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Abstract

Natural selectionactingonsynonymousmutations inprotein-codinggenes influencesgenomecompositionandevolution. Inviruses,

introducing synonymous mutations in genes encoding structural proteins can drastically reduce viral growth, providing a means to

generate potent, live-attenuated vaccine candidates. However, an improved understanding of what compositional features are

under selection and how combinations of synonymous mutations affect viral growth is needed to predictably attenuate viruses and

make them resistant to reversion. We systematically recoded all nonoverlapping genes of the bacteriophage UX174 with codons

rarely used in its Escherichia coli host. The fitness of recombinant viruses decreases as additional deoptimizing mutations are made to

the genome, although not always linearly, and not consistently across genes. Combining deoptimizing mutations may reduce viral

fitness more or less than expected from the effect size of the constituent mutations and we point out difficulties in untangling

correlated compositional features. We test our model by optimizing the same genes and find that the relationship between codon

usage and fitness does not hold for optimization, suggesting that wild-type UX174 is at a fitness optimum. This work highlights the

needtobetterunderstandhowselectionactsonpatternsof synonymouscodonusageacross thegenomeandprovidesaconvenient

system to investigate the genetic determinants of virulence.

Key words: bacteriophage, epistasis, fitness landscape, synthetic biology, live-attenuated vaccine, codon bias.

Significance

Attenuating viruses by inserting many synonymous, deleterious mutations offers a means to make potent and

reversion-resistant vaccines. We investigate where in a viral genome attenuating mutations should be made and

how they should be combined by generating a combinatorial network of codon deoptimized bacteriophage strains.

By analyzing the effects of genome editing using mathematical models of epistasis, we find that fitness effects differ

between genes in how these deleterious mutations combine. These results show how synonymous mutations can have

large effects and will help researchers design synonymously recoded, live-attenuated vaccines.
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Introduction

Synonymous Compositional Features of Viral Genomes

The unequal use of synonymous codons is known as codon

usage bias. Codon biases are the result of an interaction be-

tween mutational and selective pressures (Bulmer 1991; Long

et al. 2018) and are observed in organisms across the tree of

life (Grantham et al. 1980; Ikemura 1985; Hershberg and

Petrov 2008). A commonly accepted explanation for why

organisms do not evenly use synonymous codons is that the

rate of translation (i.e., the amount of proteins being made) is

affected by the abundance of tRNAs that pair with codons on

a strand of mRNA (Ikemura 1985). Codons that result in the

optimal amount of protein then confer a selective advantage.

However, there are many other compositional features within

the DNA sequences of protein-coding genes upon which se-

lection acts and understanding what features are most influ-

ential on selection is a complicated endeavor. These features

include: the genic GC content (Raghavan et al. 2012; Kelkar

et al. 2015; Newman et al. 2016), CpG or TpA dinucleotides

(Burns et al. 2009; Atkinson et al. 2014; Gaunt et al. 2016;

Fros et al. 2017; Giallonardo et al. 2017), codon pairs

(Gutman and Hatfield 1989; Irwin et al. 1995; Tats et al.

2008; Gamble et al. 2016), endonuclease recognition sites

(Karlin et al. 1992; Levin 1993; Rocha et al. 2001; Ple�ska

and Guet 2017), intron splicing motifs (C�aceres and Hurst

2013), mRNA folding stability (Kudla et al. 2009; Presnyak

et al. 2015; Bo€el et al. 2016; Kelsic et al. 2016; Burkhardt

et al. 2017; Jack et al. 2019), ribosomal pausing sites (Ponnala

2010; Li et al. 2012), concentration of unpreferred codons at

the 50 ends of transcripts (Chen and Inouye 1990; Tuller et al.

2010; Goodman et al. 2013), autocorrelation of codons on

transcripts (Cannarozzi et al. 2010), and capacity of codon

order to influence cotranslational folding of proteins (Zhang

et al. 2009; Yu et al. 2015). Natural selection acting on one or

more of these features can favor the use of certain codons

over other synonymous ones. The strength of selection acting

on these synonymous codons can be quite strong (Agashe

et al. 2016; Lawrie et al. 2013; Bailey et al. 2014; Knöppel

et al. 2016; Machado et al. 2017; Kristofich et al. 2018) and

some studies compared the relative impact of altering differ-

ent features (e.g., codon bias vs. mRNA folding). Kudla et al.

(2009) generated 154 versions of green fluorescent protein

that varied only at synonymous sites and found that mRNA

folding around the ribosomal binding site to be most predic-

tive of exogenous green fluorescent protein expression. In an

analysis of 6,348 cloned and expressed genes, Bo€el et al.

(2016) found mRNA folding around the translation initiation

site to be the second most important predictor of expression

level, behind overall codon usage.

As viruses must utilize their hosts’ cellular machinery, there

is an expectation that virus genomes are enriched for host-

preferred codons to maximize production of viral proteins.

This appears to be only partially true. Many viral genomes

do contain more host-preferred codons than expected by

chance, especially for genes encoding viral structural proteins

of dsDNA phages (Carbone 2008; Lucks et al. 2008;

Chithambaram et al. 2014). However, many viral genes are

not enriched in host-preferred codons. Sometimes unpre-

ferred codons are used to temporally regulate viral gene ex-

pression, potentially to avoid host immune responses (Shin

et al. 2015). Other virus genomes appear to have little pref-

erence for codons abundant in the host genome. For in-

stance, Lucks et al. (2008) found that the majority of 74

bacteriophage genomes show no significant preference for

host-preferred codons. Similar discordance between host and

viral codon usage patterns are observed in other studies

(Kunisawa 1992; Kunisawa et al. 1998; Sau et al. 2005).

This discordance could be caused by insufficient selection

on codon usage, host–phage relationships that are too

short-lived for selection to fine-tune codon usage in the

phage, or an inadequate understanding of what features

are being selected for. Synonymously editing viral genomes

provide an opportunity to learn about viral adaptation to

hosts.

Vaccine Development by Synonymous Recoding

Empirically developed (e.g., serial passage viral adaptation)

vaccines have saved millions of lives over the last century,

yet methodological improvements make rationally designed,

recombinant vaccines attractive because they can be rapidly

produced and specifically engineered for safety and effective-

ness (Lim et al. 2006; Rueckert and Guzm�an 2012; Nabel

2013; Minor 2015; Ramezanpour et al. 2016). One proposed

method of generating recombinant vaccines involves making

many synonymous, attenuating changes to viral genomes,

that is, “deoptimizing” the viral genes (Mueller et al. 2010).

The recombinant vaccine can be made by either editing the

genome of the wild-type virus or by generating a viral genome

entirely from synthesized nucleic acids. Synonymous deoptim-

ization offers a potentially efficient and effective way of mak-

ing vaccines: the protein sequences of recoded vaccines are

identical to their target viruses, they replicate in their host to

provide prolonged exposure to the antigen, and the introduc-

tion of many synonymous changes presumably assures evo-

lutionary robustness, preventing the evolution of virulence by

reversion.

Poliovirus serves as a very good example for the synony-

mous recoding strategy. Development of a robust, live-

attenuated poliovirus vaccine is desired because in some areas

on Earth wild poliovirus and the emergent vaccine-derived

polioviruses (cVDPVs) continue to cause concern over the re-

surgence of poliomyelitis (Cann et al. 1984; Kew 2012;

Famulare et al. 2016; Jorba et al. 2016). A synthetic poliovirus

was assembled in 2002 (Cello et al. 2002), codon deoptimized

in 2006 (Burns et al. 2006; Mueller et al. 2006), codon pair

deoptimized in 2008 (Coleman et al. 2008), and dinucleotide
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deoptimized in 2009 (Burns et al. 2009). In all cases, attenu-

ated viruses were produced by recoding the P1/capsid region

of the genome. In vitro, these viruses replicate slower and

produce lower viral titers than wild-type virus. In vivo, the

codon pair deoptimized strain protected mice against chal-

lenge by wild poliovirus (Coleman et al. 2008). Although the

mechanism of attenuation is not yet fully elucidated, reduced

protein expression of the deoptimized genes is observed

(Burns et al. 2006, 2009; Mueller et al. 2006; Coleman

et al. 2008). These deoptimized poliovirus constructs are ge-

netically stable and remain nonvirulent for up to 25 passages

in cell culture (Burns et al. 2006; Coleman et al. 2008).

The apparent success of building poliovirus vaccine candi-

dates using synonymous recoding led to similar attempts to

develop vaccines for influenza, adeno-associated, human im-

munodeficiency, papilloma, chikungunya, respiratory syncy-

tial, simian immunodeficiency, porcine reproductive and

respiratory syndrome, echovirus 7, tick-borne encephalitis, ve-

sicular stomatitis, dengue, T7, Lassa, adeno, and swine fever

viruses (reviewed in Mart�ınez et al. 2016). The most common

method for synonymously deoptimizing viruses is recoding

wild-type genes with increased proportions of unpreferred

codons (Mueller et al. 2006; Luan et al. 2009; Bull et al.

2012; Cladel et al. 2013; Meng et al. 2014; Nogales et al.

2014; Cheng et al. 2015, 2017; Rostad et al. 2016;

Velazquez-Salinas et al. 2016) although other methods of

recoding have been successful as well. For example, viral fit-

ness was decreased when synonymous substitutions were

randomly introduced (Nougairede et al. 2013; Fabritus et al.

2015, 2016), when codons were replaced by those infre-

quently used in viral (not host) genes (Burns et al. 2006;

Meng et al. 2014), when the proportion of optimal codons

was “increased” (Cladel et al. 2013; Vabret et al. 2014; Liang

et al. 2017; Villanueva et al. 2016), or when codons were

exchanged for codons one substitution away from a transla-

tional termination codon (Moratorio et al. 2017).

No Predictive Understanding of Synonymous Recoding

Although it is clear that synonymous recoding causes attenu-

ation and the strategy holds promise for vaccine develop-

ment, we lack a predictive understanding of the process.

Part of this results from the biological complexity and variation

in the systems involved. In many cases, the fitness impact of

recoding is cell-line dependent (Martrus et al. 2013;

Nougairede et al. 2013; Le Nou€en et al. 2014; Meng et al.

2014; Cheng et al. 2015; Shen et al. 2015; Rostad et al. 2016;

Velazquez-Salinas et al. 2016), is inconsistent between in vivo

and in vitro experiments (Shen et al. 2015; Velazquez-Salinas

et al. 2016; Cheng et al. 2017), or is temporally variable

(Villanueva et al. 2016). Another obstacle is the nature of

the genetic code itself. It is generally challenging to manipu-

late one synonymous feature of the genome and hold all the

others fixed. For example, when codons are shuffled to

change codon pair frequency, mRNA stability may be af-

fected, or when codons are deoptimized, codon pair frequen-

cies also change. This makes it difficult to attribute the cause

of fitness decreases to one factor (e.g., codon usage adapta-

tion), especially when the features are correlated. As we do

here, most studies have focused on manipulating a single

compositional feature of the genome and measuring its im-

pact on fitness. Standardizing recoding methodologies and

features measured across studies would greatly improve our

understanding of the factors that drive fitness decreases and

other phenotypic effects caused by synonymous

deoptimization.

Despite the optimistic results achieved in studies on synon-

ymous recoding to date, basic questions underlying the

method itself remain unanswered (Mart�ınez et al. 2016).

What is the best strategy to perform synonymous recoding

to achieve attenuation? Can generalities be made about the

extent of recoding and the degree of attenuation—or will the

biological details and idiosyncrasies of each system preclude

this? What is the mechanistic cause of attenuation from syn-

onymous recoding? Are viruses recoded this way robust

against fitness recovery? Is it more effective to maximally

recode less of the genome (say one gene), or make the recod-

ing less severe, but distribute it across the genome? As an

increasing proportion of the genome is recoded, or equiva-

lently, as multiple recoded parts are combined, does attenu-

ation respond in an additive or nonadditive manner? A deeper

understanding of genome evolution and synonymous se-

quence choice is required to answer these questions.

In this article, we focus on two issues related to the codon

deoptimization of viruses. First, we seek to compare the fit-

ness effects of mutating different genes in the same virus.

Second, we seek to understand how, when attenuating

mutations are combined, they interact to affect fitness (i.e.,

epistasis of deleterious mutations). The nature of epistasis

among fragments is crucial for modeling fitness effects: if

mutational effects combine synergistically (i.e., the combined

fitness being even lower than predicted from the observed

individual effects), the range in the number of mutations

needed to achieve the targeted attenuation level would

tend to be reduced (fig. 1). Conversely, if they combine an-

tagonistically (i.e., the combination of mutations are less at-

tenuated than predicted from individual effects), it may be

easier to achieve a target attenuation level, but there may

be a limit to how much attenuation is possible. If mutations,

in combination, display sign epistasis, irregular magnitude

epistasis, or even vary between synergistic and antagonistic

epistasis, it will suggest the underlying process is complex and

difficult to predict and generalize. To evaluate these issues,

herein, we have recoded all the nonoverlapping genes of the

bacteriophage UX174 in fragments, combined recoded frag-

ments in all possible within-gene permutations, and measured

the fitness of the resulting recoded bacteriophage.
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Results

Synonymously Deoptimizing UX174 Genes

UX174 is a bacteriophage with a 5.4-kb single-stranded DNA

genome containing 11 genes (fig. 2a and table 1). We mea-

sured codon usage bias of UX174 genes using the codon

adaptation index (CAI). CAI is a gene-level statistic running

from zero to one that summarizes the extent that codons in a

gene are used, rarely (CAI nearer 0) or commonly (CAI nearer

1) among highly expressed host genes (Sharp and Li 1987).

We found that most UX174 genes are not particularly

enriched for preferred Escherichia coli codons (fig. 2b). Only

gene J has a CAI value in the upper quartile of E. coli genes.

Gene K uses the most unpreferred codons and has a CAI

value near the lowest value observed for genes in the E. coli

genome. Genes J and K were the only wild-type UX174

genes found to be significantly different from simulated genes

(Bourret et al. 2019) of similar length using the host’s codon

usage preferences (P< 0.01, see Supplementary Material on-

line). All other UX174 genes have CAI values within the range

of most E. coli protein-coding genes. UX174 structural pro-

teins (B, D, F, G, H, J) have higher CAI values than

nonstructural genes (A, C, E, K), suggesting that high expres-

sion of these proteins is important for viral fitness. When we

computationally deoptimized entire UX174 genes (i.e.,

recoded them to use the least-preferred codons throughout),

the resulting CAI values were in the lower tail or even below

the tail for all E. coli genes (fig. 2 and see Supplementary

Material online). These reductions in CAI were the result of

changing between 42% (20/48 codons for gene C) and 75%

(24/32 codons for gene J) of the codons of a gene, corre-

sponding to 15–32% of its base pairs (supplementary table

S1, Supplementary Material online). All the other UX174

genes fall within this range of recoding (42–75% of codons

changed). We calculated additional metrics of codon adapta-

tion including an alternative version of CAI (Xia 2007), tRNA

adaptation index: tAI (dos Reis et al. 2004), index of transla-

tion elongation: ITE (Xia 2015), relative codon adaptation: RCA

(Fox and Erill 2010), the number of effective codons: Nc

(Wright 1990), COdon Usage Similarity INdex (Bourret et al.

2019), and the starvation codon adaptation index: sCAI (Elf

et al. 2003). Nc is a simple index of codon bias that measures

the deviation from uniform codon usage. RCA is similar to Nc

in that it can be calculated for genes without additional ge-

netic information, but it provides a measure of codon prefer-

ence that is corrected for gene length and nucleotide content.

Like Nc and RCA, tAI does not rely on a list of preferred

codons, but it does require the tRNA gene copy number of

a genome. A list of highly expressed genes (or the frequency

of preferred codons) is needed to calculate both CAI and ITE,

but ITE differs from CAI in its handling of R- and Y-ending

codon subfamilies. To calculate sCAI, empirical measures of

tRNA concentrations are needed. Like CAI and ITE, COUSIN

requires a codon usage table from a user-defined gene set

(e.g., highly expressed genes), but is uniquely powerful in

comparing codon usage to a random codon null and a refer-

ence gene set. Calculation details are in the Materials and

Methods section. All analyses produced qualitatively similar

rank-orders for UX174 genes (see Supplementary Material

online).

Codon Deoptimization of UX174 Genes Reduces Viral
Fitness

We codon deoptimized whole UX174 genes by exchanging

wild-type UX174 codons for synonymous codons less com-

monly used by its E. coli host. Because amino acid usage is not

random in UX174, our recoding resulted in some amino acids

being changed synonymously more often than others (sup-

plementary fig. S1, Supplementary Material online). We did

not recode regions of genes that overlapped with other genes

nor the first six codons of each gene since these codons are

known to have strong effects on gene expression (Bentele

et al. 2013). This leaves six genes (A, C, J, F, G, H) that could

be deoptimized. The construct containing the fully deopti-

mized G gene could not be recovered, even after growing

FIG. 1.—Invented data illustrate that epistasis affects how a desired

level of attenuation is achieved. When a substantial amount of attenuation

is desired (the “targeted attenuation range” is at a low fitness level), the

amount of attenuation (e.g., number of deleterious mutations) will be

harder to achieve if mutational effects combine synergistically (negative

epistasis) because fitness declines at an increasing rate. In this case, the

targeted amount of attenuation will be easier to achieve if mutations

combine antagonistically (positive epistasis) because a larger range in the

number of deleterious mutations results in the same level of fitness effects.

Notice that this pattern is reversed if a slight level of attenuation is desired

(near y¼0). If sign epistasis, or even irregular magnitude epistasis is ob-

served, then the underlying nature of interactions is more difficult to pre-

dict and generalize.
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the strain overnight in an attempt to obtain a recovery muta-

tion. Of the remaining five constructs, four were less fit than

wild-type UX174 (fig. 3a). Recoding highly expressed genes

(J, F, and G) resulted in larger fitness decreases than recoding

lowly expressed genes (A and H). Although the number of

variants built was small, the fitness effects of deoptimization

were correlated to the amount of recoding performed and

the change in CAI of the recoded genes (fig. 3b and supple-

mentary table S1, Supplementary Material online). However,

the change in CAI is highly correlated with the number of

changes made to the gene (R2¼ 0.92) and although a step-

wise regression analysis does not suggest removing either

from a multivariate model, the variance inflation factor values

for the % of codons changed, the number of codons

changed, the change in CAI, and the relative expression of

wild-type genes are 32.8, 3.8, 31.4, and 3.8, respectively.

Reconstructing a Combinatorial Fitness Landscape for
Deoptimized Genes

We segmented the UX174 genome into 14 fragments (fig. 2)

and measured the fitness of all of the possible within-gene

combinations of deoptimized gene fragments (fig. 4 and see

Supplementary Material online). Since genes C and J are short

and encoded entirely on one fragment each, we analyzed

FIG. 2.—UX174 genome organization and capacity for deoptimization relative to host genes. (a) Genes on the UX174 genome are labeled at the top

and shown as white boxes. Recoded regions are shown as filled blue boxes. These fragments are named consecutively (e.g., A1, A2, A3, A4, F1, F2, F3, . . . ).

Transcript expression levels are shown as filled gray bands. The band heights are proportional to the relative number of transcripts by RT–qPCR (Zhao et al.

2012). (b) Codon adaptation index (CAI) of Escherichia coli, wild-type UX174, and recoded UX174 genes. Genes highly expressed in E. coli are enumerated

on the secondary y axis. The white space between recoded fragments (the BsmBI sites) was enlarged for visualization. Lines connect genes that were fully

recoded. Genes containing only some recoded fragments (e.g., deoptimized A1) do not have black boarders.

Table 1

UX174 Gene Function and Protein Copy Number Required for the

Assembly of One Virion

Gene Protein Function Copies Gene Length (bp)

A DNA replication 1,541

A* DNA packaging, regulation of DNA

replication

1,025

B Internal procapsid scaffolding 60 362

K Unknown, not essential 170

C Regulation of DNA replication 260

D External procapsid scaffolding 240 458

E Cell lysis 275

J DNA packaging 60 116

F Major capsid protein 60 1,283

G Major spike protein 60 527

H Minor spike, pilot protein 12 986

NOTE.—Genes encoding structural proteins are bolded.
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combinations of the remaining 12 fragments. Of the 12 deop-

timized strains with only one deoptimized fragment, only six

have fitness values below wild type. The moderate fitness

effects of these partially recoded genes allowed us to observe

how deleterious effects combine. As additional deoptimized

fragments are joined, the fitness of the resulting viruses

decreases (fig. 4b). In most cases combining deoptimized

fragments results in less fit viruses. The exception is gene A

where instances of sign epistasis are observed. Specifically, the

average fitness of A1þA3, A2þA3, A1þA3þA4,

A1þA2þA4, A2þA3þA4, and A1þA2þA3þA4 are all

higher than at least one of their constituent fitness values

(fig. 4b). To further investigate how deleterious effects com-

bine, we employed a statistical framework for calculating the

best-fitting model of epistasis.

Fitting Models of Epistasis to Combinatorial Fitness Data

The combinatorial network of genotypes that we generated in

this work can be analyzed by applying simple models of epistasis

(Miller et al. 2018) to determine how the effects of mutations

combine. We fit the data for genes A, F, and H to three basic

models—additive, multiplicative, and stickbreaking—which

gave rise to no, antagonistic, and synergistic epistasis, respec-

tively (see fig. 1 and Nagel et al. 2012). In fitting the three

models, we conducted two analyses for each gene: one of

absolute fit where we assess if the data are consistent with

each model individually, and one of relative fit wherein one

of the three models is assumed to be correct. The results

from this analysis were not highly conclusive, but suggest the

nature of epistasis is heterogeneous across different genes. For

genes F and H, none of the three models could be rejected

based on absolute goodness of fit (table 2). For gene F, the

additive model provides the best fit to the data. For gene H,

stickbreaking gives the best fit (R2¼ 0.885), consistent with

synergistic epistasis. This is visually clear in figure 4b, where

the fully recoded gene H (three recoded fragments) has far

lower fitness than one would expect based on the individually

recoded fragments—all of which were basically neutral.

Visually, a pattern of antagonistic epistasis was observed

for gene A, as several of the variants with two recoded

FIG. 3.—Fitness effects of deoptimizing UX174 genes. (a) The fitness of wild-type and deoptimized UX174 strains containing recoded genes are shown

in replicate (colored dots). Means and standard error bars are shown in black. Fitness values that are significantly different from wild type are indicated with

asterisks (ANOVA, P<0.01). (b) Fitness is plotted against measures that potentially explain fitness decreases. Fitness is the number of doublings per hour

(log2 of the ratio of the phage concentration at 60 min divided by the phage concentration at time zero). Gene expression levels are from Logel and Jaschke

(2020) and are normalized to gene A. Structural proteins are shown as empty circles. Deoptimizing gene G yielded no viable phage. The total number of

independent fitness measurements is provided in Supplementary Material online. At least three replicates were performed for every strain. y axis are the same

in panels (a) and (b). The percent of codons changed and change in CAI are highly correlated (R2¼0.92).
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fragments had fitness values as low as or even slightly lower

than the three- and four-recoded fragment variants (fig. 4b).

Indeed, the additive and stickbreaking models were rejected

for gene A based on absolute goodness of fit (table 2). The

multiplicative model, with its antagonistic pattern of epistasis,

was not rejected, but the P value was marginal (P¼ 0.066).

Strong antagonistic epistasis is occurring for gene A—even

stronger than that predicted under the multiplicative model.

This was revealed by regressing background fitness against

fitness effect (fig. 5a and supplementary figs. S2–S4,

Supplementary Material online). When effects were mea-

sured as differences (the additive model), negative/positive

slopes corresponded to antagonistic/synergistic epistasis.

Under the correct model, no correlation exists and slopes

are expected to be random deviations around zero. Under

the additive model (fig. 5a), a clear pattern across all four

recoded fragments where the effect of the fragment

becomes more strongly deleterious on higher fitness back-

grounds (negative regression slopes) was observed. When

the P values of the individual fragments were combined, their

result is significant (supplementary fig. S2, Supplementary

Material online). The analogous regression under the multipli-

cative model was less extreme, but even here, the slopes were

consistently negative, indicating a level of antagonistic

FIG. 4.—Fitness of UX174 when deoptimized gene fragments are combinatorially joined. The fitness of variants containing one deoptimized fragment

(a) and all possible within-gene variants (b) was measured and compared with wild type (gray horizontal line). Significant differences (ANOVA, P<0.01) are

indicated with asterisks. In (b), fragment lengths are drawn to scale. Filled colors indicate the deoptimized fragments whereas unfilled blocks indicate wild-

type fragments. In both (a) and (b), fitness is shown as log2-fold increase in the number of phage per hour. At least three replicates were performed for every

strain (see mentary Material online). y axis are the same in panels (a) and (b).

Table 2

Models of Epistasis Fit to Combinatorial Fitness Data

P Value (absolute fit)a Posterior (relative fit)b R2

Gene Add Mult Stick Add Mult Stick Add Mult Stick

A 0.011 0.066 <0.001 0.145 0.845 0.009 0.761 0.860 0.388

F 0.388 0.071 0.235 0.609 0.090 0.301 0.965 0.843 0.950

H 0.513 0.489 0.733 0.056 0.054 0.891 0.709 0.562 0.885

NOTE.—A regression of each recoded fragment’s fitness effect (against background) under each model was performed. The P values of each regression were combined by
taking the sum of their logs. Using parametric bootstrap, the distribution of this sum was simulated. The overall P value is estimated by the proportion of simulations where the
sum of logs is � the observed value.

aAbsolute goodness of fit. Small P values indicate that the data are inconsistent with the model (gray-filled). When a model is correct, a recoded block’s effect is uncorrelated
to background fitness. The P value indicates how often, under parametric bootstrapping, the correlation of effect to background fitness is as strong as or stronger than that
observed in the real data.

bThe posterior probability assumes that one of the three models—additivity, multiplicative, stickbreaking—is correct.
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epistasis beyond multiplicative (supplementary fig. S3,

Supplementary Material online).

Correlating Codon Deoptimization to Combinatorial

Fitness Data

Ultimately, our goal was to correlate changes in genomic

properties (e.g., codon preference) to changes in viral fitness.

The most straightforward method of analysis would be to

regress the two measurements, and indeed the fitness of

deoptimized variants was linearly correlated to CAI even

when all genes are considered together (R2¼ 0.36, P¼ 2E-

16, fig. 6a). However, it is worth noting that the data points

used in this regression were not independent because the

deoptimized fragments were combined to achieve higher lev-

els of deoptimization. Our combinometric method of making

variants also allowed us to correct for the cumulative fitness

effect of combined fragments by calculating the effect of

adding any particular fragment to different backgrounds

(fig. 5b). For example, the effect of deoptimizing the F1 frag-

ment was measured by comparing the fitness values of WT to

deoptimized F1 (20�21¼�1), or F2 to F1þF2

(18� 20¼�2), or F3 to F1þF3 (14� 16¼�2), or F2þF3

to F1þF2þF3 (8� 10¼�2). Thus, deoptimizing F1 resulted

in an average fitness effect of about �2. This background

subtraction approach corrected for the nonindependence of

data points in regressions between change in fitness from WT

and change in CAI from WT.

When we applied this correction, we observed a wide var-

iance in fitness effects (fig. 5b). For example, in some back-

grounds, adding deoptimized H1 reduced fitness by only ~1

doublings (dbl)/h. In other backgrounds, H1 reduced fitness

by ~8 dbl/h. Despite this variation, there is a good correlation

between change in CAI and change in fitness (R2¼ 0.29,

P¼ 0.01, fig. 5 and supplementary table S2, Supplementary

Material online). Applying this background correction indi-

cates that only a portion of the fitness changes can be

explained by changes in codon usage bias. This is particularly

true for genes A and H. Fragments in gene F seem to have

more consistent effects (fig. 5b).

How Different Synonymous Features Correlate with

Fitness

We replaced UX174 codons with less-preferred codons with-

out consideration for how alterations might affect other fea-

tures in the genome. As mentioned in the introduction, many

such features may be under selection. To investigate unin-

tended consequences of codon deoptimization, we calculated

numerous genome characteristics to see if any correlate with

the fitness decreases observed in deoptimized fragments (see

Supplementary Material online). We included many different

measures of codon usage bias (CAI, tAI, ITE, etc.), codon pair

FIG. 5.—Effect of recoded fragment on all possible backgrounds. (a) Regressions of each recoded fragment’s fitness effect under the additive model

against background fitness for gene A. Fitness effect is the difference between the background and the background plus the recoded fragment (e.g., A2 -

>A1þA2, A2þA3->A1þA2þA3). Horizontal lines indicate a perfect fit to the additive model with no residual effects of background. Sloped regression

lines indicate antagonistic/synergistic epistasis. Solid regression lines indicate that the additive model can be rejected (linear model, P<0.05). The overall fit of

epistatic models for each gene is shown in table 2. In (b), fragment fitness effects are shown against the change in CAI. Slight point jitter was used for

visualization. Linear regressions are shown with P and R2 values. Change in CAI (Xia 2007 method) is proportional (CAI of recoded gene over CAI of

background). AIC values of alternative models are shown in supplementary table S2, Supplementary Material online.
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bias (CPB), frequency of Shine–Dalgarno motifs, mRNA fold-

ing stability, as well as simply the number of changes made.

The best predictor of fitness is the folding stability of the co-

don deoptimized mRNA (R2¼ 0.33, p.adj¼ 5.1E-3), which

performed better than the best measure of codon usage

bias which was CAI using the Xia 2007 method

(DAIC¼ 1.6). This correlation is easily observed when mRNA

stability values are plotted against change in fitness (fig. 6b)

and when the change in folding stability from background is

regressed against the change in fitness (supplementary fig.

S5, Supplementary Material online). However, many of the

measures are highly correlated (see Supplementary Material

online), thus we performed a stepwise regression analysis

which indicated that the change in ITE, FOP, tAI, CPB, mfold,

and Nc as well as the fraction of the gene edited should all be

included as predictor variables in a multivariate model of fit-

ness. This multivariate model has an adjusted R2 of 0.91 and

an AIC value of 134, which is better than the best univariate

predictor of fitness change (fraction of the gene edited),

which has R2 and AIC values of 0.34 and 177, respectively

(ANOVA, P¼ 2.1E-6). Note that CAI is not included, likely

because CAI is so well correlated (R2¼ 0.88) with mfold.

We were interested to see if the correlation between ge-

nomic features like CAI and fitness held up even when

features were optimized, so we replaced UX174 codons

with codons frequently used in E. coli (supplementary table

S1, Supplementary Material online). In all cases, fitness was

either unaffected (8/11 viruses) or reduced (3/11 viruses)

(ANOVA, P< 0.05, fig. 6a and see Supplementary Material

online). Because of this, if these optimized constructs are in-

cluded in the regression models, the number of sites changed

and fraction of gene edited become the metrics that best

predict fitness from genomic measures. None of the other

indices are significantly correlated with change in fitness

when the optimized constructs were considered indepen-

dently (linear model, P< 0.01), likely because most of the

optimized viruses have fitness values very near wild type.

We observed a peak-shaped fitness landscape when combin-

ing the optimized and deoptimized data set; this is discussed

below.

Discussion

Patterns of Synonymous Codon Usage Biases

Synonymous codon usage biases are present in genomes

across the tree of life (Grantham et al. 1980). We often think

of these biases as having little consequence during the natural

evolution of organisms because the strength of selection

FIG. 6.—Fitness of recoded viruses correlates with codon usage bias and mRNA folding stability. (a) Codon usage bias (CAI) compared with fitness for

viruses optimized and deoptimized in genes A, F, G, and H. Fitness and CAI of wild type are indicated with gray horizontal and vertical lines. Points to the right

of these lines are optimized. Points to the left are deoptimized. (b) Viral fitness compared with mRNA folding stability (mfold). Wild-type values are indicated

with gray horizontal and vertical lines. Less-stable transcripts (mostly deoptimized genes) have less negative values and are right of wild type. More stable

transcripts (most optimized genes) have more negative values. R2 and P values shown are from individual (for each gene) linear regressions. A complete

model comparing all indices with adjusted P values for multiple comparisons is shown in supplementary table S2, Supplementary Material online. Codon

optimized viruses are shown with empty circles. Those significantly different from wild type are labeled (ANOVA, P<0.05).
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acting on a single synonymous mutation is generally weak.

Nevertheless, the presence of biases shows that selection acts

with sufficient strength to maintain them in the face of ge-

netic drift. The prevailing theories on the preservation of co-

don biases suggest that codon choice is primarily driven by

selection on translational speed and mRNA stability

(Grantham et al. 1980; Robinson et al. 1984; Plotkin and

Kudla 2011; Gamble et al. 2016). The enrichment of codons

that use abundant tRNAs in highly expressed genes points

toward a model where translation speed is correlated to

tRNA abundance. We find that the most highly expressed

UX174 protein ranks second best in its use of host-

preferred codons, but only marginally better than the average

E. coli gene (fig. 2). That UX174 genes are average in pre-

ferred codon usage bias according to E. coli usage patterns is

not surprising—many viruses do not favor the most preferred

host codons. Carbone (2008) also found that most UX174

genes do not use host-preferred codons and in the 116 DNA

phages they studied, capsid proteins were the most codon

adapted to their hosts. ssDNA phages are particularly poorly

matched to their hosts’ codon biases, which is likely due to

mutational pressures (Chithambaram et al. 2014). Selection

could also be acting to keep viral genes from evolving to their

full codon usage potential. Codon usage could control the

stoichiometric expression ratio between viral genes (Cherwa

et al. 2011; Quax et al. 2013), temporally regulate gene ex-

pression (Aragonès et al. 2010; Shin et al. 2015; Villanueva

et al. 2016; Mioduser et al. 2017), facilitate cotranslational

folding (Yu et al. 2015), dampen protein expression to avoid

host immune responses (Zhao and Chen 2011; Cladel et al.

2013), be linked to global transcription patterns (Andersson

and Kurland 1990; Frumkin et al. 2018), or be limited by other

compositional features. Regardless of cause, codon biases

among related viruses are conserved, even when they infect

different hosts that have variable codon preferences

(Cardinale et al. 2013; Kula et al. 2018).

Recoding of UX174

Synonymous mutations can have substantial phenotypic

effects, but it is often difficult to explain why and in what

parts of a genome/gene these effects are most substantial.

Our work on UX174 confirms that synonymous mutations

can have massive (even lethal) fitness effects and that these

effects combine in a predictable manner that is gene depen-

dent. Although we introduced many synonymous mutations

in each recoded UX174 strain, the largest observed fitness

impact of any single deoptimized fragment contained only 29

synonymous codon changes. These 29 synonymous changes

resulted in a 50% decrease in fitness, which is a decrease of

�10 dbl/h or about a 1,000-fold change in the number of

offspring. Kula et al. (2018) also observed phenotypic effects

of deoptimizing the J gene. They observed a 25% reduction in

burst size caused by 12 synonymous changes made to a 23

codon region of the J gene. Similar amounts of decrease were

observed when 11 synonymous changes were made to a 22

codon region of gene F. Interestingly, over the course of 35–

50 serial transfers, Kula et al. (2018) observed substitutions

replacing deoptimized codons with more optimal codons in

these small recoded regions. Domingo-Calap et al. (2009) also

used site-directed mutagenesis to make single synonymous

substitutions to UX174. None of these were lethal, but sev-

eral in gene F did reduce viral fitness. Both studies suggest

that codon usage is important for UX174, but neither com-

pares effects across different regions of the genome nor do

they combine multiple deoptimizing mutations. Bull et al.

(2012) built increasingly deoptimized versions of the phage

T7 and observed near-linear decreases in viral fitness. They

deoptimized the gene encoding the T7 capsid protein, which

is interesting because we also observed linear decreases for

the UX174 capsid gene F. This relationship does not hold up

for other UX174 genes. Jaschke et al. (2019) provides the

only other combinatorial data set on par with the results pre-

sented in this article. In their study, UX174 was broken into

five fragments of similar lengths. Within these fragments,

synonymous changes (120 in total) were made to disrupt

cryptic open reading frames and plaque size was measured

for 30 combinations of the five mutated fragments. Plaque

sizes were reduced about one-third, but the effects were not

additive. It is difficult to directly compare this study to ours

because the goal was not codon deoptimization and changes

were made to multiple genes within each fragment (except

fragment 1, which only contained gene A). Jaschke et al.

(2019) did observe some interesting mRNA stability effects

that are corroborated by our results. This is discussed in detail

below.

Speculating on the Mechanisms Causing Reduced Fitness

In recoding UX174 with better or worse codons, we observed

correlative changes in other compositional features (fig. 6 and

supplementary table S2, Supplementary Material online). The

best predictor of UX174 fitness was mRNA secondary struc-

ture, which is a determinant of translation rate. Tightly folded

mRNA around translational start sites reduces initiation (Kudla

et al. 2009; Bentele et al. 2013; Goodman et al. 2013).

Folding in other parts of mRNAs slows elongation (Kelsic

et al. 2016; Peeri and Tuller 2020). Translational speed is

also influenced by the availability of charged tRNAs. During

elongation, ribosomes must wait for cognate tRNAs. The

wait-time for codons corresponding to rare tRNAs is longer

than common tRNAs. The extreme result of slowed transla-

tion is ribosomal stalling and drop-off. However, faster trans-

lation is not necessarily beneficial. mRNA structure can slow

translation where pausing is needed, most notably before

protein structures that require cotranslational folding (Zhang

et al. 2009; Yu et al. 2015; Faure et al. 2016) and at the 50 end

of a transcript, where proper loading of mRNAs onto the
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ribosome foreshadows correct and efficient translation (Tuller

et al. 2010). Mutations that affect the folding stability and

codon usage biases of bacteriophage genes tend to cause

fitness effects. In the Jaschke et al. (2019) study on cryptic

open reading frames in UX174, a single point mutation was

identified in gene H that repeatedly evolved and ablates the

detrimental effects caused by the genome-editing that they

performed. An investigation of this mutation revealed that it

brings the mRNA folding stability of the mutated H mRNA

closer to wild type and increases H protein expression in the

mutated strain of UX174. Jack et al. (2017) found that deop-

timization of T7’s capsid gene (gene 10) reduced protein (but

not mRNA) expression. The deoptimization of gene 10 was

expected to slow translational elongation because of tRNA

limitations (Jack et al. 2017, 2019). Measuring mRNA and

protein expression in our deoptimized and optimized strains

would provide valuable insight on the role of codon bias and

mRNA stability on protein expression. Our data support the

importance of mRNA folding stability for organismal fitness,

as the stability of recoded UX174 genes is correlated with

UX174 fitness (fig. 6b). Interestingly, the optimized UX174

strains almost always have increased mRNA folding stabilities

and increased GC content, while folding stability and GC con-

tent are uncoupled in the deoptimized strains (folding stability

decreases but GC does not). Since we did not change the 50

end of recoded genes (confirmed by checking the folding

stability of a �4 to þ37 window of recoded genes), we sug-

gest that changes to initiation rates are minimal and that the

mechanisms driving decreased fitness are potentially different

between optimized and deoptimized viruses. Codon deop-

timization (and the resulting decrease in mRNA stability)

should result in faster elongation, perhaps altering protein

expression for other genes or the ratio of protein expression

across the genome (see Frumkin et al. 2018 for a model of

global translation). Codon optimization (and the resulting in-

crease in mRNA stability) should result in slower elongation

and decreased protein production of the targeted gene.

However, the changes resulting from recoding are clearly

multifaceted and require investigation aimed at understand-

ing the mechanisms causing fitness declines. As none of the

indices that we calculated fully explains the observed variance

in fitness, we expect there to be other important features

(e.g., cotranslational folding, ssDNA packaging, etc.) in the

genome that we have not considered here.

Combining Mutations and Epistasis

Genomes accumulate deleterious mutations over time. The

detrimental effect of accumulating deleterious mutations is

prevented by sex, recombination, and purifying selection

which purge them from populations. In contrast to beneficial

mutations which generally combine with diminishing returns

(Chou et al. 2011; Couce and Tenaillon 2015), the way that

the individual effects of deleterious mutations combine is less

well understood. Among many issues preventing these pre-

dictions is a paucity of empirical phenotype data for networks

of deleterious mutations (West et al. 1998; Kouyos et al.

2007; de Visser et al. 2011). This is especially true for combi-

nations beyond two. A number of studies have investigated

epistasis among pairs or triple sets of deleterious mutations,

but the findings are mixed (Elena and Lenski 1997; Sanju�an

et al. 2004; Segrè et al. 2005). Sometimes the combined ef-

fect is the sum of the individual effects (additive/no epistasis),

sometimes it is less than predicted from the individual effects

(antagonistic/positive epistasis) (Jasnos and Korona 2007;

Guerrero et al. 2017), and sometimes it is more than pre-

dicted (synergistic/negative epistasis) (Parera et al. 2009).

Among these three scenarios, antagonistic epistasis seems

to be most common (Wang et al. 2002; Kouyos et al.

2007). If one considers sign epistasis to be an extreme form

of antagonistic epistasis, then more support is garnished for

this model as a number of studies on deleterious mutations

uncover some degree of deleterious mutations becoming

beneficial in combination (Lali�c and Elena 2012). Our data

are novel in that it builds several complete combinatorial net-

works of deleterious mutations, but it does lack large sample

sizes. Of the networks we built, only the one for gene A had a

sufficient number of data points to reject poorly fitting mod-

els. For gene A, strong antagonistic epistasis was observed.

Johnson et al. (2019) recently found that this type of epistasis

is common among loss-of-function mutations in yeast. They

called it “increasing cost epistasis” because a given deleteri-

ous mutation tends to have a greater cost on more fit back-

grounds (Johnson et al. 2019). For genes F and H, no models

can be rejected, but the data suggest that mutations in gene F

are additive whereas mutations in gene H combine synergis-

tically. For the purposes of building synonymously recoded

viruses for vaccines, it is promising to see gene A displaying

antagonistic epistasis. With this type of epistasis where fitness

flattens out, less trial and error should be required to build

attenuated, but still viable, viruses.

Synonymous Virus Genome Recoding for Vaccines

Synonymously recoding viral genomes has a potentially useful

application in making live-attenuated vaccines. The antigenic-

ity of synonymously attenuated viruses is maintained because

the viral protein sequences remain unchanged. However, the

process of choosing how many codons to change and what

type of synonymous changes to implement is currently done

without guiding principles. In fact, which synonymous fea-

tures most strongly affect recoded viruses is debated

(Futcher et al. 2015; Shen et al. 2015; Kunec and

Osterrieder 2016). Of the dozens of viruses that have been

deoptimized, a minority of them measure compositional fea-

tures different from the one being directly targeted for deop-

timization. At the very least, we suggest that researchers must

measure a variety of compositional features when designing
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deoptimized constructs. A better approach would be to de-

velop construct design software that supports researchers to

engineer deoptimized viral genes (see Jorge et al. 2015 for an

example using codon shuffling). This software exists for opti-

mizing genes for expression in host cells (Grote et al. 2005;

Chin et al. 2014) and may be co-opted for deoptimization

purposes. In our experiments, we made no effort to isolate

changes to one type of compositional feature. In exploring

this possibility, we found it difficult to generate sufficient

deoptimization of one feature (CAI) while keeping other fea-

tures (mfold, CPB, Shine–Dalgarno frequency) unchanged.

Recently, Paff et al. (2018) demonstrated that promoter ab-

lation attenuated T7 bacteriophage in a predictable manner.

Combining these edits with previous codon deoptimized

strains showed increased attenuation. Targeting intragenic

attenuating mutations is a promising way to test how delete-

rious effects combine without the added complication of try-

ing to isolate correlative compositional features.

Like many other studies, our data showed virus codon

deoptimization is an effective way to generate attenuated

viruses. In cell culture and animal studies, deoptimized viruses

were shown to protect from viral challenge and were stable

over small numbers of passages (Mart�ınez et al. 2016).

However, much concern remains about the potential for at-

tenuated viruses to recover virulence. It is therefore important

to understand how many and what types of synonymous

mutations can be made to viral genomes without completely

ablating their ability to replicate in host cells. What viral genes

should be attenuated? How many attenuating mutations

should be made to the genome? What synonymous features

should be targeted for deoptimization? In most studies to

date, a limited number of deoptimized constructs (usually

structural proteins) were tested. We showed that fitness

decreases can be obtained by deoptimizing many of the

UX174 genes, indicating that nonstructural genes may also

be good targets for attenuation. One approach to avoid evo-

lutionary reversion might be recoding multiple genes or entire

viral genomes, balancing optimization and deoptimization to

maintain sufficient virulence while increasing the genetic dis-

tance to wild type. This strategy could prevent recovery by

mutation or by recombination with wild-type viruses.

However, our work suggests that the effects of recoding

will not be uniform across a genome. We found that the

attenuating effects of recoding and the nature of epistatic

interactions from combining fragments differ dramatically be-

tween genes.

Materials and Methods

Bacterial Cultures and Phage Stocks

A laboratory strain of bacteriophage UX174 (GenBank acces-

sion number AF176034) was used in this study. All experi-

ments were carried out using E. coli C (strain WG5, accession

number CP024090) as a host in modified Luria–Bertani media

(10 g/l tryptone, 5 g/l Bacto yeast extract, 10 g/l NaCl, 2 mM

CaCl2).

Synthetic UX174 Genomes

The phage assembly platform for UX174 was used following

(Faber et al. 2020). The UX174 chromosome was divided into

14 genomic fragments. Each segment is flanked by unique

four nucleotide overlaps of WT UX174 sequence so that they

can be amplified from the ancestral UX174 using PCR primers

designed to incorporate terminal BsmB1 restriction sites.

Amplicons were cloned into pCR2.1 using the Invitrogen

TOPO TA cloning system (Life Technologies, Grand Island,

NY). We pooled plasmid DNA containing all 14 of the phage

DNA fragments in equimolar amounts and digested them

with BsmB1 (Fermentas Fast Digest, Life Technologies,

Grand Island, NY) for 15–30 min at 37 �C. The digested plas-

mids were subjected to agarose gel electrophoresis for 15 min

using a 1.2% agarose gel to separate the vector from the

inserts. The inserts were excised from the gel, purified using

the GeneJET gel extraction kit (Fermentas), ligated overnight

at 14 �C with T4 DNA ligase (Promega Corporation, Madison,

WI), and transformed by electroporation into 100ll compe-

tent E. coli C cells. The transformation mix was resuspended

with 0.5 ml of ALB and plated immediately. The ALB was

added to 3 ml of ULB top agar and plated onto a ULB agar

plate. After 4–5 h of incubation at 37 �C, recombinant phage

plaques were visible, and plates were removed from the in-

cubator. Three plaques for each genotype were cored from

the agar, suspended in 750ll of ULB, and extracted off 50ll

of chloroform to kill the host cells. These stocks were used for

sequencing and fitness assays. To verify that the recombinant

phage contained the intended sequence, the resulting phage

genome was sequenced in its entirety as previously described

(Wichman et al. 2005). There was no difference in fitness

between wild-type assembled phage and freezer stock phage

(P¼ 0.8, t-test, see Supplementary Material online).

Codon Deoptimization of UX174

Codon deoptimized and optimized fragments were synthe-

sized in-house at the University of Texas at Austin, Applied

Research Laboratories’ Gene Synthesis Facility or purchased

from Biomatik USA, LLC (Wilmington, DE) according to the

codon usage of five representative E. coli genomes (E. coli

536, E. coli UT 189, E. coli O157: H7 str. Sakai, E. coli

O157: H7EDL933, and E. coli CFT073). Codon usage was

calculated by averaging each codon’s usage frequency in

CDS of these E. coli genomes. These hosts were chosen be-

fore the lab strain was sequenced and identified as WG5.

WG5 has the same most and least-commonly used codons

and would have resulted in the same recoding. Wild-type

UX174 codons that could be changed to a more or less fre-

quently used codon were exchanged for the most or least
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commonly used codon according to the host. Regions that we

were unable to modify included overlapping genes on differ-

ent reading frames, promoter regions that occurred within

other reading frames, two codons at each fragment junction

that contain the BsmBI sticky ends, and the region from 4,299

to 4,328 which encodes the UX174 origin of replication. In

addition, six bases in front of the initiation codon (AUG) and

the first 21 bases of each gene were left unmodified to assure

efficient translation initiation. (See Supplementary Material

online for exact coordinates of recoded regions.)

Unsuccessful attempts to create live virus using synthesized

fragments were repeated at least three times, then passaged

in liquid culture for 24 h to allow for recovery mutants to arise.

Measuring Viral Fitness

Fitness assays and fitness calculations were performed as pre-

viously described (Wichman et al. 2005). The assay is a deter-

mination of growth rate at low MOI in 10 ml ULB and is

carried out at 37 �C. Host cells were prepared by growing

to ~108 cells/ml and aliquoted into 8.5 ml of warm LB just

prior to adding phage. Phage from chloroform stocks were

added at a concentration of 103–104 per ml. Phage fitness is

expressed as the log2-fold increase in the total number of

phage per hour (dbl/h). All measurements were done in trip-

licate. At 40 min, virus titers were determined on ULB-agar

plates with 0.7% top agar. Assembled wild-type phage was

used as controls.

Calculating Genome Statistics

Calculations of genome statistics were done as follows: CAI

was calculated using the seqinr cai() function in R which uses

the Sharp and Li (1987) method and the E. coli codon usage

table. An alternative form of CAI was also calculated using an

updated method outlined in Xia (2007). The number of effec-

tive codons (Nc) was calculated following Wright (1990). The

Index of translational elongation (ITE) was calculated according

to Xia (2015). The sCAI was calculated according to Elf et al.

(2003). This measure scores genes by how susceptible their

codons are to a scarcity of amino-acylated tRNAs. The Xia

(2007) CAI and Nc indices were calculated using Puigb�o

et al. (2008) with the codon table from E. coli WG5. tAI

was calculated according to dos Reis et al. (2004) using the

tAI R package (github.com/mariodosreis/tai). COUSIN18 val-

ues were calculated according to Bourret et al. (2019) using

the online server at http://cousin.ird.fr/. The strength of Shine–

Dalgarno sequences was included in the model by calculating

the per-codon average binding strength of all Shine–Dalgarno

motifs in a gene (sum of binding strengths over gene length).

An empirically derived measure of translational speed was

calculated according to Chevance et al. (2014) and normal-

ized by codon family. Folding stabilities were calculated for

entire gene transcripts using mfold v3.6 Mathews et al. (1999)

with default parameters. Similarly, we calculated the folding

stability of 42 bases (�4 to þ37) around the initiation site

according to Kudla et al. (2009) of each recoded gene to

ensure that stability effects that might affect the initiation of

translation were negligible. For figure 2, all protein-coding

sequences were parsed from the E. coli WG5 genome

(CP024090) and CAI was calculated as described above.

The list of the most highly expressed genes is from Karlin

et al. (2001). We compared individual (one independent var-

iable) linear models (glm(fitness~deltaMetric, link-

¼ “identity,” family¼ gaussian)) using the model.sel()

function in the MuMIn R package (reported in supplementary

table S2, Supplementary Material online) and global models

using the stepAIC(direction¼ “both”) function in the MASS R

package (reported in the Results section). The P values were

adjusted using p.adjust(method¼ “fdr,” n¼ number of

indices).

Analysis of Epistasis

We analyzed the network fitness data from genes A, F, and H

using the Stickbreaker R package (Miller et al. 2018) and

functions therein. This package fits such data to the additive,

multiplicative, and stickbreaking models. Although the addi-

tive and multiplicative models assume a mutation (a recoded

block in this context) changes background fitness by a differ-

ence or a factor, respectively, the stickbreaking model

assumes a mutation’s effect is scaled by the distance between

the background and a fitness boundary. For fitting the stick-

breaking model, we could not obtain reasonable estimates for

the fitness boundary from the data (beneficial mutations are

much more useful for estimating the boundary than deleteri-

ous ones). Instead, we assumed a fitness boundary of 24.5

dbl/h (wild type has fitness of 20.5); using a larger fitness

boundary simply makes the stickbreaking model more like

the additive model. Relative fit (posterior probabilities) was

calculated following the methods in Miller et al. (2018). To

estimate the absolute goodness of fit, we used parametric

bootstrap. Specifically, for each gene and each model, we

extracted the observed effect of each block on each back-

ground it appeared on. For each recoded fragment, we then

regressed the background’s fitness against the fitness effect

by fitting a simple linear model and obtained a P value asso-

ciated with a slope of zero (illustrated for gene A in fig. 5a).

When a model is correct, the slope of this line is expected to

be zero. For a given gene and model, we take the sum of the

logs of the P values, Pobs, as a summary statistic. We noticed

that the data points involved in these regressions were not

independent and, as such, the P values were not valid. We

accounted for this by simulating 10,000 data sets (using the

estimated coefficient of each block and the estimated

Gaussian noise parameter that captures both experimental

noise and variation from model expectations). For each sim-

ulated data set, we repeated the regression for each block

and combined across blocks to obtain a summary Psim. Across
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10,000 simulations, this generated the approximate distribu-

tion of P when the model is correct. We then located Pobs in

this distribution and calculated the P value as the proportion

of simulations where Psim< Pobs (Zhao et al. 2012; Jack et al.

2017).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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