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Phyllotaxis, the search for the most homogeneous and dense organizations of

small discs inside a large circular domain, was first developed to analyse

arrangements of leaves or florets in plants. It has since become an object of study

not only in botany, but also in mathematics, computer simulations and physics.

Although the mathematical solution is now well known, an algorithm setting out

the centres of the small discs on a Fermat spiral, the very nature of this

organization and its properties of symmetry remain to be examined. The

purpose of this paper is to describe a phyllotactic organization of points through

its Voronoi cells and Delaunay triangulation and to refer to the concept of

defects developed in condensed matter physics. The topological constraint of

circular symmetry introduces an original inflation–deflation symmetry taking the

place of the translational and rotational symmetries of classical crystallography.

1. Introduction

The densest organization for a packing of small discs on an

infinite plane is obtained when their centres are at the nodes

of the triangular tiling of a hexagonal crystalline lattice; they

all occupy the same area on this plane. If the discs are to be

organized within a finite compact domain of the plane, this

solution stays valid only if the boundaries of this domain are

aligned along crystallographic directions. In the case of a

domain with a circular border, a constant area per centre can

only be obtained when the centres are regularly placed on the

spiral drawn by the algorithm of phyllotaxis.

Tiling of surfaces such as a circular domain of the plane, a

cylinder or a sphere according to phyllotaxis leads to the

building of distributions of points having the best homo-

geneity and isotropy possible. This solution appears in plant

growth as being the only one compatible with a sequential

growth within the frame of a self-organizing process submitted

to geometrical constraints (Bravais & Bravais, 1837; Jean,

1983, 1992; Turing, 1992; Coxeter, 1961, 1972). This had been

noticed by D’Arcy Thompson (1917) who wrote: ‘ . . . and not

the least curious feature of the case is the limited, even the

small number of possible arrangements which we observe and

recognize.’

This solution also appears in the formation of Bénard–

Marangoni convection cells in cylindrical containers (Rivier et

al., 1984; Rivier, 1992), the organization of ferrofluid droplets

falling down in silicone oil in the presence of an inhomoge-

neous magnetic field with cylindrical symmetry (Douady &

Couder, 1992) and that of air bubbles on a circular water

surface (Yoshikawa et al., 2010). Finally, spherical phyllotaxis

was used to estimate the Earth coverage of satellite constel-

lations (Gonzàlez, 2010).

A phyllotactic structure on a surface is a set of points that

define the position of physical objects such as discs, convection

cells, florets or others. We go into this matter describing a

phyllotactic organization of points of the plane through its

Voronoi cells and Delaunay triangulation and making refer-

ence to the concept of defects developed in condensed-matter

physics. The topological constraint of circular symmetry

introduces an original inflation–deflation symmetry taking the

place of the translational and rotational symmetries of clas-

sical crystallography.

The phyllotactic structure is represented in Figs. 1, 2 and 3.

Outside a core, it consists of grains of hexagonal cells (in red)

which are concentric circular rings, bounded and separated by

circular rings of defects (often also called grain boundaries)

made of n2 heptagonal cells (inner), n1 hexagonal cells

(middle) and n2 pentagonal cells (outer). The two numbers n1
and n2 are successive Fibonacci numbers. These grain

boundaries serve as natural boundaries for our optimal

packing problem. Their properties which are presented here

therefore solved the optimal packing problem topologically

and metrically.

At the origin of our work are questions raised by the

structure of collagen fibrils. They can be considered as dense

packings with circular sections of more-or-less parallel rods,

the so-called triple helices, whose lateral organization was the

object of several investigations through X-ray scattering

studies. These observations could not agree with a purely
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hexagonal lattice and revealed the presence of an important

degree of disorder. A lattice built from a distorted hexagonal

lattice with a large unit cell, a quasicrystalline structure and

paracrystalline fluctuations in a hexagonal lattice were then

proposed. Those propositions are, however, difficult to

reconcile with a twisted organization of the fibres, and not

compatible with the propagation of any long-range lateral

order and the roundness of their normal section, as such

orders should lead to facetted sections. As some electron

micrographs also suggest a spiral assembly, we recently

examined a model in which the sections of the triple helices

would be organized according to a phyllotactic pattern

(Charvolin & Sadoc, 2011). Even if no definitive answer can be

given, the main features of the X-ray diffraction patterns

modelled using phyllotaxis are compatible with experimental

results, and we are investigating this problem.

2. Phyllotaxis

2.1. The generative Fermat spiral

Sites, the points at the centre of physical objects, lie on a

spiral (Fig. 1) defined by the equations relating Cartesian

coordinates x; y to polar coordinates �ðsÞ ¼ aðsÞ
1=2

and

�ðsÞ ¼ 2��s:

xð�; �Þ ¼ aðsÞ
1=2

cosð2��sÞ;

yð�; �Þ ¼ aðsÞ
1=2

sinð2��sÞ; ð1Þ

where a is a parameter defining the metric scale, � an impor-

tant parameter which will be discussed below and s the

parametrization of the curve. Sites indexed by integers s are

placed on the curve, so that the azimuth between two

successive sites varies by 2��. The important result of the

mathematical studies is that a homogeneous distribution of

sites is only obtained with � ¼ 1=�, the inverse of the golden

ratio � ¼ ð1þ 51=2Þ=2, or � ¼ 1=�2. The golden ratio is defined
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Figure 1
A Fermat spiral with 50 points on it, successively placed at angle
� ¼ 2�s�, with s ¼ 0 to 49.

Figure 2
Voronoi decomposition of a 2500-site model. Voronoi cells define the
number of neighbours: six for hexagonal cells in red, five for pentagonal
cells in blue and seven for heptagonal cells in green. Small black points
are for sites over 2500 added in order to avoid difficulties encountered in
defining Voronoi cells at the border of a finite set.

Figure 3
Voronoi decomposition of a 6200-site model.



by 1=�2 � 1=� � 1 ¼ 0 so that this second value gives the same

result as the two corresponding angles have the same absolute

value modulo 2� for integer s.

Two characteristic properties of this generative spiral are

important in order to have the best coverage. First, the added

area with any new site must be a constant, for any �: this is the

result of �ðsÞ / s1=2, but this choice is not sufficient to impose a

local isotropy of the distribution of sites. It is the second

property of the generative spiral that gives the best local

isotropy of the area associated with the best uniform density:

the choice of � ¼ 1=�. With a rational �, sites are aligned on

straight radial spokes and with irrational � different from 1=�

(or of a noble number) they form a few long spiralling spokes,

so in these two cases sites are gathered on lines (Ridley, 1982;

Rivier et al., 1984). Uniformity is indeed associated with the

property of ‘noble number’ to which � and �2 belong, to have

only 1 in the tail of their continued fraction expansion. Then

these numbers are approximated by successive truncations of

their continuous fraction expansion which converge smoothly

(Adler, 1998). This point is discussed in Rivier (1988), which

defines the best uniformity by the property of having shape

and area of Voronoi cells as independent of s as possible, a

context-free inflatable structure; see also the so-called ‘shape

invariance’ in Rothen & Koch (1989a).

We present here structures in which sites define local

domains of the same area, but there are also examples where

the area changes with the radial position, as in a daisy where

external florets are larger than those of the core. These

organizations are obtained with other kinds of spiral equa-

tions, for instance logarithmic spiral (Rothen & Koch, 1989a).

Nevertheless, conformal transformations but also shearing

allow us to explore these different examples of phyllotaxis.

This is discussed at the end of this paper.

2.2. Voronoi tiling

The geometry of a set of sites can be revealed very well

using a Voronoi decomposition of the space (Figs. 2 and 3). In

two dimensions, each site is surrounded by a polygonal cell

which is the locus of all the points of the plane closer to the

considered site than to all other sites. In particular, the

Voronoi decomposition strictly defines neighbours of a site

whose cell shares an edge with the cell of the considered

neighbouring site. Building a Voronoi decomposition for a

finite set of sites, we face the difficulty of defining neighbours

close to the border of the set. We have solved this by doing the

decomposition for N sites embedded in a slightly larger set.

With the generic hypothesis of a coordination number c ¼ 3

for Voronoi cell vertices, topological constraints are imposed

by the Euler relation F � Eþ V ¼ �, with the Euler–Poincaré

characteristics � ¼ 0 for the infinite plane or for any closed

surface without Gaussian curvature, like a torus. These

constraints are such that the average number of edges of

Voronoi cells is strictly six. But a phyllotactic pattern is a finite

set with a circular boundary. For a compact finite part of the

plane, the Euler relation V � Eþ F ¼ � with the Euler–

Poincaré characteristic � ¼ 1 has to be considered.

In phyllotaxis there are only hexagonal cells, pentagonal

cells and heptagonal cells. Thus, a tiled plane surface enclosed

inside a circle in the limit of an infinite radius must have the

same number of pentagonal and heptagonal cells. It appears

that the three kinds of cells are organized in blocks. Outside a

core, there are grains of hexagonal cells which are concentric

circular rings, bounded and separated by circular grain

boundaries ðfu�1; fu�2; fu�1Þ made of fu�1 heptagonal cells

(inner), fu�2 hexagonal cells (middle) and fu�1 pentagonal cells

(outer). The fu are Fibonacci numbers defined by the relation

fu ¼ fu�1 þ fu�2 with f1 ¼ 1 and f2 ¼ 1, that is the sequence

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; . . .. These grain bound-

aries serve as natural boundaries for our optimal packing

problem. Outwards packing begins with the first complete

grain boundary ð13; 8; 13Þ with 13 heptagons, 8 hexagons and

13 pentagons. The core disc is bounded by the 8 pentagons of

the (first) incomplete grain boundary ð3; 5; 8Þ. It has 3

heptagons instead of the full 8. The additional pentagons

(nearly) fulfil the topological requirement that a tiled disc

should have a topological charge of 6 (i.e. 6 additional
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Table 1
Table of cell types in the successive rings or annuli.

Neighbour separations �s are Fibonacci numbers, all the same for a given ring,
except at the beginning. A label u for large rings corresponds to the Fibonacci
number fu giving the medium separation [fu in the set of (fu�1; fu; fuþ1) positive
separations]. Rings corresponding to defects are marked with k.

Number
s

u Cell type of cells From To Neighbour separations �s

Pentagon 2 0 1 1, 2, 3, 4, 5 or �1, 2, 3, 5, 8
Hexagon 1 2 2 �2, 2, 3, 5, 8, 13
Heptagon 3 3 5 (�3, �2, 2) or (�4, �3, �2) or

(�5, �3, �2), 3, 5, 8, 13
Hexagon 1 6 6 �5, �3, 3, 5, 8, 13
Pentagon 2 7 8 �5, �3, 5, 8, 13
Hexagon 1 9 9 �8, �5, �3, 5, 8, 13

k Hexagon 5 10 14 �8, �5, 5, 8, 13, 21
k Heptagon 3 15 17 �13, �8, �5, 5, 8, 13, 21
k Hexagon 5 18 22 �13, �8, �5, 8, 13, 21
k Pentagon 8 23 30 �13, �8, 8, 13, 21
7 Hexagon 2 31 32 �21, �13, �8, 8, 13, 21
k Heptagon 13 33 45 �21, �13, �8, 8, 13, 21, 34
k Hexagon 8 46 53 �21, �13, �8, 13, 21, 34
k Pentagon 13 54 66 �21, �13, 13, 21, 34
8 Hexagon 34 67 100 �34, �21, �13, 13, 21, 34
k Heptagon 21 101 121 �34, �21, �13, 13, 21, 34, 55
k Hexagon 13 122 134 �34, �21, �13, 21, 34, 55
k Pentagon 21 135 155 �34, �21, 21, 34, 55
9 Hexagon 134 156 289 �55, �34, �21, 21, 34, 55
k Heptagon 34 290 323 �55, �34, �21, 21, 34, 55, 89
k Hexagon 21 324 344 �55, �34, �21, 34, 55, 89
k Pentagon 34 345 378 �55, �34, 34, 55, 89
10 Hexagon 422 379 800 �89, �55, �34, 34, 55, 89
k Heptagon 55 801 855 �89, �55, �34, 34, 55, 89, 144
k Hexagon 34 856 889 �89, �55, �34, 55, 89, 144
k Pentagon 55 890 944 �89, �55, 55, 89, 144
11 Hexagon 1221 945 2165 �144, �89, �55, 55, 89, 144
k Heptagon 89 2166 2254 �144, �89, �55, 55, 89, 144, 233
k Hexagon 55 2255 2309 �144, �89, �55, 89, 144, 233
k Pentagon 89 2310 2398 �144, �89, 89, 144, 233
12 Hexagon 3384 2399 5782 �233, �144, �89, 89, 144, 233
k Heptagon 144 5783 5926 �233, �144, �89, 89, 144, 233, 377
k Hexagon 89 5927 6015 �233, �144, �89, 144, 233, 377
k Pentagon 144 6016 6159 �233, �144, 144, 233, 377
13 Hexagon 9167 6160 15326 �377, �233, �144, 144, 233, 377



pentagons, a sphere has a topological charge of 12) (Rivier,

1992; Rivier et al., 2005).

To recapitulate, the hexagons are either in crystalline large

grains (in a topological sense) or form narrow rings between

heptagonal and pentagonal rings. The numbers of hexagons in

the large rings are . . . 34; 134; 422; 1221; 3384; . . . as shown in

Table 1.

3. Rings and defects

3.1. Grain boundaries and defects

In a disordered crystal there are two kinds of disorder with

respect to a perfect crystal. The first is metric disorder such

that relations of neighbourhood are conserved but the length

changes between neighbours; the second is topological

disorder, which implies defects like dislocations and disclina-

tions breaking these relations locally. The decomposition of

the phyllotactic pattern into rings gives good examples of

these two kinds of disorder (Figs. 2 and 3). The large rings of

hexagonal cells have metric distortions but without defect.

They can be seen as a ribbon cut into a perfect hexagonal

crystal and then flattened onto a flat circular ring with its two

ends glued, an operation that introduces a change of lengths

(on a cylinder, it would be possible to wrap it without distor-

tions). With reference to a perfect hexagonal two-dimensional

crystal, pentagons and heptagons are disclinations of opposite

weights, but a dipole of opposite disclinations is a dislocation,

as shown in Fig. 4. In the Voronoi decomposition, pentagons

and heptagons form dipoles which are dislocations in the

structure. Several dislocations gathered along a line define a

grain boundary between disoriented grains. Hexagonal cells

which are between two dipoles inside the dipole ring control

the distance between dislocations, and then the disorientation

between the two separated large hexagonal rings which are

called crystalline grains even if they have metric disorder but

without topological disorder. Dislocations are an important

factor to keep the best homogeneity of the structure. They are

defects relative to the perfect hexagonal crystal, but are

intrinsic constituents of the phyllotactic structure.

3.2. Parastichies

Parastichy is a botanical term used to describe spiral lines

observed on some plants such as composed flowers, cactuses

and pine cones. Looking at Figs. 2 and 3 such lines appear,

even if they are not easy to follow all the way along. Some

segments of parastichies appear in Figs. 5 and 6. The purpose is

now to describe them precisely. Points s and sþ 1 placed on

the generative spiral are separated by long distances (at least

for not too small s). For visible parastichies we are concerned

with points which are neighbours, as defined by Voronoi cells,

and search for the separation �s between two such points

labelled s and sþ �s. Two points with polar coordinates ð�; �Þ

are close if their � and � are close. So aðsÞ
1=2

must be close to

aðsþ �sÞ
1=2
, implying a small �s=ð2sÞ. The two azimuthal

separations must follow 2��s� 2��ðsþ �sÞ ’ 0 modulo 2�. It

is impossible to have in this equation a strict equality to zero

because �, the inverse of the golden ratio, is an irrational

number, but it can be approximated by a rational number

�0 ¼ fu�1=fu, the ratio of two consecutive Fibonacci numbers.

The equation for the azimuthal separation, with this approx-

imation, reduces to 2��0s� 2��0ðsþ �sÞ ¼ 0, which is solved

exactly by 2�fu�1 ¼ 0 modulo 2� for �s ¼ fu. The approx-

imation for � is better for large u, but as �s=s must be small,

first neighbours correspond to the best compromise between

radial and azimuthal contribution.

Inside a ring of Voronoi cells of the same type, all neigh-

bours are separated using the same set of Fibonacci numbers
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Figure 5
Family of lines formed with parastichy segments, all rotating with the
same orientation, corresponding to the smallest separation �s given by a
Fibonacci number fu with an even u (for conservation of the rotation
orientation). The colour code is the same as in Figs. 2 and 3: red for six
neighbours, blue for five, green for seven. A new line originates when a
new Fibonacci number, with these properties (the smallest with even u),
appears in the list of separations with neighbours. Except for very small s,
this happens on sites with pentagonal cells. These sites are gathered in
one of two rings of pentagonal cells, such that in a heptagon–pentagon
dipole the new Fibonacci number is not in the list of separations for the
site with the heptagonal cell, but the line is oriented as the dipole. All
these lines play the role of reticular lines found in two-dimensional
crystals and clearly show the dislocations as an insertion of an extra line.

Figure 4
A dislocation in an hexagonal crystal. The figure is drawn with regular
polygons, so leading to the appearance of a step. In two dimensions the
structure is flattened by projection on a plane.



(except for s< 7). For instance, for the ring of hexagonal cells

between s ¼ 67 and s ¼ 100 all six neighbours are at sþ �s

with �s in the set f�34;�21;�13; 13; 21; 34g of Fibonacci

number f9 ¼ 34; f8 ¼ 21; f7 ¼ 13 (Table 1).

Passing through a site of large hexagonal rings there are

three parastichies defined by three consecutive Fibonacci

numbers fu�1; fu; fuþ1 corresponding to three positive �s

separations. It is convenient to label large hexagonal rings by u

such that fu correspond to the medium separation in this ring.

So in the example with 67 � s � 100 the label is u ¼ 8

corresponding to the Fibonacci number f8 ¼ 21 in the set

ð13; 21; 34Þ (see Table 1).

3.2.1. Equation of parastichies. In a grain three visible

parastichies are defined by three Fibonacci numbers

fu�1; fu; fuþ1, but now we extend the notion of parastichies to a

whole family of curves joining sites separated by any Fibonacci

number. So, a parastichy is defined by a given Fibonacci

number fu. We show that the parastichies equation has the

form

xð�; �Þ ¼ aðsÞ
1=2

cos½�n þ ð�1Þ
uþ1

2��us=fu�;

yð�; �Þ ¼ aðsÞ
1=2

sin½�n þ ð�1Þ
uþ1

2��us=fu�: ð2Þ

The phase shift �n is adjusted in order to have the curve going

through the site s, so n numbers all parastichies of the same

family. Here we consider s as a continuous variable, in order to

define a curve, but we assume that the curve passes through

sites for integer s values. Consider the two points s and sþ fu
lying on a parastichy and on the generative spiral. On these

curves their azimuthal separation is 2��fu. This number, which

is much greater than 2�, can be reduced, modulo 2�, to a small

number between �� and � given by 2�ðfu�� fu�1Þ because

� ’ �0 ¼ fu�1=fu. The ratio �u appears owing to a property of

power of the golden ratio: �u ¼ fu� þ fu�1; if � is the inverse of

the golden ratio it follows1 �u ¼ ð�1Þ
uþ1

ðfu�� fu�1Þ. Intro-

ducing the expression for �u, this azimuthal separation for

s varying from s to sþ fu is ð�1Þ
uþ1

2��u. Consequently

the Fermat spiral faðsÞ
1=2

cos½ð�1Þ
uþ1

2��us=fu þ �n�,

aðsÞ
1=2

sin½ð�1Þ
uþ1

2��us=fu þ �n�g which rotates slowly com-

pared to the generative spiral goes through the two points

(with a good choice of the constant �n) when s varies

continuously. Notice that the scaling factor a is the same for all

spirals including the generative spiral. A factor ð�1Þ
uþ1

changes the orientation of the spirals from even u to odd u.

This can also be put in relation with the fact that the

approximation � ’ fu�1=fu is an overestimation for odd u and

an underestimation for even u.

3.2.2. A generalization of parastichies: reticular lines of

the phyllotaxis. In botany, parastichies are visible spirals of the

structure and so are those joining close neighbour sites. In

hexagonal rings there are three such lines characterized by

three consecutive Fibonacci numbers; they are clearly visible

when their characteristic Fibonacci number appears in Table 1.

Nevertheless, for large s even if they are less visible they

always exist as continuous spirals joining sites not necessarily

first neighbours, but second, third . . . neighbours. So, to each

possible Fibonacci number fu corresponds a family of fu
identical spirals joining sites with a separation �s ¼ fu. There

are fu in the family, because if one goes through the site s and

also through the site sþ fu, there is one through the site sþ 1

which is different, and one through sþ 2 and so on up to

sþ fu � 1.

The first example is the family corresponding to f1 ¼ 1

with only one member, the generative spiral joining site s

and sþ 1. The next example is given by f2 ¼ 1, also joining

sites s and sþ 1. These are the first two families with a

single spiral in each. In fact these two different spirals corre-

spond to the two possible choices of � given by 1=� and 1=�2

giving the same structure with two spirals with reversed

rotation orientations.2

3.3. Euler relation

As already mentioned above, the Euler relation

V � Eþ F ¼ � imposes the average number of edges per

Voronoi cell to be six on the infinite plane for which � ¼ 0.

However, for a compact finite part of the plane, such as the

circular domain of a phyllotactic pattern, � ¼ 1 so that the

numbers of cells with five or seven edges are not equal. We

introduce the number of faces F ¼ F5 þ F6 þ F7, Fp being
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Figure 6
Family of lines formed with parastichy segments, corresponding to the
largest separation �s given by a Fibonacci number fu. Except for very
small s, new lines originate on sites with pentagonal cells. The number of
cells on the border is the number of these parastichies cut by it.

1 These two relations can be shown easily by induction considering that they
are true, then calculating �uþ1 or �uþ1 using �2 ¼ 1þ � or �2 ¼ 1� �.
2 It is very usual in the literature to use � ¼ 1=�2 to describe phyllotaxis. This
choice corresponds to the smaller divergence angle. The other choice, done
here, is formally simpler and strongly supported by this property: spirals are
defined by the rank u of the Fibonacci number; their speeds of rotation around
the origin decrease with u and we choose for a generative spiral the first one
given by u ¼ 1.



the number of faces with p edges, and the number of

edges E ¼ ð5F5 þ 6F6 þ 7F7Þ=2þ ðm2 þm3Þ=2 or in order to

eliminate V, E ¼ 3ðV �m2 �m3Þ=2þ ð2m2 þ 3m3Þ=2. The

numbers m2 and m3 are the number of vertices of the cells on

the border with coordinations cr ¼ 2 or 3. This gives

ðm2 �m3Þ þ ðF5 � F7Þ ¼ 6. Two particular solutions of this

equation are interesting. First, following what happens on the

infinite plane, suppose that F5 ¼ F7 so there is m2 ¼ 6þm3,

an excess of six sites with coordination 2 on the border. A

simple example is obtained with a finite piece of a hexagonal

tiling cut along the edges of hexagonal cells (so with

F5 ¼ F7 ¼ 0). Then this structure has an irregular boundary

depending on the choice of hexagons kept inside it respecting

m2 ¼ 6þm3 for the m2 sites of the boundary belonging to

only one hexagon, and them3 sites belonging to two hexagons.

The other particular solution corresponds to the phyllotaxis:

the boundary is close to a circle with m2 ¼ m3, an alternative

equipartition of coordination 2 and 3 on the border. Notice

that in a perfect hexagonal tiling cut along the edges in order

to divide it into two pieces with sites on the cut alternately on

one or two hexagons (cr ¼ 2 or 3), the cutting line oscillates

around a straight line, so we can consider such a border as

some kind of ‘topological geodesic’ (Rivier et al., 2005). In this

case, solving the equation gives F5 � F7 ¼ 6 corresponding to

an excess of six pentagons in the core of the structure.

Evidently a circular border with these properties (m2 ¼ m3

forcing F5 � F7 ¼ 6) must be inside a large hexagonal domain

and not inside rings of defects: otherwise there would be an

excess of heptagon. A consequence of m2 ¼ m3 on the border

is also that the number of cells on the border (having outside

edges) does not vary continuously with the total number of

sites in the phyllotactic pattern: this number remains constant

in large hexagonal rings, but otherwise changes rapidly when

the boundary enters inside a grain boundary. This number is

equal to the number of parastichies corresponding to the

highest separation between neighbours, so if the border is

inside a non-defective domain it is equal to Fibonacci

numbers.

3.4. Rings and defects: a relationship with crystals

Exactly like for reticular lines in a two-dimensional crystal,

all sites are on a member of each family and lines of the same

family are in some sense parallel lines: in crystals they are

equivalent by translation, here they are equivalent by rotation.

In two-dimensional crystals, a reticular family is characterized

by two Miller indices but the family of a spiral is just char-

acterized by a Fibonacci number. To recapitulate, the number

of spirals of the same family fu is the Fibonacci number fu. As

the golden ratio � is approximated by the ratio of successive

Fibonacci numbers converging towards it alternately up and

down, this results in an alternate rotation orientation for the

spirals depending on the parity of u in fu.

There are relationships between crystals with defects and

phyllotactic patterns, but the next section describes relation-

ships to quasicrystals.

4. Metric properties

4.1. Packing density

As the circle of radius � and area ��2 ¼ �a2s contains s

points, the area added per point has the value �a2. The area of

Voronoi cells oscillates close to this value for small s and then

converges towards it (Fig. 7).

4.2. Influence of site distances on shapes of Voronoi cells

In the Voronoi decomposition of a phyllotactic pattern

there are only hexagons, pentagons and heptagons; never-

theless, looking rapidly at Fig. 3, some squares seem to appear,

mainly in rings related to dislocations. In fact these are not

squares, but Voronoi cells which could be described as a

square with one corner slightly truncated (for a pentagon), or

with two truncated corners (for a hexagon), or three truncated

corners (for a heptagon). This is related to the fact that the two

parastichies corresponding to the first two Fibonacci separa-

tions are close to being orthogonal in grain boundaries.

Oppositely, in large rings of hexagonal cells, the core of the

ring contains less irregular hexagonal cells.

Fig. 8 shows how Delaunay triangles are organized near the

grain boundaries.3 In these regions corresponding Voronoi

cells are close to being square, but with a corner slightly

truncated. Effectively Voronoi cell vertices are centres of

circumscribed circles of Delaunay triangles, so if two such

triangles look like a square divided by a diagonal, the two

centres are close to the diagonal leading to a small edge of the

Voronoi cell. If two corners are truncated the cell is a hexagon.

In large hexagonal rings, the Voronoi cells are a rhombus with

two opposite truncated corners, so the Voronoi cells are close

to regular hexagons. In the narrow hexagonal rings, inside

grain boundaries, the cells look like squares with two close

truncated corners, so are very distorted hexagons.
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Figure 7
Variation of the area of Voronoi cells for points between s ¼ 34 and 2166.
Colours correspond to the type of Voronoi cells. The area is close to the
mean value � with a ¼ 1, rapid variations appear in rings of defects.
Nevertheless these strong variations decrease as the area tends towards �
for large s.

3 Delaunay triangulation is such that sites are associated to cover the surface
by triangles. It is related to Voronoi decomposition, because the vertices of
Voronoi cells are the centres of the triangles, Delaunay and Voronoi
decompositions are dual.



Even if Delaunay and Voronoi decompositions give exactly

the same information, some properties are more easily

observed with one or the other method. For instance, angles

between parastichies are very clear in Fig. 8 because the edges

of triangles are along parastichies. It is clear in this region of

defects that two families of parastichies are close to being

orthogonal with a third family making a �=4 angle with the

others.

4.3. Distances between first neighbours

The behaviour of distances between first-neighbour sites is

shown in Fig. 9. In domains where Voronoi cells are slightly

truncated squares, their area is approximatively �a2, so that

the distance between points along a square edge is

�1=2 ’ 1:772 (with a ¼ 1) and along a diagonal is

ð2�Þ
1=2

’ 2:506. When Voronoi cells are more clearly hexa-

gons two distances are close to ð3�=51=2Þ
1=2

’ 2:053. The

behaviour of the distance between the two points defined by s

and sþ fu as a function of s is obtained using a relation given

by Yeatts (1997):

duðsÞ ¼ fu

�

1

4s
þ
sð�2�fu�1 þ 2���1fuÞ

2

f 2u

�1=2

: ð3Þ

This relation fits perfectly the numerical values given in Fig. 9.

It can be checked that minimal values

ð2�Þ
1=2
fu

1

�
�
fu�1

fu

�

�

�

�

�

�

�

�

� �1=2

ð4Þ

are all close to and converging towards ð2�=51=2Þ
1=2

’ 1:67.

All distances are in the range ½ð2�=51=2Þ
1=2
; ð2�Þ

1=2
�, what-

ever s and u will be. This property, specific to the choice of

� ¼ 1=�, is very important to ensure the best packing homo-

geneity.4

5. Grain boundaries

Table 1 shows the lower and upper bounds of domains

containing the same kind of Voronoi cells. These values are

obtained from numerical observations of a phyllotaxis.

Nevertheless it would be interesting to have an analytic rela-

tion giving these bounds. Clearly, by having the lower bound

for heptagonal or pentagonal rings the upper bound is

obtained by adding a Fibonacci number minus one. This is also

true for a narrow hexagonal domain, in the same region, using

the previous Fibonacci number. But there is no clear relation

for wide hexagonal rings. We introduce a semi-empiric relation

which has been tested up to s ¼ 280783.

As in a grain boundary Voronoi cells are close to being

squares, we suppose that sites are with a good approximation

on a square lattice with parameter d ¼ �1=2. We set a ¼ 1 in
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Figure 9
First-neighbour distances between sites s and sþ �s. Blue for the interval
�s equal to the smaller positive Fibonacci number in the list of Table 1;
green for the next interval; red for the third positive interval; and purple
for the last one (occurring only if the Voronoi cell is a heptagon). Thus
green, blue and red correspond to distance along the three visible
parastichies. Each continuous curve corresponds to a given Fibonacci
number that appears in different annuli. For instance, f11 ¼ 89 appears
between s ¼ 290 and 5926 leading to a continuous curve which is
successively purple, red, green and blue. Each lower crossing of two
curves corresponds to a grain boundary, the upper crossing is in the
middle of a hexagonal ring. The scaling parameter in equation (1) is
a ¼ 1, so the distances are approximately in the range ½1:676; 2:506� with
a mean value 1:903.

Figure 8
Delaunay triangulation in a small region around the point s ¼ 15326,
which is the last point in a wide six-neighbours ring. The centre of the
phyllotactic disc is far away on the left. Red points are common to six
triangles, blue points to five triangles and green points to seven triangles.
Often it seems that two triangles form a square, but in fact in this sheared
square the diagonal which divides it into triangles is slightly shorter than
the other one. There are two domains (grains) distinguished by the
orientations of the diagonals. In these domains all points are common to
six triangles. Between the two domains the defect ring (grain boundary)
shows up as a flip of the diagonal orientations, leading to seven, five or
sometimes six triangles around a point. Going away from the grain
boundary, the triangles become more and more regular.

4 These limits remain the same in phyllotactic tilings on the sphere and on the
hyperbolic plane, providing the same � area for each site. This will be
discussed in a further article on phyllotaxis in non-Euclidean geometry.



the following. Fig. 10(a) shows a representation of the grain

boundary at 101 � s � 155 in which Voronoi cells are 21

heptagons, 13 hexagons and 21 pentagons. It appears straight

in this representation, but in the phyllotaxis it is refolded into

a ring. The grain boundary appears as a strip of length given by

the vector ð21; 34Þ in the square lattice and of width given by

ð1;�1Þ, so that the number of points in the strip is 55, given by

the determinant constructed with the two vectors. This strip is

separated into three thinner strips of the same length, but with

widths defined by vectors ð0;�1Þ, ð1; 1Þ and ð0;�1Þ, respec-

tively. The first one contains the 21 points with heptagonal

cells, the second contains 13 points with hexagonal cells and

the third contains 21 points with pentagonal cells.5 In the

phyllotactic pattern, the 55-point strip is folded into a flat ring

that bounds a disc, by identification of the two small sides at

the cost of metric distortions.

We estimate the bounds of the strip using two properties:

the length of the strip and the number of points in the disc that

are enclosed with radius s1=2. The length is the module of the

vector ð21; 34Þ which is L ¼ ð212 þ 342Þ
1=2
�1=2 using d ¼ �1=2

as length unit. Folding the strip into a ring, this length is the

perimeter of a circle. We can estimate the number of points of

the phyllotactic pattern in the disc enclosed by this circle using

the definition of the generative spiral. This number is sb ¼

ð212 þ 342Þ=4� ’ 127:085.

Now we compare this to the known value for the upper and

lower bounds in this grain boundary. When the strip is folded

into a ring, the internal side of the ring is compressed whereas

the external side is expanded, so sb is collimated by the narrow

ring of hexagons. The evaluated value sb falls between these

bounds ð122; 134Þ.

From this estimation we deduce a formula which gives the

bounds of all hexagonal rings appearing inside defect regions

round
3� fu�1

2
þ
f 2u þ f 2uþ1

4�

� �

; round
fu�1 þ 1

2
þ
f 2u þ f 2uþ1

4�

� �� �

:

It is possible to write this relation in a more compact way using

the identity f 2u þ f 2uþ1 ¼ f2uþ1, which can be shown by inductive

reasoning on v using fuþv ¼ fvþ1fu þ fvfu�1. Then we have

round
3� fu�1

2
þ
f2uþ1

4�

� �

; round
fu�1 þ 1

2
þ
f2uþ1

4�

� �� �

: ð5Þ

Here fu is the Fibonacci number of order u and the function

round takes the integer part of an irrational number. The

example of Fig. 10 corresponds to f8 ¼ 21. In this relation the

two bounds are such that the number of points in the ring is

fu�1 as wanted. This formula has been checked to give an exact

value (except a shift of one for u ¼ 11) up to the bounds

ð280174; 280783Þ obtained with u ¼ 16. Using the fact that

rings involved in defect domains have a number of points

given by a Fibonacci number, it is easy to get all other bounds

as given in Table 1.
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Figure 10
Strip cut in a square lattice (a). This strip is a good approximation of the
ring of defects between points s ¼ 101 and s ¼ 155 containing 55 points.
The colour of the points corresponds to their type of Voronoi cells. Point
s ¼ 101 is the first green point down, then points are numbered,
increasing by 21 going up or decreasing by 34 going right. This strip can be
divided into three strips of heptagons, hexagons and pentagons. (b, c)
Continuation of the grain towards the other boundary on the same square
grid fðx; yÞ : x� 1 $ sþ 34; y� 1 $ sþ 21g which can be considered as
folded on a cylinder with axis perpendicular to the strip. This grain (in
grey) is limited by an inner border (b) and an outer border (c). Blue
points (pentagons) in (b) are those of (a), orange points belong to the
large grain. The grain is bordered in (b) by a Fibonacci chain defined by
the lower part of the grey domain. There are 21 steps in it containing 21
blue points and 34 orange points (hexagons of the large grain). The other
border of the grain [in (c)] is geometrically identical, but it contains 34
green points (heptagons of the next ring of defects) and 21 red points
(hexagons of this ring of defects). This next ring of defects from s ¼ 290
to s ¼ 378 contains 89 points. The beginning of this ring is expanded in
(d), with two Fibonacci chains, one which closes the grain from s ¼ 156 to
s ¼ 289 and the other which begins the next grain, from s ¼ 379 to
s ¼ 800. The two Fibonacci chains could be coded with long (purple) and
short (blue) segments forming a ‘staircase’. Steps of the first chain appear
with �=2 angles, but for the other angles are �=4. In fact the strip should
be deflated (stretched along by a rational approximant of � and
compressed across by an approximant of 1=�, that is a Poisson shear).
Introducing progressively the Poisson shear, instead of a part of a cylinder
the substrate of the grain and its two boundaries are a part of a surface
with a negative constant Gaussian curvature around the same axis. This
Poisson shear changes the rhombic cell, darker in (d), into a square. Refer
also to Figs. 11 and 12.

5 Notice that this strip is very similar to the construction of approximants of a
quasicrystal using the cut-and-projection method. It is one of the factors that
relate phyllotaxis and quasicrystals.



There is another way to look at this problem, which is

to search s for points where two parastichies are very

close to being orthogonal. This relation, which is deduced

from the results given by Yeatts (1997), is s ¼

fabs½ðfufuþ1Þ=ð4	u	uþ1Þ�g
1=2, where 	u, related to approximants

of �, is 	u ¼ 2�ð�fu � fu�1Þ. This relation gives real values for s

very close to ðf2uþ1Þ=4� but clearly different (for instance

s0b ’ 127:067 compared to sb ’ 127:085).

It will be a challenge to find an exact relation giving integer

values for the bounds without using the functions ‘round’,

‘floor’ or ‘ceiling’ extracting integers from non-integer

numbers.

The ratio between the radii of two successive grain

boundaries is proportional to ðf2uþ1=f2u�1Þ
1=2
, very close to the

golden ratio.

6. Conformal transformations and shearing in
phyllotaxis

In this section we show how the successive grains are sheared

relative to a perfect crystalline structure, so that each para-

stichy is a stack of deformed hexagons, starting from a square

at one boundary, through to a more symmetrical hexagon at

mid-grain, to a square at the next boundary. See Fig. 9, where

the lowest crossings correspond to square cells at the grain

boundary with d ¼ �1=2 [the third distance is the diagonal

ð2�Þ
1=2

’ 2:507, the maximal distance]. The upper crossings

correspond to hexagons with 2�=3 angles (but not perfectly

regular) at mid-grain, with a minimal distance given by

equation (4).

Phyllotaxis [equation (1)] is an example of a spiral lattice

(Rothen et al., 1993), the image D in the complex plane

w ¼ � exp i� of a regular lattice P in a domain of the complex

plane z with Cartesian coordinates. In elasticity, D is the

actual, deformed state of the material, and P is called the

natural state. The mapping is through the function wðzÞ.

One particular mapping wðzÞ ¼ w0 expðb
� � zÞ is conformal,

i.e. it is analytic, invertible, singularity free (excluding a small

domain around the origin of w), and thus without any defect

(dislocation, disclination or grain boundary). It conserves the

angles and is also unsheared (a consequence of the Cauchy–

Riemann relations imposing analyticity) (Rothen et al., 1993).

We consider a square lattice and we define its node posi-

tions by complex numbers in its plane. As an example we

consider a strip in this lattice, like that shown in Fig. 10 with

square vertices selected by it. We have to map it on a ring of a

dipole. In this example the strip is defined by a long multiple

cell of the square lattice characterized by the two vectors

b2 ¼ ð21; 34Þ and b0 ¼ ð1;�1Þ. The conformal mapping

transforms the imaginary axis into a circle, so we have to

choose this axis along the b2 vector. As complex numbers are

defined using orthogonal real and imaginary axes, we intro-

duce the real axis along the vector b1 ¼ ð34;�21Þ. To express

the argument of the mapping function we introduce reciprocal

vectors of b1 and b2 called b
�
1 and b

�
2 and defined by

bi � b
�
j ¼ �ij. Then the mapping function is wðzÞ ¼

w0 exp½2�ðb
�
1 þ ib�2Þðxb1 þ yb2Þ�, where x and y are coordi-

nates of a point z expressed in the multiple cell. The mapping

function reduces simply to wðzÞ ¼ w0 exp½2�ðxþ iyÞ� with the

scaling parameter w0.

The square lattice on P includes all points with s � 101.

Note the particular families of reticular lines, (i) ð1; 0Þ, ð0;�1Þ

and ð1;�1Þ, that are mapped into parastichies, (ii) ð21; 34Þ,

parallel to the grain boundary, that are mapped into concen-

tric circles, and (iii) ð34;�21Þ that are mapped into radial

spokes. The conformal mapping yields a spiral lattice (Rothen

& Koch, 1989a), with all reticular lines mapped into equi-

angular (or logarithmic) spirals, save ð21; 34Þ (concentric

circles) and ð34;�21Þ (radial spokes). All angles are

conserved in the mapping, notably the two parastichies,

images of ð1; 0Þ and ð0;�1Þ remain at right angles and keep

the same angle with the circles parallel to the grain boundary

and with the perpendicular radial spokes. Thus, Fig. 10 is a

conformal (literally) representation of the grain boundary,

with square-shaped Voronoi cells. However, the density of

points jdw=dzj�2 ¼ jbwj�2 is not uniform and the conformal

mapping must be sheared, from the grain boundary outwards,

to achieve the required uniformity. Accordingly, the hitherto

defect-free phyllotaxis will exhibit other grain boundaries

further out. Remarks: (a) the mapping is enacted outwards, as

occurs naturally in the growth of phyllotactic structures,

younger florets pushing out the older ones and squeezing in-

between at grain boundaries; (b) in the central core of the

phyllotaxis, for small s in the range s< 32, it is difficult to

identify precise rules even if the structure corresponds to the

smoothest way to accommodate non-singular topological

defects (Rivier et al., 2005).

Fig. 10(a) is a representation of the lattice P. It consists of

adjacent, non-overlapping parallel strips of equal thickness

generated by the translation b1. Each strip is bounded by two

reticular lines parallel to ð21; 34Þ and contains 55 points, the

diagonal of the unit square goes as the thickness of the strip.

The two points are separated by �s ¼ 55. The first strip is the

grain boundary itself. Successive strips are mapped confor-

mally by wðzÞ ¼ w0 exp½2�ðxþ iyÞ� into concentric rings

containing 55 points each, but with thickness increasing

exponentially �ðsþ 55Þ ¼ �ðsÞ expð55Þ, where � ¼ jwj. In

order to have a uniform density of sites in the presented

phyllotaxis with �ðsÞ ¼ aðsÞ
1=2
, the successive strips in P must

be squeezed across and extended through a Poisson shear

strain (Fig. 10d).

7. Relation with quasiperiodic structures

The way dislocation dipoles are organized along circles is

strongly related to one-dimensional quasicrystals (Rivier,

1986). A Fibonacci one-dimensional quasicrystal can be

obtained using an inflation–deflation rule iteratively applied to

a sequence of long and short segments. This inflation–deflation

rule is L ! Lþ S and S ! L. Starting simply from a short

segment, this specific rule gives a quasicrystal after an infinite

number of iterations, or with a given number of iterations, a

finite structure with a number of short and long segments

given by two successive Fibonacci numbers. Consider dipoles
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along circles in the phyllotaxis. There are isolated dipoles (a

heptagon and a pentagon in contact) and a pair of close

dipoles. Consider now the rule: change an isolated dipole into

a pair of dipoles and change a pair of dipoles into a pair and an

isolated dipole. It is the rule we have going from one ring of

dipoles to the next ring. So there is an inflation–deflation

symmetry associated with radial change relating defects in this

structure. This can be checked by counting the number of pairs

of dipoles or of isolated dipoles which are successive Fibonacci

numbers, on circles of defects. Fig. 10, which is similar to

figures used in the presentation of a one-dimensional quasi-

crystal defined by cut and projection, is related to this prop-

erty.

7.1. Successive grain boundaries

The first complete grain boundary ð13; 8; 13Þ marks the

beginning of a regular, inflatable phyllotaxis, where the

circular grain boundaries are words, sequences of letters L and

S, where L labels a dislocation (oriented dipole 7/5) and S an

isolated hexagon in the grain boundary. The sequences are

obtained by inflation rules S ! L, L ! LS. Consider three

successive grain boundaries, with sequences wi�2, wi�1 and

wi. Inflation implies that the sequence wi is given by conca-

tenation of the previous two, wi ¼ wi�1 � wi�2, thus

wi ¼ LSLLSLSL is a concatenation of wi�1 ¼ LSLLS with

wi�2 ¼ LSL. The word wi has jwij ¼ fi letters, fi�1 L and fi�2 S.

It starts with LS and ends with LS for i> 3 with even fi, with

SL for i> 3 with odd fi. A circular word is also a palindrome.

Let wT be the sequence w read backwards (transposed in

matrix notation). A palindrome p ¼ pT is a sequence of letters

that reads the same either way, e.g. LSLSL, ‘hannah’ or ‘eve’.

The word wi can also be written as the concatenation of two

palindromes wi ¼ pA � pB, with wi�1 ¼ pASL; pB ¼ SLwi�2

for an even number of letters, and wi�1 ¼ pALS; pB ¼ LSwi�2

for an odd number of letters. Thus jpAj ¼ fi�1 � 2,

jpBj ¼ fi�2 þ 2. For inflation to be consistent from one grain

boundary to the next, one requires jpAj> jpBj, so that the

shortest complete grain boundary is ð13; 8; 13Þ, a palindrome

of 21 letters L and S, written on a circle and readable in either

sense, since w ¼ pA � pB ¼ pB � pA (by circular invariance)

equals wT ¼ pTB � pTA.

Thus, piA ¼ pi�1
A LSpi�2

A ¼ pi�2
A ½SL� pi�3

A ½LS� pi�2
A for i even,

and piA ¼ pi�1
A SLpi�2

A ¼ pi�2
A ½LS� pi�3

A ½SL� pi�2
A for i odd, with

p3A ¼ 1.

7.2. Boundary of large hexagonal rings

A large hexagonal ring lying on the plane is nevertheless

topologically equivalent to a perfect hexagonal tiling wrapped

around a finite cylinder limited by two parallel circles. With

such distortion of the ring, hexagonal cells are perfect regular

hexagons and so this geometry can be seen as a multiple

crystallographic cell of the hexagonal lattice with two identi-

fied opposite sides. The vectors that are the basis of the

multiple cell entirely characterize the topology of its related

large hexagonal ring. In order to precisely define the bound-

aries of a ring we will consider in it all pentagonal sites which

are just before and all heptagonal sites just after associated

with the following narrow hexagonal ring. With this definition

of large ring boundaries, the set of all large rings entirely

covers continuously the whole structure. They are perfect

topological hexagonal structures, each defined by a crystal-

lographic multiple cell, the multiplicity of which is given by the

number of points in it. The departure from the hexagonal

coordination only results from the junction between succes-

sive rings.
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Figure 11
Two examples of hexagonal rings: (a) with 134 hexagonal sites (red),
completed with 21 pentagonal sites (blue) on the inner border and with
an outside border containing 34 heptagonal sites (green) and 21
hexagonal sites (red); (b) with 422 hexagonal sites (red), completed with
34 pentagonal sites (blue) on the inner border and with an outer border
containing 55 heptagonal sites (green) and 34 hexagonal sites (red). The
inner border has blue points inside, with zigzag steps between blue points
containing one or two red points. This is labelled l or s in (a). The outer
border has red points on the outside with one or two green points
between two red points. The inner and outer sequences of l and s are the
same, starting at the first ‘blue point’ or the first ‘green point’. Three
families of parastichies are clearly visible: they are characterized by three
Fibonacci numbers ðfu�1; fu; fuþ1Þ indicating the increase of indices
jumping from a point to a neighbouring point following a parastichy.
These numbers are indicated on the figure [they correspond to u ¼ 9 for
(a) and u ¼ 10 for (b)]. Notice that if we orient the border following
parastichies defined by the smaller increase given by fu�1, the borders
in (a) and (b) are in reverse orientation: this is associated with the parity
of u.



The inner border of a ring is a zigzag line containing

pentagonal sites whose number is given by a Fibonacci

number fu�1 and hexagonal sites whose number is fu. Fig. 11

gives two examples of hexagonal rings: one containing 134

hexagons, characterized by the medium neighbour separation

�s ¼ f9 ¼ 34, the other with 422 hexagons and �s ¼ f10 ¼ 55.

Consider such a ring as a hexagonal lattice, with points on

vertices of regular triangles, wrapped around a cylinder and

with the primitive cell defined by two vectors a; b defining

elementary translations from a point to its first neighbours

defined by fu�1 and fu. Then the ring can be seen as a multiple

cell defined by two vectors expressed in the primitive cell by

coordinates ðfu�1;�fuÞ and ðx; yÞ, where x and y depend on the

ring width. The area of the multiple cell, using the area of the

primitive cell as unit, is given by the determinant

fu�1 x

�fu y

� �

:

It is the number of points in the multiple cell.

Wrapping of the multiple cell is obtained by identification

of the translation ðfu�1;�fuÞ to the identity which is the result

of gluing of two sides of this cell. The two other sides give the

two boundaries of the ring. This type of description shows that

the two boundaries are equivalent with the translation ðx; yÞ.

Counting the number of points in the ring amounts to counting

the number of points in the cell, but in the cell the two

boundaries are equivalent, so both count for one. Then we

have to add to the cell area the number of points on a border,

which is fu�1 þ fu. It follows that the number of points in the

ring including pentagonal sites inside and heptagonal and

hexagonal sites outside, as in Fig. 11, is given by the deter-

minant

fu�1 xþ 1

�fu yþ 1

� �

:

In the example of Fig. 11(a) this is

21 0

�34 10

� �

with x ¼ �1 and y ¼ 9 giving 210 sites in the ring. For Fig.

11(b) it is

34 13

�55 �5

� �

with x ¼ 12 and y ¼ �6 giving 545 sites in the ring.

7.3. From boundary to boundary

It is convenient to refer to rings by the number u in fu
corresponding to their most visible parastichy. Their bound-

aries have fu þ fu�1 ¼ fuþ1 points. How is the outside border

for u related to the inside border for uþ 1? Fig. 12 shows this

relation with the example u ¼ 9 so with fu ¼ 34 and fuþ1 ¼ 55.

A chain can be described as a chain of long segments (two

heptagonal or pentagonal sites separated by two hexagonal

sites) or short segments (two heptagonal or pentagonal sites

separated by one hexagonal site). In this example the first

chain is coded LLSLLSLSLLSLLSLSLLSLS and the other

is coded LLSLLSLSLLSLLSLSLLSLSLLSLLSLSLLSLS,

but it is very important to notice that the chains are oriented in

order to have an increase of site index when jumping from

their first site (first heptagon or pentagon) to the close one

corresponding to the positive Fibonacci number fu�1 for the

first chain or fu for the other. Then the orientation of the two

chains is reversed. Nevertheless, as chains are palindromes,

using another origin with a circular permutation leads to a

symmetric representation.

The inflation law relating the two chains is L ! LS and

S ! L, as usual for Fibonacci chains, but this breaks the

symmetry. It is then possible to have a law preserving the

palindromic symmetry, but relating a chain defined by u� 1 to

a chain defined by uþ 2. This law, which is L ! LSLSL and

S ! LSL, relates chains of lengths fu and fuþ3. This law works

perfectly well if lengths are even numbers. If lengths are odd

numbers, the first two letters obtained this way have to be put

at the sequence end to respect symmetry.

It is possible to conclude that the boundaries are related by

symmetry operations. Inside a given ring the inner and the

outer boundaries are related by some kind of translation, but

which appears in the plane as a spiralling transformation

coupling a rotation and a radial expansion. Then going to the

next ring there is an inflation symmetry associated with a

reversal of orientation.

8. Noble phyllotaxis versus false phyllotaxis

8.1. Other values of the parameter k and their approximants

All the properties we have discussed above are a conse-

quence of the continued fraction expansion of � which gives,
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Figure 12
The outside border of the ring with 210 sites and the inside border of the
ring with 545 sites. These boundaries are two chains of sites, one with
heptagonal sites (green) separated by one or two hexagonal sites (red)
having 55 sites, the other with pentagonal sites (blue) separated by
hexagonal sites (red) having 89 sites. Starting from the first green site
(cross) and rotating as indicated by arrows, we can describe a chain as a
succession of long ðlÞ or short ðsÞ segments. Starting from the first blue site
(cross) there is also a chain rotating in the reverse orientation. Both
chains are related by an inflation symmetry.



by truncation, convergent rational approximants (Rivier et al.,

1984). When � is a noble number, fq1; q2; . . . ; 1; 1; 1; . . .g in

continued fraction expansion it is possible to extrapolate

from � ¼ 1=� ¼ f1; 1; 1; 1; . . .g. False phyllotaxis is obtained

with other rational or irrational �, but never appears in

nature. It is interesting to follow distances between neighbours

(similar to Fig. 9 for true phyllotaxis) as a function of s and

see how they evolve from grain to grain. Consider the three

distances between a site at s and neighbouring site at sþ �si
as three functions of s with constant �si characteristic of

each grain. These three functions have minimum values

which are different, so leading to a dispersion of neighbour

distances. Going from grain to grain with new sets of �si two

minima increase but there is a smallest distance with a

minimum decreasing with s. Voronoi cells, even if they remain

hexagons in grains, become more and more elongated with

increasing s, leading to a spiderweb aspect. This is the signa-

ture of the non-uniformity associated with non-noble

numbers.

In the case of a true phyllotaxis we have seen in x3.2 that

neighbours are gathered on fu Fermat spirals (parastichies)

when they are separated by �s ¼ fu. This is because convergent

approximants of � ¼ 1=� obtained by truncation of its

continued fraction expansion have the form fu�1=fu. In the

case of non-noble numbers, the truncation of the continued

fraction expansion of � at qu leads to a principal rational

approximant f�0 ¼ ru=pu; ru; pu 2 Zg. Then some neighbours

are separated by �s ¼ pu and gathered on pu similar spirals.

Successive pu and ru are related by

pu ¼ qu pu�1 þ pu�2: ð6Þ

In a grain consider a Delaunay triangle of close neighbours.

The three edges of the triangle define three directions of

parastichies in the grain. The homogeneity of the grain

requires that these three families of parastichies, characterized

by three index separations f�s1; �s2; �s3g, are all the same in the

grain. If the three separations are given in increasing order,

the closure of edges of the triangle results in the triangular

relation �s3 ¼ �s1 þ �s2. If, in a grain, a site s is neighbouring

a site sþ pu, the triangular relation and equation (6) are

incompatible except if qu ¼ 1 (as it is for all not too small u in

true phyllotaxis). To solve this incompatibility new inter-

mediate approximants appear: to ru=pu are associated qu
approximants rðiÞu =p

ðiÞ
u with the sub-index ðiÞ 2 ½1; qu�. The

integers pðiÞu and rðiÞu are defined by p
ð1Þ
uþ1 ¼ pu�1 þ pu and

p
ðiÞ
uþ1 ¼ p

ði�1Þ
uþ1 þ pu, so we can write p

ð0Þ
uþ1 ¼ pu�1 and

p
ðquÞ
uþ1 ¼ puþ1. Using denominators of these intermediate

approximants it is then possible to satisfy the triangular rela-

tion with the separations. In this case at least one principal

approximant denominator pu appears in this list, and it

appears in qu þ 2 successive grains.

Notice that distances between sites separated by a �s related

to an approximant rðiÞu =p
ðiÞ
u are given by a similar relation to

equation (3) replacing fu�1 and fu by rðiÞu and pðiÞu . This can be

done also in order to have minimum values using equation (4).

8.2. Phyllotaxis with a noble number

Phyllotaxis is characterized by two parameters. One, �,

describes the azimuthal (circle) map �ðsþ 1Þ ¼ �ðsÞ þ 2��,

independently of the radial (growth) map rðsÞ. The radial map

defines the generative spiral rð�Þ. On a flat substrate, the

parameter 
 describes all kinds of parabolic spirals rð�Þ ¼ a�
,

but also the equiangular spiral rð�Þ ¼ a exp � (
 ¼ 1) and the

dense spiral rð�Þ ¼ a lnf1þ �g (
 ¼ 0) (Rivier & Goldar,

1998). On a curved substrate, the spiral is defined by projec-

tion and an effective growth parameter 
> 0 can be defined,

with 
0 ¼ 1=2 for a flat substrate, 
>
0 and a looser spiral for

a substrate with positive curvature, and 
>
0 and a tighter

spiral for a substrate with negative curvature (our next paper).

In this paper, we concentrate on the ‘ideal’ flat case, � ¼ 1=�,


0 ¼ 1=2 that yields a sequence of concentric circular grain

boundaries.

An infinite phyllotactic structure can be obtained from any

0<�> 1 that is a noble irrational, � ¼ fq1; q2; . . . ; qu; 1=�g,

beginning with an arbitrary rational fq1; q2; . . . ; qug and

terminating with a golden tail 1=� ¼ f1; 1; . . . ; 1; . . .g

(continuous fraction expansion with qi � 1). Now, all rationals

between 0 and 1 can be arranged and ordered on a Farey tree,

and the golden tail oscillates down the tree starting from its

defining rational fq1; q2; . . . ; qug, leading to a cascade of

regular (parastichy) transitions through grain boundaries

(Rothen & Koch, 1989a; Rivier et al., 1991; Levitov, 1991;

Rivier, 1992; Douady, 1998; Koch et al., 1998). Note that the

topological mechanism is always the same, articulated through

the golden mean 1=� ¼ f1; 1; . . . ; 1; . . .g. The actual value of

the parameter � also oscillates between narrower bounds as

the structure becomes larger. This implies also that the

measurement of � from a given, finite structure is not that

precise, and that it is collimated as the structure grows in size.

Note that there are no exceptions in nature (i.e. no false

phyllotaxis). Such a tree already appears in Koch’s thesis and

in Rothen & Koch (1989b), but the remark that it was

isomorphic to Farey is due to Rivier et al. (1991). It was made

independently by Levitov (1991). Regular and singular tran-

sitions were first introduced by Koch and Rothen. In Levitov,

the singular transition branches are even disconnected (as an

energy flow) from the main Farey tree (Lee & Levitov, 1998).

The corresponding structure has a more or less disorganized

central core moulded by the starting rational fq1; q2; . . . ; qug,

followed by the well established phyllotactic structure

moulded by the golden tail. Obviously, the structure must be

(much) larger than its core to exhibit it. Note that even for

� ¼ 1=� there is an apparent core for s � 30 within which

successive grain boundaries touch or even overlap. Topologi-

cally, the structure is perfect down to s ¼ 1 (Table 1). Overlap

occurs on a strongly negative substrate (our next paper).

False phyllotaxis examples exhibit, beyond their core,

spiderweb structures, generated by � that are either rationals,

� ¼ fq1; q2; . . . ; qu;1g, or Liouville irrationals, � ¼

fq1; q2; . . . ; qu;Q; . . .g, with the integer Q 	 qi � 1. On the

Farey tree, the Liouville irrational goes through a large

number � Q of singular transitions.
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9. Conclusions

An infinite number of sites at distance d organized on the

nodes of a triangular tiling defined by a hexagonal lattice

have the translational and rotational symmetries of this lattice.

With each node it is possible to associate a hexagon consid-

ered as its Voronoi cell. This tessellation with regular hexa-

gonal cells obeys the Euler relation F � Eþ V ¼ 0 where

F;E and V are, respectively, the number of faces, edges and

vertices in the tiling. If we consider points occupying a finite

domain limited by a circular boundary, the Euler relation

becomes F � Eþ V ¼ 1 and non-hexagonal cells appear

among the hexagonal cells. The distribution of points in the

disc therefore contains inherent defects and is no longer

invariant under the symmetry operations of classical crystal-

lography.

The algorithm of phyllotaxis builds a dense organization of

points in a disc which optimizes the homogeneity of the area

associated with each point and the isotropy of the environ-

ment of each point in a situation of circular symmetry. To

identify the laws specific to this type of organization we have

described it using Voronoi and Delaunay decompositions

which make apparent the presence of intrinsic defects. These

defects are pentagonal and heptagonal cells associated two by

two in dipoles organized along narrow concentric rings

separating larger rings containing hexagonal cells continu-

ously deformed. Such an organization can be understood by

considering two types of disorder in the organization: a metric

disorder corresponding to fluctuations of distances between

first neighbours, as the hexagonal cells are not regular, and a

topological disorder corresponding to the presence of penta-

gonal and heptagonal cells associated into dipoles (disloca-

tions). These two disorders interact to build the organization.

Notice that, as usual, dislocations are called topological

defects, but the notion of defect refers to the perfect crystal-

line structure. In phyllotaxis pentagon–heptagon dipoles are

basic constituents of the structure.

The role of pentagonal and heptagonal cell dipoles is to

introduce rows of new cells needed to maintain the homo-

geneity of area when the radius of the structure increases, as

does a dislocation in metallurgy. This organization is also

reminiscent of grains and grain boundaries of dislocations in

metals, but here the grain boundaries are imposed by the

circular symmetry whereas, in metal grain boundaries, they

result from processing treatments. Finally, a very specific order

is observed in the organization of these dipoles in concentric

grain boundaries: the radius of the grain boundaries, or the

width of grains, follows the Fibonacci series, while the

sequence of dipoles along the grain boundaries is that of one-

dimensional quasicrystalline sequences which are deduced

from each other by an inflation–deflation rule which leads to a

self-similar structure.

Thus the topological constraint of the circular symmetry

introduces an original inflation–deflation symmetry replacing

the translational and rotational symmetries of classical crys-

tallography. Still using the language of metallurgy, the Voronoi

cell and parastichies could be seen as the repeat unit and the

crystallographic lattice planes of this unconventional struc-

ture.

Rings of dipoles, the grain boundaries, with their self-similar

organization, are the fundamental characteristic of phyllotaxis.

We are investigating phyllotactic tilings on the sphere and on

the hyperbolic plane, always keeping a constant area for each

site. The geometry of the dipole rings and their succession is

the same as on the flat disc. The effect of the Gaussian

curvature of the tiled surface only concerns the width of the

hexagonal grains. So whatever is the underlying geometry,

grain boundaries are structurally blocked, without any adjus-

table parameter. This is true from a topological but also a

metric point of view.

The organization of the florets of the flowers of many plants

is the earliest known example of the implementation of the

algorithm of phyllotaxis, and it was indeed at the origin of the

development of this domain of studies. As already quoted in

x1, recent works on purely physical systems offer new exam-

ples (Rivier et al., 1984; Douady & Couder, 1996; Yoshikawa et

al., 2010).

All these examples are macroscopic assemblies of elements

such as florets, leaves, convection cells, ferrofluid droplets and

bubbles. They have in common not only a circular symmetry,

but also the ability of their elements to move with respect to

each other in order to adjust their distribution in the course of

the growth process. This symmetry and behaviour are also

presented at the microscopic level by molecular associations

of soft condensed matter and biological materials. Their

molecular interactions allow an internal mobility and their

interfacial tension in solution imposes the circular symmetry

so that they could be considered by a similar approach. This is

why we proposed it for describing collagen fibres (Charvolin &

Sadoc, 2011). If this were so, whereas in the cases of flowers or

droplets the growth is generated from the centre and in that of

the convection cells the organization builds itself at a collec-

tive transition, this growth of fibrils by addition at their surface

would provide a third example of the power of the algorithm

of phyllotaxis in structural studies.
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