 1998]. Phred scores are determined using various predictors of 

possible errors such as peak spacing, uncalled/called peak ratio and peak resolution. 

Nominally, the phred score is defined as

(1)

so that, for example, Q = 30 nominally corresponds to a 0.1% error rate. Despite their 

widespread use, phred scores may not accurately reflect the true error rates in base calling 

because they fail to account for some important factors. For instance, the specific error 

pattern inherent in each nucleotide base (i.e., A, C, T and G) is not considered in phred 

scores [Li et al., 2004]. Additionally, phred scores do not account for the position of the base 

within a read [DePristo et al., 2011]. Since phred scores might be inaccurate representations 

of true base-calling error rates, methods have been developed to recalibrate base quality 
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scores, such as the base quality score recalibration (BQSR) option in GATK [DePristo et al., 

2011] and the base alignment quality (BAQ) option in SAMtools [Li, 2011]. However, the 

effectiveness of recalibration highly depends on whether all important error predictors (e.g., 

machine cycle and dinucleotide context) are included in the recalibration model. In addition, 

the recalibration process can be computationally intensive [Yu et al., 2015].

A genotype-calling method generally uses a probabilistic framework, combining base-

calling error rates and a marginal (population-level) distribution of genotype frequencies to 

provide an individual-level probability for each genotype [Mckenna et al., 2010; Li et al., 

2009a; Martin et al., 2010]. Because the error rate is critical in probabilistic genotype-calling 

algorithms, it is crucial that it be correctly specified, especially when sequencing depth is 

low to moderate. GATK uses error rates that are calculated directly from phred scores or 

recalibrated scores by applying equation (1), neither of which is precisely correct. SAMtools 

obtains an error rate from the minimum of the phred-based error rate and the mapping error 

rate, so that the error rate is always adjusted downwards [Li, 2011]. In addition, bases with 

low phred scores (e.g., Q < 20 or 30) are typically filtered out as part of quality control (QC) 

procedures. However, choosing a threshold for phred scores always involves a tradeoff: high 

thresholds may result in loss of useful information by eliminating bases that are correctly 

called, while low thresholds leave a large number of erroneously-called bases in the data, 

leading to false-positive variant calls.

Instead of relying on phred scores, Martin et al. [2010] proposed SeqEM, a genotype-calling 

algorithm that estimates the error rate using the read data itself. However, the fundamental 

assumption of SeqEM that, at each locus, there is a uniform error rate for each read is 

generally not true, given the considerable variability in error rates implied by the variability 

in phred scores. Because SeqEM ignores phred scores entirely, the valuable information 

about errors encoded in phred scores is lost.

In this paper, we propose a new genotype-calling approach which estimates base-calling 

error rates from the read data while incorporating the information in phred scores. We model 

an error rate as a logistic function of a phred score. The logistic regression model is readily 

integrated into a modification of the SeqEM likelihood which allows for a base-specific 

error probability. Like SeqEM, our approach also uses the Expectation-Maximization (EM) 

algorithm [Dempster et al., 1977]. Information from all individuals is used to estimate the 

unknown genotype frequencies and logistic regression parameters. We compute the 

probability of each latent genotype for each individual based on parameter estimates and use 

the empirical Bayes approach to assign the most likely genotype to each individual. We 

show that the logistic model fits real sequencing data well, and that the unknown parameters 

in our likelihood are consistently estimated. Because we allow separate logistic regression 

parameters at each locus, error predictors that are the same for all bases at a given locus 

(e.g., dinucleotide context) are automatically accounted for, as in SeqEM.

To minimize the effort of calling genotypes for the large majority of loci that are estimated 

to have no variation, we develop a simple, computationally efficient screening algorithm to 

identify loci that are estimated to be monomorphic and therefore do not require parameter 

estimation using the EM algorithm. Furthermore, we show that our approach can be used 
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together with a linkage-disequilibrium (LD)-based method such as Beagle to improve 

genotype calling. Finally, we demonstrate through simulation studies and by comparison to 

gene array data that our approach is more accurate than both SeqEM and GATK (even after 

phred score recalibration). We illustrate our new approach through an application to two real 

sequencing datasets, one from the UK10K project and the other from the 1000 Genomes 

project.

METHODS

We first consider one biallelic locus at a time. For the i-th individual, let Gi denote the 

underlying true genotype (coded as the number of minor alleles), Ti denote the total number 

of alleles that are mapped to the locus, and Ri (Ri ≤ Ti) denote the number of mapped alleles 

that are called to be the minor allele. The phred scores are represented by Qi = (Qi1, . . ., 

QiTi)′, where Qik is the phred score associated with the k-th called allele and the prime (′) 

indicates the transpose of a vector. At each locus, values of Ti, Ri, and Qi can be easily 

extracted from the pileup files produced by SAMtools. Let εik be the true base-calling error 

rate of the k-th allele. We relate εik to Qik through the logistic regression model

(2)

where β0 and β1 are unknown regression parameters that are locus specific. Let θ = (β0, β1)′ 
and εik(θ) = exp(β0 + β1Qik)/{1 + exp(β0 + β1Qik)}. Equation (2) is motivated by the fact 

that the phred score is a highly informative predictor of the base-calling error, even though 

(1) does not hold in the exact sense. In the Results section, we demonstrated that the logistic 

model fits the real sequencing data well.

Without loss of generality, we order the Ti alleles so that the first Ri alleles are called to be 

the minor allele and the rest the major allele. Assuming that the errors of the Ti alleles are 

independent of each other, the probability of observing Ri copies of the minor allele out of 

Ti alleles can be described as a sequence of independent Bernoulli trials. Specifically, given 

the true genotype Gi, the total number of alleles Ti, and the phred scores Qi, the probability 

of observing Ri is written as

(3)

Suppose that the sample consists of n unrelated individuals. Then the likelihood function 

takes the form
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(4)

where Pπ(g) is the genotype frequency characterized by π. Under Hardy-Weinberg 

Equilibrium (HWE), π consists of a single parameter π for the minor allele frequency 

(MAF). Then, Pπ(0) = (1 − π)2, Pπ(1) = 2π(1 − π), and Pπ(2) = π2. Under Hardy-Weinberg 

Disequilibrium (HWD), π = (π, f)′ where π and f are the MAF and the fixation index Fst, 

respectively. Then, Pπ(0) = (1 − f)(1 − π)2 + f(1 − π), Pπ(1) = 2π(1 − π)(1 − f), and Pπ(2) = 

(1 − f)π2 + fπ.

The proposed likelihood is closely related to several existing methods. When β1 = 0, the 

error rate is independent of the phred score, and expression (4) reduces to the likelihood of 

SeqEM. When β0 = 0, β1 = −log(10)=10 and ε is small, expression (2) is approximately 

equal to (1), and our model reduces to the Bayesian genotyper implemented in GATK. 

However, our likelihood fully exploits the read data and the phred scores, both of which 

could improve genotype-calling accuracy. Note that it is not necessary to filter out low-

quality alleles, which still provide some information about θ. Because our model uses the 

read call data to adjust the relationship between phred scores and the error rate at each locus, 

it can be considered as a kind of phred score recalibration, except that the recalibration is 

done simultaneously with fitting other parameters to best fit the observed data. Like other 

multi-sample calling methods, our method also estimates the genotype frequencies and 

regression parameters by utilizing information across all individuals in the sample.

We may obtain the maximum likelihood estimate (MLE) of θ and π by maximizing the 

likelihood (4) via the EM algorithm described in the Appendix. However, if a locus has little 

variability (e.g., a monomorphic locus, singleton or doubleton) so that there are very few 

reads for the minor allele in the study sample, the MLE of β1 based on (4) may be unreliable 

[Firth, 1993]. To improve stability, we propose to modify the MLE of β1 by leveraging 

information from other loci. Specifically, we introduce a Gamma distribution Γ(−β1; κ, ϕ) as 

a penalty (or prior) for −β1, where κ and ϕ are the shape and scale hyper-parameters, 

respectively. We first use the method of moments to obtain estimates κ ̂and ϕ ̂based on the 

MLEs of β1 from a set of loci that are either all or mostly estimated to be monomorphic; for 

loci that are estimated to be monomorphic, all reads for the minor allele can be treated as 

errors, and ordinary logistic regression can be used to estimate θ at each locus. For genome- 

or exome-wide data, any region can be used as most loci are estimated to be monomorphic; 

the full EM algorithm only needs to be run for the few loci that are estimated to be 

polymorphic. We then obtain the maximum penalized likelihood estimators (MPLEs) by 

maximizing the penalized likelihood

(5)
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Note that the MPLEs are asymptotically equivalent to the MLEs, as the Gamma penalty 

becomes negligible when the sample size n grows.

Denote the MPLEs by π̂ and θ̂. We can estimate the probability distribution of the true 

genotype Gi for the i-th individual from their read count data Ti and Ri and their phred 

scores Qi using the formula

(6)

for g = 0, 1 and 2. At a single locus, genotype calls can be made by assigning each 

individual the genotype that their data assigns the highest estimated probability. Individuals 

with no read covering the locus are not assigned any genotype. Because the proposed 

method incorporates the phred scores and uses the EM algorithm, we refer to it as PhredEM.

The majority of loci in the human genome are monomorphic [The International SNP Map 

Working Group, 2011], and are as such of little interest in downstream analyses. To avoid 

running the full PhredEM algorithm at loci that are estimated to be monomorphic, we 

propose a simple and computationally efficient algorithm to identify and ‘screen out’ these 

loci; an earlier version of this screening algorithm that does not incorporate phred scores was 

first proposed in Hu et al. [2016]. We assume HWE holds, as loci that might be called 

monomorphic must have either zero or extremely low MAFs. Then π contains only a single 

parameter π. We see that formula (6) assigns all mass to Gi = 0 when π ̂= 0; thus loci with π̂ 

= 0 would be called monomorphic if PhredEM was applied to obtain π̂. To determine 

whether π̂ = 0 without fitting PhredEM, let pl*(π) denote the profile likelihood for π, 

namely,

We show in the Appendix that pl*(π) is a concave function of π, so that a negative value for 

the derivative of pl*(π) at π = 0 implies π̂ = 0; in other words, we should screen out loci at 

which the derivative of pl*(π) at π = 0 is negative. At π = 0, we can easily evaluate this 

derivative, because the part Lo(θ, π) reduces to that of a logistic regression model in which 

we assign an outcome variable Yik = 1 to a minor allele read and Yik = 0 to a major allele 

read and regress Yik on Qik. Since our screening algorithm only involves fitting a standard 

logistic regression model plus a penalty term to solve for θ and calculating a derivative 

function, it can significantly reduce the computing time that is needed to run PhredEM on 

whole exome or genome data.

A simple variant of the screening algorithm can also be used when estimating the parameters 

κ and ϕ for the gamma penalty term. If we first apply the screening algorithm using the 

unpenalized profile likelihood pl(π) = maxθ log Lo(θ, π), we can easily find all loci having 

π ̂= 0 without running the full EM algorithm to maximize (4) at all loci. If the MLE of π is 
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zero, then β0 and β1 can be estimated using standard logistic regression since all minor allele 

reads are errors. The few loci for which π̂ > 0 can either be excluded, or the full EM 

algorithm can be used to estimate β0 and β1.

Our approach does not use LD information. It is well known that use of LD patterns can 

substantially improve genotype calling for variants having moderate or high minor allele 

frequencies [Nielsen et al., 2011]. However, we can easily incorporate LD information into 

our approach by calculating the genotype likelihood at each locus using (3), evaluated at the 

MPLE, and then using this genotype likelihood as input to Beagle [Browning and Yu, 2009].

RESULTS

SIMULATION STUDIES

We conducted simulation studies to assess the performance of PhredEM and PhredEM 

followed by Beagle (PB), relative to SeqEM and SeqEM followed by Beagle (SB). We 

considered a sample size of 1,000 (results based on a sample size of 200 are reported in 

Supplemental Figure S1 and Supplemental Tables S1 and S2). In each replicate, for each 

individual we first generated a pair of haplotypes of European ancestry having length 100 kb 

using the coalescent simulator cosi [Schaffner et al., 2005]. We then generated sequencing 

reads with fixed length 100 bp that mimic reads from the Illumina HiSeq 2000 single-end 

sequencing platform [Minoche et al., 2011]. Specifically, for each read from an individual, 

we randomly selected one of the two haplotypes, randomly picked the starting position of 

the read along the haplotype, and simulated 100 phred scores from the empirical distribution 

observed in the UK10K data (Figure 2[a]). To incorporate the fact that base-calling errors 

occur at the end of the reads more frequently than at the beginning [Minoche et al., 2011], 

we rear-ranged the phred scores so that the last 15 bases of the read had the 15 lowest scores 

in a descending order; the first 85 bases thus received a random permutation of the 

remaining scores. Then, the base calls of the read were generated based on the underlying 

haplotype and error rates calculated from equation (1); we used because it is more favorable 

to GATK than to our method. For each individual, we drew the number of reads to be 

generated from a negative-binomial distribution with mean 1, 000 × c so as to achieve a pre-

specified average read depth c. We considered three average depths: 6x, 10x, and 30x. In 

applying PhredEM and SeqEM, we first called genotypes with HWE and, if the estimated 

MAF was greater than 5%, we re-called genotypes with HWD (starting at parameter values 

obtained from HWE). The hyper-parameters for the Gamma prior of β1 were estimated 

based on the MLEs of β1 from the 100k loci in each replicate. All results reported here were 

based on 200 replicates of the entire process.

We first assessed the performance of PhredEM, SeqEM, PB, and SB in truly monomorphic 

loci. A monomorphic locus is mis-called if there is at least one call of the minor allele in the 

study sample. Figure 1(a) shows that, with or without LD refinement, PhredEM made fewer 

mistakes among monomorphic loci than SeqEM at all depths. In addition, LD-refinement 

has negligible improvement upon PhredEM at monomorphic loci.

We then compared the four methods in calling genotypes for rare variants. We grouped 

variants into four categories based on the true minor allele counts (MACs): 1, [2, 10], [11, 
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20], and [21, 100], where MAC = 1 corresponds to singletons. As shown in Table I, the 

overall number of mis-called genotypes obtained by PhredEM was less than that by SeqEM 

in all scenarios; for most cases, PhredEM reduced by almost one half the number of mis-

called genotypes compared with SeqEM. For instance, when the MAC was between 11 and 

20 and depth was 6x, SeqEM mis-called an average of 2.96 genotypes among 997 

individuals whereas PhredEM mis-called 1.58. As expected, both methods became more 

accurate as the average read depth increased. Nevertheless, the performance of PhredEM 

was noticeably better than SeqEM at depth as high as 30x. We further examined the mis-

called genotypes stratified by the underlying genotype. In both the strata of homozygotes (G 

= 0) and heterozygotes (G = 1), PhredEM mis-called fewer genotypes than SeqEM. 

Applying Beagle after PhredEM substantially improved the performance of PhredEM alone, 

except for singletons at which the two methods have comparable mis-call rates. The 

superiority of PhredEM over SeqEM remained after applying Beagle to both methods.

For common variants, we stratified the results based on five MAF intervals. As shown in 

Table II, PhredEM outperformed SeqEM in both the overall and stratified number mis-

called. Overall, PhredEM correctly called 3–4 more genotypes than SeqEM at depth ≤ 10x. 

The number mis-called by PhredEM increases as the MAF increases because the 

information in the phred scores is not used when G = 1, which can be seen from (3). 

Furthermore, minor allele homozygotes are more likely to be mis-called than major allele 

homozygotes due to the smaller prior probability of the former. As expected, applying 

Beagle after PhredEM substantially improved genotype calling by PhredEM alone for 

common variants, and the improvement was most profound for heterozygotes (G = 1). This 

marked improvement was also shown in Supplemental Table S3 where the error rates are 

reported given the called variants instead of the true variants as in Table II.

We further examined the phred scores at loci having genotypes that are called differently by 

PhredEM and SeqEM. In Table III, we displayed the average phred score associated with 

major and minor alleles at such loci, stratified by the underlying genotype (G) and genotypes 

called by PhredEM (GP) and SeqEM (GS). At loci with (GP, GS) = (0, 1), regardless of the 

value of G, the major alleles tend to have high phred scores whereas the minor alleles tend to 

have low scores, explaining why PhredEM called these loci major allele homozygotes; the 

average phred scores for minor alleles are consistently lower under G = 0 than that under G 

= 1, because in the former case the minor alleles are all errors and in the latter case the 

minor alleles are a mixture of errors and true alleles. Similarly, for loci with (GP, GS) = (2, 

1), the major alleles tend to have low scores, which are even lower under G = 2 than those 

under G = 1. In other cases when PhredEM called heterozygous genotypes, we observe high 

average phred scores for both major and minor alleles. These patterns of phred scores 

confirm that PhredEM worked as expected. While the results in Table III pertain to common 

variants, those for rare variants are similar and are shown in Supplemental Table S4.

UK10K SCOOP DATA

To confirm that the results from our simulations hold when analyzing real sequencing data, 

we analyzed data from the Severe Childhood Onset Obesity Project (SCOOP) cohort 

sequenced as part of the UK10K project. The sequenced SCOOP cohort consists of 784 UK 
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Caucasian patients with severe early onset obesity, who were whole-exome sequenced using 

the Illumina HiSeq 2000 platform with an average depth of ~60x. We first used SAMtools to 

generate pileup files from BAM files, filtering out reads that are PCR duplicates, with 

mapping score ≤ 30, or with improperly mapped mates. From the pileup files, we extracted 

read count data and phred scores. The distribution of the phred scores is shown in Figure 

2(a).

Using the SCOOP sequencing data, we checked the fit of the logistic regression model in 

(2). First, we applied our screening algorithm to identify loci that were estimated to be 

monomorphic (i.e., π̂ = 0). At such loci, we could reliably treat all minor allele reads as 

errors. Assigning Y = 1 and 0 for minor allele reads and major allele reads, respectively, we 

can determine the relationship between Pr(Y = 1) and the corresponding phred scores Q. To 

create a subset of such data that is computationally manageable, we randomly selected 1,000 

monomorphic loci from each of the 22 chromosomes and randomly picked one individual 

from each locus, forming a dataset of 22,000 (Y, Q) pairs. Then, we fit the logistic regression 

model in [2] and, as a gold standard, fit a smooth spline function of phred scores using the 

generalized additive model (GAM) [Wood, 2006]. Figure 2(b) shows the fitted curves and 

pointwise 95% confidence intervals from the two models. The logistic regression fit always 

fell within the 95% confidence region of the GAM. Thus, we conclude that over the range of 

phred scores found in real data, the logistic model adequately describes the relationship 

between phred scores and base-calling error rates well.

To facilitate the evaluation of PhredEM and especially the comparison with SeqEM, we first 

selected a set of genotypes that can serve as the gold standard. Specifically, we downloaded 

from the UK10K website the VCF files for the SCOOP cohort, which contained genotypes 

called by SAMtools and filtered by GATK. In addition, we excluded a variant if its average 

depth across samples is less than 20. We excluded a genotype whose genotype likelihood (on 

the phred scale) was ≤ 20 (i.e., nominal genotyping error rate ≥ 0.01) and excluded a variant 

completely if it has more than 20% of genotypes with likelihood ≤ 20. These exclusion 

criteria ensured that all selected genotypes were called with particularly high quality. We 

thus refer to these genotypes as ‘true’ genotypes. After applying the exclusion criteria, there 

remain 416,402 loci in the entire exome. Since the loci with true genotypes were selected 

towards having high read depth, both PhredEM and SeqEM would perform well if applied to 

the original data. To create sequencing data with low or median depth, we then subsampled 

the observed reads with equal probability.

We based the estimation of hyper-parameters κ and ϕ on 100k random loci that were reliably 

estimated to be monomorphic (i.e., with coverage > 60x and the MLE of the MAF π is 

zero); these 100k loci mimic real sequencing data in which the vast majority of loci are 

monomorphic whereas the 416,402 loci extracted from the VCF files are mostly 

polymorphic. We then applied PhredEM and SeqEM to call genotypes assuming HWE at 

first and, if the estimated MAF was over 5%, we re-called genotypes assuming HWD. The 

computation time of PhredEM to call the subsampled UK10K data depends on the average 

depth. For example, it took ~5 h on an Intel Xeon E5-2660 machine with 2.60 GHz and 6.4 

GB memory to call genotypes at the 416,402 loci in the 6x dataset.
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The numbers of mis-called genotypes, averaged over all variants on chromosomes 1–22 and 

stratified by MAF ranges, are displayed in Table IV. For rare variants (MAF ≤ 0.05), the 

pattern in the number of mis-called genotypes by PhredEM and SeqEM agreed well with the 

results in the simulation section, with PhredEM generally producing more accurate genotype 

calls. The biggest difference occurred when the variants were relatively rare, i.e., MAF ∈ 
(0.001, 0.01]; when the average read depth was ~6x, PhredEM generated an average of 1.9 

more correct genotypes out of 757 individuals than SeqEM for loci with MAFs in this range. 

For common variants (MAF > 0.05), the differences between the two methods were smaller, 

possibly because phred scores at heterozygous loci are not informative; this also explains the 

increase in genotype-calling error rates with increasing MAF found in Table IV. As seen in 

the simulation results, applying Beagle after PhredEM improved the performance of 

PhredEM alone for all variants except for the very rare ones (e.g., MAF ∈ (0, 0.001]). The 

phred scores at loci with differently called genotypes by PhredEM and SeqEM are 

summarized in Supplemental Table S5. These results exhibited the same patterns seen in the 

simulated data. The mis-call rate at monomorphic loci (Figure 1 [b]) also show the same 

pattern seen in the simulated data (Figure 1 [a]).

To gain more insights into the mechanisms of PhredEM and SeqEM, we listed in Table V 

the raw data at eight loci (from the subsampled dataset at 6x) that were called differently by 

PhredEM and SeqEM. Generally, base calls with low phred score are error-prone, and 

PhredEM treats these unreliable calls as likely errors when calling the genotype. By contrast, 

SeqEM depends heavily on the proportion of minor allele reads among the total reads and 

ignores the quality measure of each allele. For example, at Locus 1, the six major alleles 

were of high quality while the two minor alleles were likely to be errors. In this case, 

PhredEM distinguishes between alleles of different qualities and produced the correct 

genotype but SeqEM, which cannot account for low quality alleles, calls the incorrect 

genotype.

1000 GENOMES CEU DATA

To compare PhredEM to GATK, we considered data from the CEU samples in the 1000 

Genomes project. It is hard to make this comparison using simulated data, since it is difficult 

to construct BAM files for the simulated data, and because the 100KB region we simulated 

is to short to train the BQSR model used in GATK. It is also hard to make this comparison 

using the UK10K SCOOP data, as BAM files for the subsampled data are not easily 

available. In the CEU cohort, 99 unrelated individuals were whole-genome sequenced with 

an average depth of ~7.3x. We adopted the same filters for the reads as in the analysis of 

UK10K SCOOP data. As the 99 CEU samples have also been genotyped on the Illumina 

Omni 2.5 array, we treated these array genotypes as the gold standard. We excluded array 

SNPs at which ≥5% of the samples have missing array genotypes or are not covered by any 

reads. We also removed 11,119 array SNPs where the genotypes called using sequencing 

data for all three methods (SeqEM, PhredEM and GATK) indicated a MAF that differed by 

more than 0.2 from the MAF based on the array genotypes. After these exclusions, there 

were 1,842,422 array SNPs available for comparison.
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We estimated the hyper-parameters for PhredEM based on a random subset of 100k array 

SNPs that are called as monomorphic using the genotype array in the 99 CEU cohort. In 

addition to PhredEM and SeqEM, we also applied GATK, using the base quality score 

recalibration step implemented in BQSR (GATK version 3.6) and a genotype calling step by 

UnifiedGenotyper with default options. It took 3.4 days for BQSR and 1.3 days for 

UnifiedGenotyper to run; in contrast, it took a total of 1.7 days for PhredEM to call the same 

set of genotypes.

PhredEM performed better than SeqEM and GATK in general. Figure 1(c) shows that, at 

monomorphic loci (i.e., no polymorphism in the array genotypes of the 99 samples), 

PhredEM has the smallest mis-call rate with or without LD refinement whereas GATK has 

the highest mis-call rate. Table VI displays the numbers of mis-called genotypes at 

polymorphic loci, stratified by the ‘true’ MAFs (i.e., based on array genotypes). In most 

strata, the numbers for PhredEM are smaller than that for GATK, with or without Beagle. 

The results stratified on the estimated MAF by each method are presented in Table S6, 

which shows similar patterns. All results consistently indicate that GATK tends to call too 

many heterozygotes at rare variants and monomorphic loci. Table S7 compares the 

sensitivity (i.e., the probability of calling a minor allele given a minor allele is truly present) 

and specificity (probability of calling the major allele given the major allele is truly present) 

for the methods we consider in Table S7. We find that PhredEM with the LD refinement has 

the highest specificity (although the differences are tiny, they are significant and when 

amplified to the genome-wide scale can represent a meaningful difference). PhredEM with 

LD refinement has the best sensitivity at very low MAF by a considerable amount (0.828, 

compared to 0.748 for GATK with LD refinement); for higher MAFs, GATK with LD 

refinement outperforms PhredEM with LD refinement by smaller amounts (e.g., 0.954 for 

PhredEM with LD vs. 0.958 for GATK with LD). When evaluating the importance of the 

differences reported in Table S7, it is worth noting that the number of truly polymorphic 

alleles with low MAF is much smaller than the number of monomorphic alleles, so that a 

small difference in specificity results in more mis-calls than a larger difference in sensitivity. 

This explains how GATK with LD can have a higher sensitivity but a lower accuracy as 

reported in Table VI.

DISCUSSION

We have developed a phred-score-informed genotype-calling approach for NGS studies, 

called PhredEM. We also proposed a simple and computationally efficient screening 

algorithm to identify loci that would be called as monomorphic. PhredEM improves the 

accuracy of genotype-calling by estimating base-calling errors from both read data and 

phred scores, and by using all sequencing reads available without setting a phred-score-

based quality threshold. PhredEM is closely related to the SeqEM approach, which can be 

viewed as a special case of PhredEM. We showed that the logistic model relating phred 

score to base-calling error rate used in PhredEM fits real sequencing data well. The software 

program implementing PhredEM, also called PhredEM, is freely available at http://

web1.sph.emory.edu/users/yhu30/software.html. The webpage also contains a link to utility 

programs that process raw BAM files for use as inputs to PhredEM.
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In our logistic regression model (2), the phred score is the only predictor for the base-calling 

error. Other important predictors for base-calling quality could also be included. One 

interesting factor is the position in the read [Brockman et al., 2008], although it is unclear 

whether this has an independent effect once the phred score is accounted for. We did not 

consider the mapping score as a possible covariate because there is little variability in 

mapping scores [Li et al., 2008] (see Supplemental Figure S2). However, we recommend 

that PhredEM should be applied after excluding alignments with mapping scores less than 

30.

Our approach is similar in spirit to GATK with BQSR because we allow the relationship 

between error and phred score to be determined by fit to the data, but our approach is more 

accurate and computationally more tractable. Because we allow a separate set of error 

parameters at each locus, we automatically account for any covariates that are locus-

dependent such as the actual alleles at each locus. We could also consider adding other 

predictors of error that are included in BQSR that vary across reads.

We recommend using PhredEM with the HWE assumption first, because most loci have low 

MAFs and HWE has a minimal effect for them. If the estimated MAF is greater than 5%, a 

second pass of PhredEM could easily be made using the model assuming HWD, which is 

more robust. Our numerical studies (not shown) suggest that at medium or high read depth 

(≥10x), the estimated genotype frequencies based on the calls from PhredEM converged 

rapidly to their true values with increasing sample size even when assuming HWD.

PhredEM is based on several simplifying assumptions. First, the sample should consist of 

independent, unrelated individuals; this is essential to the likelihood in expression (4). A 

version of PhredEM could be constructed for trio data by modeling the joint genotypes of 

parents and offspring, for example, using the conditional-on-parental genotypes (CPG) 

approach of Schaid and Sommer [1993]. We also assume that errors are symmetric, i.e. that 

the probability of a read for the major allele being mis-called as the minor allele is the same 

as the probability of the minor allele being mis-called as the major allele. Further, PhredEM 

assumes that all variants are biallelic. The biallelic assumption is reasonable because only a 

small fraction of SNPs have been verified to carry three or more alleles [Hodgkinson and 

Eyre-Walker, 2010]. In analyzing the UK10K and 1000 Genomes data, we deleted in 

advance all calls for bases that differed from the two most frequent bases at every locus.

LD information is helpful in identifying monomorphic loci and calling genotypes for both 

rare and common variants. Therefore, we recommend always using Beagle in conjunction 

with PhredEM when calling genotypes for NGS data.

In summary, we developed PhredEM, an improved genotype caller which reduces the 

genotype-calling errors for NGS data. We also proposed a simple and computationally 

inexpensive algorithm for screening out loci that are estimated to be monomorphic. We 

showed in simulations that the proposed approach generates fewer incorrect calls than 

SeqEM regardless of the average read depth and sample size. Using the UK10K and 1000 

Genomes sequencing data, we demonstrated the capability of PhredEM to improve the 

genotype-calling accuracy over SeqEM and GATK in real sequencing data.
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APPENDIX

EM ALGORITHM

In the EM algorithm, Gi (i = 1, …, n) is treated as missing. The complete-data log-likelihood 

has the form

Let θ(k) and π(k) be the parameter values after the kth iteration. In the E-step of the (k + 1)th 

iteration, we evaluate E{I(Gi = g)|Ri, Ti,Qi} for g = 0, 1, 2, which can be shown to be
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In the M-step, we maximize lc(θ,π) with I(Gi = g) replaced by . Specifically, under 

HWE we update π by a closed form , or under HWD we 

update π by the same π(k+1) and update f by 

. We use a one-step Newton-Raphson 

iteration to update θ. We iterate between the E-step and M-step until the changes in the 

parameter estimates are negligible.

PROOF OF CONCAVITY OF pl*(π)

First, we prove that, for fixed θ, the function h(π) = log{Σg=0,1,2 Pθ(R|g, T,Q)Pπ(g)} is 

concave. Under HWE, we write h(π) = log{aπ2 + b(1 − π)2 + 2cπ(1 − π)}, where a = Pθ(R|

G = 2, T,Q), b = Pθ(R|G = 0, T,Q), and c = (0.5)T. The second derivative of h(π) is

Because , we obtain h″(π) ≤ 0 and thus h(π) is a 

concave function of π.

Because the sum of concave functions is still concave, log Lo(θ, π) is concave in π for fixed 

θ. It follows that  is also concave in π for fixed θ. 

Because the pointwise supremum over θ preserves the concavity [Boyd and Vandenberghe, 

2004], pl*(π) is concave.
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Figure 1. 
Mis-call rates at monomorphic loci in the analysis of (a) the simulated data, (b) the UK10K 

SCOOP data, and (c) the 1000 Genomes CEU data. P and S represent PhredEM and SeqEM. 

PB, SB, and GATK-B represent PhredEM, SeqEM, and GATK, each followed by Beagle.
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Figure 2. 
UK10K SCOOP data. (a) Distribution of phred scores. (b) Logistic regression model and 

generalized additive model (GAM) fit to the sequencing data at loci that were identified as 

monomorphic.
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