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ABSTRACT

Why living forms develop in a relatively robust manner, despite

various sources of internal or external variability, is a fundamental

question in developmental biology. Part of the answer relies on the

notion of developmental constraints: at any stage of ontogenesis,

morphogenetic processes are constrained to operate within the

context of the current organism being built. One such universal

constraint is the shape of the organism itself, which progressively

channels the development of the organism toward its final shape.

Here, we illustrate this notion with plants, where strikingly symmetric

patterns (phyllotaxis) are formed by lateral organs. This Hypothesis

article aims first to provide an accessible overview of phyllotaxis, and

second to argue that the spiral patterns in plants are progressively

canalized from local interactions of nascent organs. The relative

uniformity of the organogenesis process across all plants then

explains the prevalence of certain patterns in plants, i.e. Fibonacci

phyllotaxis.
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Introduction

Throughout development, morphogenetic processes are constrained

by the chemical and physical states of the organism (Alberch, 1982,

1991), which limits phenotype variability (Maynard Smith et al.,

1985). These developmental constraints progressively restrict the

set of possible shapes that can be achieved by the organism, which

may orient development in narrow regions of the morphospace.

Such canalization of shapes during ontogenesis is believed to be

one important source of shape reproducibility in both animals and

plants, by making development of shapes largely insensitive to

genetic or environmental variations of moderate amplitudes

(Wagner, 2005; Debat and Le Rouzic, 2019) (Supplementary

information, section 1).

The spiral arrangement of organs on plant stems, called

phyllotaxis, is a striking example of phenotypic bias in

development. In spiral phyllotaxis, plant organs form conspicuous

spirals, the numbers of which are usually terms of the Fibonacci

sequence (Box 1). This phenomenon suggests that, during growth,

genetic or physical mechanisms constrain the system to produce

specific numbers of spirals, a phenomenon sometimes referred to as

‘numerical canalization’ (Battjes et al., 1993). The angle between

two consecutive organs on the stem, called the divergence angle,

which is close to the golden angle (∼137.5°; see Glossary, Box 2)

also appears to be canalized for the vast majority of measurable

spiral phyllotaxis (Box 1).

Various conceptual and computational models have been used to

study the properties of spiral phyllotaxis (reviewed by Douady and

Couder, 1996a,b; Adler et al., 1997). Some models assume a constant

divergence angle, and derive from this that spiral numbers must be in

the Fibonacci sequence (Bravais and Bravais, 1837; Hirmer, 1931;

Fowler et al., 1989; Battjes et al., 1993). Others make assumptions on

the organ initiation process itself, and show that both a constant

divergence angle close to the golden angle and Fibonacci spirals may

emerge from the dynamic interaction between recently created organs

(Schwendener, 1878; Douady and Couder, 1996a,b; Atela et al.,

2003). Before technology became available to observe the actual

molecular or physical actors governing phyllotaxis patterns, early

studies suggested the existence of abstract mechanisms that could

produce phyllotaxis patterns at a macroscopic level and studied their

theoretical properties. However, a clear picture of what exactly governs

the canalization of patterns during plant growth remains elusive.

Here, our aim is twofold. Our first objective is to give an articulate,

concise and accessible introduction to the key concepts related to the

analysis and modeling of spiral phyllotaxis patterns. We focus on

geometric explanations that are central to the understanding,

abstracted from molecular or physical mechanisms, while keeping

the mathematics light. Our second aim is to investigate the nature of

the process(es) that canalize phyllotaxis patterns so efficiently. The

Fibonacci property of spiral patterns observed in plants is suggested

to result from developmental constraints (Maynard Smith et al., 1985)

imposed by the close packing of organs at the tip of growing stems

(Mitchison, 1977), but how is the divergence angle canalized?

Are Fibonacci properties and divergence angle canalizations related?

To address these questions, we show how robust and conspicuous

spiral phyllotaxis patterns are channeled by purely geometric

developmental constraints throughout plant development, and we

detail the origin of these constraints.

Overall, we propose that a coherent view emerges from the

collective effort to understand phyllotaxis, in which the competition

of organs for space in the shoot apical meristem (SAM) imposes

simple, local and robust geometric rules for the ring of newly

formed organs around the SAM (front). As growth accelerates

during development, the shape of the front formed by the previous

organs constrains – increasingly accurately – the position of the next

ones, and geometrically channels phyllotaxis into a restricted

number of patterns. This mechanism can explain both the universal

presence of Fibonacci phyllotaxis in plant patterns and its

exceptions (depending on the variation of the growth rate),

suggesting that phyllotaxis patterns are continuously canalized

during plant development by purely local geometric constraints.

Spiral phyllotaxis patterns

Phyllotaxis patterns are usually classified into either spiral (Fig. 1A)

or whorled (Fig. 1B) motifs according to the number of lateral organs

attached at each node. In the large class of spiral phyllotaxis on whichReceived 14 October 2019; Accepted 13 August 2020
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we focus in most of this paper, the patterns are usually described by

two families of visual spirals: the parastichies (see Glossary, Box 2;

Fig. 1C). In the early 19th century (Braun, 1831), it was recognized

that the numbers of spirals of these clockwise and counterclockwise

parastichies are, generally, two consecutive numbers of the Fibonacci

sequence, called the phyllotaxis mode (see Glossary, Box 2; Fig. 1D,

E). Unusually for biological systems, these spiral numbers only

deviate marginally from this rule (around a few percent) (Fierz, 2015;

Swinton et al., 2016), suggesting strong, relatively universal

developmental constraints (Maynard Smith et al., 1985).

Box 1. Fibonacci maths: a minimal digest

Fibonacci sequence. In mathematics, the celebrated Fibonacci sequence

is defined as the sequence of integers:

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; � � � ;

where the first two terms, 1 and 1, are given and any term of rank greater

than 2 is defined as the sum of the two preceding ones, e.g. 89=34+55. If Fn

denotes the nth term, the sequence can be compactly defined as:

F1 ¼ 1; F2 ¼ 1;

Fnþ1 ¼ Fn þ Fn�1:

ð1Þ

Related sequences can be constructed based on the same rule by

changing the two initial terms. For example, changing the first two terms to 1

and 3 makes the Lucas sequence:

1; 3; 4; 7; 11; 18; 29; 47; 76; 123; � � � :

A key property related to phyllotaxis stems from the sequence of ratios of

consecutive terms of the Fibonacci sequence:

1

1
;

2

1
;

3

2
;

5

3
;

8

5
;

13

8
;

21

13
;

34

21
;

55

34
;

89

55
;

144

89
; � � � ; ð2Þ

or in decimal notation with a 10−4 precision:

1:0; 2:0; 1:5; 1:6667;1:6;1:625; 1:6154; 1:6191; 1:6178;1:6182; 1:6180; � � � ;

showing that the consecutive values get closer and seem to converge

toward a particular real number. It can be easily shown using Eqn 1 that this

is indeed the case, and that this number is the golden number,

ϕ=1.61803…. The Lucas sequence shows the same property, i.e. that the

ratio of two consecutive numbers tends toward the golden number.

The golden number. The golden number is the irrational number:

f ¼ 1 þ
ffiffiffi

5
p

2
¼ 1:61803 � � � :

ϕ has a simple geometric interpretation (A). Take a segment of unit length

and divide it so that the ratio of the large segment (yellow) over the small

(red) is the same as the ratio of the whole segment (yellow+red) over the

large (yellow). If x is the length of the large (yellow) segment then this writes:

x

1 � x
¼ 1

x
: ð3Þ

This leads to a quadratic equation with the unique positive solution:

x ¼
ffiffiffi

5
p

� 1

2
¼ 0:618 � � � :

Simple algebra shows that the proportion
1

x
, corresponding to the conserved

ratio, is just ϕ:

1

x
¼ 2

ffiffiffi

5
p

� 1
¼ 1þ

ffiffiffi

5
p

2
¼ f:

Due to the geometric fact that ϕ is the unique real number that scales

segments so that this scaling factor is preserved in their concatenation (A), ϕ

has been called the golden ratio and can be found in various human

creations (e.g. Livio, 2008). Interestingly, ϕ verifies a number of remarkable

identities that can be derived from Eqn 3. For example, its inverse is ϕ−1:

fðf� 1Þ ¼ 1: ð4Þ

The lengths,xand1− x, of the twosegmentscan thenbeexpressed in termofϕ:

x ¼ 1

f
; ð5Þ

1� x ¼ 1� 1

f
¼ f� 1

f
¼ 1

f2
; ð6Þ

leading to approximated values x=0.618 and 1−x=0.382.

The golden angle. The golden angle is simply derived from the golden

number by subdividing a circle of perimeter 1 unit into two circular segments

of length ϕ and 1−ϕ, as if we had bent the straight segment of A into the circle

of B. On the circle, angles can be measured in different units: radians,

degrees, grads or simply in fraction of a complete turn. In phyllotaxis, it is

natural to measure angles in fractions of a turn, for example: 1/2=180°,

1/3=120°, 1/4=90°.

The fraction of a turn that corresponds to the red portion of perimeter, of

length
1

f2
, is the measure of an angle, called the golden angle, γ (B). Its

value (in fraction of turns) is thus:

g ¼ 1

f2
¼ 2� f ¼ 3�

ffiffiffi

5
p

2
¼ 0:382 � � � : ð7Þ

The golden angle value in radians is:

g ¼ 2pf�2 � 2p0:382 ¼ 2:4 rad; ð8Þ

and in degrees:

g ¼ 360�f�2 � 137:51�:

A B

1

1−xx

1
φ φ

1
=0.618... =0.381... =0.381...

1

φ
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1
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The lateral organs composing these patterns are produced by the

SAM (Fig. 1F) at a regular pace at the tip of plant axes around the rim of

a central zone (CZ). The organs and stem then growand expand to reach

their final size and shape, duringwhich they generally keep their relative

angular positions on the stem. The angle between two consecutive

organ primordia is called the ‘divergence angle’ (Schimper, 1835)

(Fig. 1G,H). In most plants, this angle does not change as the primordia

develop into mature organs. Divergence angles may either be relatively

constant during some growth phase of the stem or show gradual

variations. The imaginary curve linking the organs at consecutive nodes

of a given stem (in the order of their initiation) is called the ‘generative

helix’ (Fig. 1H), or spiral if the organs mainly stay in one plane. This

spiral winds either to the left or to the right (chirality).

On elongated stems, the divergence angle can be easily estimated

by computing its average value from the number of turns and organs

separating two overlaying leaves (Fig. 1H) on the generative helix

(Schimper, 1835). Similar estimations are difficult in compact

structures, such as flowers or cones, because one cannot easily see

the order of the organs between overlaying leaves. Rather, these

compact structures show ‘contact-parastichies’: generally, organs

do not exactly overlay and, if the structure remains compact, one can

observe a corresponding slight shift on one side (Fig. 1I). During

development, this shift always occurs in the same direction, which

creates the contact-parastichies due to the visual adjacency between

organs (Fig. 1J). These visual spirals must not be confused with the

generative spiral (see Glossary, Box 2) that can be seen as the most

horizontal possible spiral winding around the stem and which

traverses each organ in their chronological order. For spiral

phyllotaxis, the average divergence angle (when measurable) is

usually close to the golden angle (137.5°) (Box 1; Fig. 1G). Other

angles such as 99.5° (Lucas angle) can be found less frequently

(Fierz, 2015; Swinton et al., 2016). Remarkably, both the golden

angle and Lucas angle are tightly connected with the Fibonacci

sequence (Box 1), supporting the intuition that something profound

connects these botanical patterns – and their resilience to internal,

environmental and genetic variations – to mathematics.

Thus, numbers of parastichies and divergence angles both appear

to be constrained, taking their values within restricted ranges.Where

do these developmental constraints come from? Do they reflect a

single underlying mechanism, acting on the parastichy numbers, or

the divergence angle? Or are two different mechanisms at play?

The geometric link between divergence angle and spirals

To better understand the intricate relationship between divergence angle

and parastichies, consider a geometric model of organ initiation (https://

www.geogebra.org/m/q5ysr7bv#material/feycx5yb; Fig. 2A). In this

toy model, organs form, one at a time, at the rim of the meristem CZ

of radius R. The time elapsed between two consecutive organ

initiations (T ) is called a ‘plastochron’, and the azimuthal angle (α)

between these organs defines the divergence angle (see Glossary,

Box 2). As organs are produced, they immediately move radially

away from the center with a constant velocity V. For simplicity, we

assume that apex growth is regular (stationary growth), so that V, T

and α are considered as independent and constant parameters. In

addition, we measure angles as fractions of a circle: any angle is

represented by a real number between 0 and 1 (the angle unit is a

turn: 1 turn=360°, 1/2 turn=180°, 1/3 turn=120°, etc. see Box 1).

Connecting divergence angles and spiral motifs

Using this model we can simulate the growth of an imaginary apex

during a given number of plastochrons. First, observe what happens

when varying the divergence angle α (α stays constant during each

Box 2. Glossary
Convergents. Convergents of a real number x are the rational numbers

p/q, ordered by their denominator q, which are successively closer to x.

Note that the notion of closeness used here is based on the circular

distance between x and p/q (see Supplementary information, section 3).

Divergence angle (α). Angle between two consecutive lateral organs,

with respect to the shoot apical meristem (SAM) center.

Front. The ring of lateral organs in contacts around the central zone

which are necessary and sufficient to determine the position of the next

lateral organ (see Supplementary information, section 7).

Generative spiral. When the displacement between one lateral organ

and the next is constant, its repetition defines a generative spiral with a

constant plastochron T (or growth index G), and divergence angle α.

When not constant, it can still be defined but appears as a zig-zagging

spiral.

Geometric ratio (d/C ). The primordia have a typical diameter d, which

can be compared with the central zone circumference C=2πR in which

they are placed. The geometrical ratio d/C is another number without

dimension that allows us to know how many primordia one can pack

on the central zone periphery. With a packing density η, both

nondimensional numbers, G and d/C, are related by G=(π2/2η)(d/C )2

(see Supplementary information, section 2).

Golden angle (γ, gamma).Angle, denoted γ, associated with the golden

number: γ=360(2−ϕ)≈137.5°. Plants with spiral phyllotaxis often have an

average divergence close to γ.

Golden number, golden ratio (ϕ, phi). It is the unique positive solution

of the quadratic equation x ¼ 1þ 1

x
. It is an irrational number with value

1þ
ffiffiffi

5
p

2
� 1:61803 and usually denoted by φ.

Growth index (G). The growth of the SAM can be characterized by the

radius of the central zone, R, the centrifugal velocity V of the lateral

organs moving away from the center due to the growth, and the time

between two primordia appearance, the plastochron, T. VT is the

distance travelled by one new primordia away from the central zone

during one plastochron. If it is comparedwith the central zone radius, this

gives the growth index G=VT/R, a number without dimensions that

characterizes in a unique manner the growth regime of the SAM,

whatever its size and time scale.

Lattice, rhombic lattice.A lattice on the cylinder (with a unique generative

spiral) is a set of points of the form (kα, kG) for a fixed (α, G) and k an

arbitrary integer. Unrolled on the plane the points are aligned (see

Supplementary information, section 2). The lattice is rhombicwhen, placing

a disk of constant radius around each lattice point, the radius can be tuned

so that each disk is in contact with four neighbors (sometimes six).

Mode. The mode of a spiral phyllotaxic pattern is a pair of ordered

integers (i, j ) corresponding to the numbers of spirals counted in

clockwise and anticlockwise directions. A convention is usually set to

order these two numbers either in ascending or descending order.

Parastichies. Conspicuous visual spirals or helixes that appear on the

stem of plants. They result from the visual proximity or direct contact of

lateral organs on the stem. In the later case, they are called contact

parastichies.

Plastochron (T ). Amount of time separating the initiation of two

consecutive lateral organs.

Older contact neighbors. One new lateral organ is inserted between

two previous ones, with which it can be said to be in contact.

Orthostichies. Orthostichies are historically lines of lateral organs

aligned ‘vertically’ along the stem. This definition poses a problem

as, in general, these lines of organs are not exactly parallel to the stem.

Here, we define orthostichies relative to the two sets of parastichies

that form a lattice around the stem. In any given quadrilateral cell of

this lattice, if we draw the two sets of diagonals, one is more horizontal,

the other is more vertical. We define orthostichies as the more

vertical set of diagonals. Their number is the sum of the respective

numbers of parastichies.

van Iterson Diagram. The van Iterson diagram is a tree like structure in

the (α, G) plane representing lattices that correspond to rhombic lattices

(see Supplementary information, section 5).
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simulation, but is distinct between two simulations), while R=1 and

V=1 in arbitrary units (a.u.) are fixed between all simulations. For

α=1/2, the model generates two opposite straight arms at 180° of

one another (Fig. 2B). The primordia are generated on alternate

sides and move away from the center, thus leaving room for the next

primordium on the same side, every two plastochrons. The two arms

are thus composed of even and odd primordia, respectively, and

form the ‘opposite phyllotaxis’ commonly observed in plants.

Setting α=1/3 yields three emerging straight arms. Likewise, for

α=1/4, four straight arms emerge etc. (Fig. 2B).

Both α=1/5 and α=2/5 appear to have five arms (Fig. 2C).

However, the order in which the arms are generated differs:

1,2,3,4,5 for α=1/5, but 1,3,5,2,4 for α=2/5 (Fig. 2C). The

numerator p indicates the number of turns that are made before

the organ initiation occurs again in the initial orientation (i.e. on arm

one). It also indicates the number of arms that are skipped from one

initiation to the next. For example, α=3/7 yields a motif with seven

straight arms that are all visited every three turns before the

simulation comes back to the original azimuth angle for initiating an

organ, α=5/12 yields twelve arms, etc.

Shall we then conclude that if the divergence angle is defined by a

fractionp/qof a turn, then themotif always exhibitsq straight arms?Not

quite. Consider what occurs by slightly changing the value of a

divergence angle in the previous simulations, for example, α=0.401

instead of α=2/5=0.40. Note that this new divergence angle is also

rational, as 0.401=401/1000. Shallwe expect amotifwith 1000 straight

arms?We do not observe this (Fig. 2D). Instead, the previous five arms

for α=2/5 are slightly bending. By increasing the divergence angle to

α=0.41, the five arms bendmore. However, for α=3/7=0.4286, the five

bending arms disappear, replaced by seven straight arms. For α=0.43,

the seven arms bend again. However, both 0.41=41/100 and 0.43=43/

100 are rationals. Why do we not see 100 straight arms?

A different way to bend arms

For a solution, consider a different way to bend the arms of our

phyllotaxis motifs. Instead of changing the divergence angle, keep it

Brassica napus

(Brassicaceae)

Pinus sylvestris 

(Pinaceae)
Aloe polyphylla

(Asphodelaceae)
Lebanon cedar

(Pinaceae)

©

A

C D E

B

Daucus carota

(Apiaceae)

Ligustrum vulgare

(Oleaceae)

Encephalartos

horridus

(Zamiaceae)

Mammillaria elegans

(Cactaceae)

Male cone Young shoots 

P1

P2

P0
~137°

F G

5 turns

13 organs

H

I

13 21

Mammillaria

(Cactaceae)

Contraction
J

�=138.5°

Hebe odora

Fig. 1. Phyllotaxis patterns in a nutshell. (A) Examples of spiral phyllotaxis (1 organ per node) on different plant parts. (B) Whorled phyllotaxis (more than

one organ per node). (C) Individual spirals making up a spiral pattern are called parastichies. (D) Parastichies come generally in two (or three) families of spirals:

clockwise and counterclockwise. The numbers of parastichies in these two families are most of the time consecutive numbers in the Fibonacci sequence.

(E) Sometimes, a third, more vertical, parastichy family appears, called orthostichy (red line; see Glossary, Box 2) like on the fruit of Encephalortos horridus.

(F) The SAM: the organ factory (here the inflorescence meristem of Arabidopsis thaliana, photo courtesy of Jan Traas, Inrae, RDP lab, Lyon, France). Organs are

generated sequentially at precise positions on the flank of the meristem separated by a relatively constant divergence angle. (G) In general, the divergence angle

remains unchanged after internode elongation (here, inflorescence of Arabidopsis thaliana). (H) The spiral made by the imaginary curve joining the consecutive

organs is called the generative spiral. If one considers a pair of leaves with similar orientation on the stem (blue), it is easy to estimate the average divergence

angle separating these two leaves: here, mean divergence angle=number of turns/number of organs=5/13=0.385 turn=138.5°. (I) If we (virtually) contract this

structure, the leaves that are in the same direction get visually close to each other. (J) In many cases, they do not exactly overlay and actually present a small

angular deviation. This deviation spreads along the contracted structure and generates visual spirals (the parastichies and orthostichies).
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constant (e.g. α=0.41), as well asV=1 andR=1, and change the time T

between the initiation of two organs (Fig. 2E). For T=0.1, we observe

five spiraling arms, coiling clockwise away from the center. T=0.05

increases the bending of the five arms. Indeed, decreasing T

progressively coils the arms tighter around the center; the angular

positions of the points do not change, but their distance to the origin

decreases, bringing points in the different arms closer together, so that

the eye wants to connect newly neighboring points into new spirals.

For T=0.05, for instance, one can perceive, aside from the five

original spirals, a new set of 17 spirals coiling counterclockwise

from the origin. We say that the pattern is in a (5, 17) mode, or that

its number of parastichies are (5, 17) (Fig. 2E). At T=0.01, one can

still perceive the five clockwise and 17 counterclockwise spirals

close to the center, in a much tighter coil. However, on the outside,

two more sets of spirals have emerged: one with 22 clockwise

spirals, the other with 39 counterclockwise spirals. This presents a

transition of modes, common to asteraceae flower heads

(Supplementary information, section 2). Note that, the more

spirals in one of these sets, the straighter the spirals: the 5-spirals

are most coiled, the 17 are the least. For T=0.001, α=41/100, all

these spirals have coiled so much that the only pattern visible is

100 equally spaced straight arms shooting radially from the center.

Note that, in these toy-simulations, we have kept the parameters R

and V constant, and varied only the plastochron T and divergence

angle α independently. We could have obtained the same result by

keeping constant the plastochron T=1 arbitrary unit, and varying the

speed V of primordia drift instead. What matters for the patterns is

not each individual parameter but their product VT that corresponds

to the distance travelled by one primordium during one plastochron.

This defines a typical length scale that must be compared with the

size of the apex, i.e. the radius R of the CZ. The patterning is thus

governed by the ratio,G=VT/R, between these two spatial quantities

that characterizes the apex growth. This ‘growth index’ (G; see

Glossary, Box 2) can be measured directly from cuts or electron
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Fig. 2. Testing the relation between divergence angle and emerging phyllotaxis motifs using a simple kinematic model. (A) Simple kinematic model:

Organs (orange dots) are initiated at the periphery of the central zone (green disk). Primordia are initiated with a constant period T during the simulation and move

radially away from the center at a constant velocity V=1.0 arbitrary length unit/arbitrary time unit. The value of the radius is fixed to 1 arbitrary length unit.

(B) Intuition: the arms look straight for rational values and their number depends on the divergence angle α. (C) For α=1/5 and α=2/5, the arms are numbered (in

orange) and the first initiated organ (at t=0) is at the outermost end of arm 1 (green arrows labeled with 1). For α=1/5, the second initiated organ is at the

outermost end of arm 2 (green arrows labeled with 2), etc. However, for α=2/5, the second initiated organ appears at the outermost end of arm 3, separated from

arm 1 by an angle of 2/5, and the third initiated organ appears at the outermost end of arm 5, etc. (D) Slowly changing the divergence from an initial rational value

(here 2/5) shows that arms can bend and even change in number. (E) Decreasing the value of the plastochron while keeping the divergence angle constant

(here α=41/100), also induces bending of spiral arms. After some point, the spirals merge and a new set of arms appears – here, five original bending arms (left)

are progressively replaced by 17, 22, 39 and 100 straight arms (right, close-up).
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microscope pictures, even without scale, from the respective

distance of the organs (Richards, 1951). Thus, we now use the

two variables: α, G (instead of α, T ), where G can be varied by

changing the value of either T, V or R.

For a given divergence angle, the number of arms generally

depends on G (Fig. 2E). As we have seen, decreasing G increases

the number of arms. But why dowe eventually see 100 straight arms

for α=41/100? How can we explain the numbers of spirals observed

our way to 100?

Spiral arm numbers correspond to best rational approximations of the

divergence angle at different resolutions

To understand this, let us consider the numerical structure of our

divergence angle α=0.41, utilizing that each real number can be

increasingly well approximated by a unique series of fractional

(rational) numbers called its ‘convergents’ (see Glossary, Box 2;

Box 3; Supplementary information, section 3). For example, 41/100

can be increasingly well approximated by the sequence of rational

numbers:

�

0

1
;

1

2
;

2

5
;

7

17
;

9

22
;

16

39
;

41

100

�

, which, respectively, correspond

to:

0:0; 0:5; 0:4; 0:4117 � � � ; 0:40909 � � � ; 0:41025 � � � ; 0:41:

Each fraction p/q in this list is the best rational approximation of

0.41 that one can make with pieces of size 1/q or larger (Box 3;

Supplementary information, section 3) (Karpenkov, 2013). For

example, 7/17 is the best rational approximation that one can

make of 0.41 with pieces of size 1/17 or larger (i.e. it is a convergent

of 41/100) (Fig. 3A).

How do these convergents appear in the geometry of our spirals?

We have seen before that, for some range of growth index, when the

divergence α is close to a rational p/q, the pattern displays q arms, and

these arms become straighter as α moves closer to p/q. Seeing the

successions of 5, 17, 22, 39 and finally 100 arms at different growth

indexes is just the expression of the fact that 41/100 is successively

close to its convergents. As G decreases, the pairs of spirals coil onto

themselves (Fig. 2E). During this process, for a given mode, spirals

that are the least tightly wound, corresponding to the convergents

with higher denominators, and whose points are farther apart

(Fig. 3A, yellow spirals), become increasingly visible. By contrast,

the most tightly coiled spirals of the pair (Fig. 3A, blue spirals) tend to

coil even more and to disappear in the tight packing of organs as G

continues to decrease (Fig. 2E). This process leads to progressively

exhibiting pairs of spiral families, alternatively clockwise and

counterclockwise, the numbers of which run successively through

the list of denominators of the convergents of α (Fig. 3A).

When the divergence angle is the golden angle, the number of visible

spirals are consecutive numbers of the Fibonacci sequence

In the previous sections, we considered exclusively rational

divergence angles. However, all the previous conclusions remain

valid for irrational numbers: a unique list of convergents can be

defined that gives a multiresolution approximation of this number

(Supplementary information, section 3). The list of convergents is

finite for rationals and infinite for irrationals.

What about the golden angle? In 1830, Schimper and Braun

(Schimper, 1835; Braun, 1831) made the first observations of

Fibonacci phyllotaxis. They defined the divergence angle and

hypothesized that, given their observations, most often it must

belong to a sequence of rationals formed by quotients of numbers

that are two apart in the Fibonacci sequence (Box 1). Independently,

the Bravais brothers (Bravais and Bravais, 1837) made similar

observations, except that they always saw bending arms (or, on a

stem, skewed vertical rows of organs) (Supplementary information,

section 2; Fig. 1J). They realized that these numbers are actually the

first terms in the list of convergents of the golden angle g ¼ 1

f2

(Supplementary information, section 4). Note that, although the

Bravais brothers remark that γ is irrational – explaining the bending

of arms at every scale – they make no mention of its relation to the

golden ratio (see Glossary, Box 2), the relation of which to the

Fibonacci number was not as widely known as today.

According to what we discussed above, the number of spirals that

are observed in motifs corresponding to an angle of divergence γ

must be consecutive denominators of its sequence of convergents:

the fractions
0

1
;

1

2
;

1

3
;

2

5
;

3

8
;

5

13
,..., the limit of which is γ (Fig. 3B;

Supplementary information, section 4), i.e. the number of

parastichies must be pairs of consecutive Fibonacci numbers.

Must then all plants with Fibonacci phyllotaxis have constant

divergence angle γ? This is the hypothesis that the Bravais brothers

made. Here was one number that could explain the vast majority of

the plant patterns they observed, the average measured divergence

angle of which appeared to be close to γ. This hypothesis persisted

as a diktat for nearly 200 years. Yet, the brothers (Bravais and

Bravais, 1837) warn us that this might only be a guiding hypothesis

(our translation):

Box 3. Best rational approximation of a real number with

pieces of size 1/q
Imagine that we cut a pie into eight pieces (sectors) of equal size (A) and

that a guest wishes to get 1/3 of the pie. We assume that we have no

other means than offering her a number of the already cut pieces of size

1/8 (we cannot cut the initial pieces into smaller pieces). In these

conditions, to best fit our guest’s wish, it is obvious that we must give her

either two or three pieces. To make the decision between these two

options, we compare them more precisely to the actual guest’s demand

of 1/3. Two pieces (i.e. 2/8) is 0.25, whereas three pieces (i.e. 3/8) is

0.375. As 0.375 is closer to 1/3=0.333 than 0.25, we finally find it more

reasonable to give her three sectors. We can say that 3/8 is the best way

to approximate our given target number (here 1/3), with pieces of size

1/8, (B). Likewise, it is possible for each positive real number α≤1 to find

the best approximation of this number with pieces of size 1/q, q being an

integer (q=8 in the previous example). Note that p≤q as, by trying

different values p=0, 1, 2,⋯, all the possibilities of approaching α≤1 have

been explored as soon as p=q. The higher q, the smaller the piece. For

each value of q, there exists a number of pieces p, such that p. 1/q best

approximates our target number α (p=3 in the previous example). The

fraction p/q is called the best rational approximation of α with pieces of

size 1/q. Among the best rational approximations of a number, some are

best rational approximations in a stronger sense: we call them the best

rational circular approximations of this number (see Supplementary

information, section 3). These best rational circular approximations are

the convergents of this number.

0 1

1
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3

8
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1
8

1
3

3

8

2

8

!Origin

A B

6

HYPOTHESIS Development (2020) 147, dev165878. doi:10.1242/dev.165878

D
E
V
E
L
O
P
M

E
N
T

https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental
https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental
https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental
https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental
https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental
https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental
https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental
https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental
https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental


“Let us note once more that we are not pretending to prove in a

rigorous manner that the divergence angle is constant, but we deem it

as the most likely hypothesis in our present state of knowledge; were it

only a theoretical idea to verify, it would still be a useful guide in the

study of plant symmetry, or Phyllotaxis, as Mr Schimper calls it.”

Summary

This section has shown that, via a simple regular spiral model, there is a

strong, but subtle, mathematical link between divergence angles and

parastichies. Spiral patterns are simply geometric representations of the

fixed divergence angle with varying precision levels that are

determined by the growth index G. Straight arms indicate that the

organs move sufficiently slowly away from the center so that their

positions provide an exact estimation of the divergence angle (when

rational). In contrast, bending arms reveal that the growth index is too

large for straight arms to be visually perceptible (as one would expect

for a rational divergence angle), or alternatively, that the divergence

angle is irrational. Instead, visible arms correspond to best

approximations of the divergence angle. Owing to this property,

bending arms can appear even for rational divergence angles.

Depending on divergence angle and growth index values, one or

two spiral families can be observed (Fig. 2D,E). Reciprocally, the

numbers of clockwise and counterclockwise spirals inform us of the

possible underlying divergence angle (assumed to be constant in

this idealized situation), sometimes referred to as the fundamental

theorem of phyllotaxis (Bravais and Bravais, 1837; Adler, 1974;

Jean, 1986) (Box 4; Supplementary information, section 5).

The toy geometric model assumes that growth index and

divergence angle are independent variables and have constant

values. If the divergence angle is set to the golden angle, classical

families of Fibonacci spirals become visible. However, many other

phyllotaxis modes can be observed for other values of the

divergence angle, whether it be in nature (where they are less

frequent) or in simulations.

Fibonacci modes are predominant in plants with spiral

phyllotaxis, suggesting that something else is probably

constraining the system. In principle, either the divergence angle

or the parastichies could be constrained by the growth processes to

take precise values, consequently restricting the range of values

taken by the other through the geometrical link described

above. However, both cases raise interpretation difficulties: if

developmental constraints act directly on spirals, selecting specific

numbers of arms, how are these numbers consecutive numbers of

the Fibonacci sequence? Conversely, if developmental constraints

directly regulate the value of the divergence angles, why is this

value – most of the time – close to the golden angle? For

divergence angles deviating even slightly from the golden angle

(α=136, 137, 138, etc.), we observe spiral patterns showing large

gaps between parastichies and modes unobserved in plants

(Prusinkiewicz and Lindenmayer, 1990) (Fig. 3C). If the

divergence angle were indeed constant and equal to the golden

angle, how could the plant maintain precision, such that only

Fibonacci spirals are observed macroscopically? And why could

other divergence angles be seen occasionally, while often showing

parastichy numbers related to the Fibonacci sequence in those

cases (e.g. Lucas angle=99.5°)? These paradoxes are partly

resolved because the divergence angle and the growth index are

not independent variables in real plants.

The coupling between growth index and divergence angle

In the previous simple geometric model, we were interested in the

positions of primordia without considering their actual size nor their

physical or chemical interactions. However, in meristems, young

primordia may encompass a tissue region of several cells of diameter

and inhibit the initiation of other organs in their immediate vicinity.

Each primordium defines a zone of exclusion around it, in which no

other organ can form, which appears to be mainly determined

molecularly (Reinhardt et al., 2003; Barbier de Reuille et al., 2006;

Smith et al., 2006; Jönsson et al., 2006; Besnard et al., 2014),

although a physical (mechanical) contribution cannot be excluded

(Galvan Ampudia et al., 2016). Here, we identify the primordium

region and the inhibition zone around it as the ‘primordium’ as a

whole, without paying attention to distinction between the

primordium proper and its lateral inhibition nor to the exact nature

of the inhibition, which are not essential to this discussion.

Toward amoremechanistic model taking into account organ contacts

Many mechanistic models take into account such inhibitory action

between organs at the meristem. The most common view is that

primordia are initiated at the rim of the CZ, which is crowded by

�=135° �=136° �=137.5° �=138°

�=
1

C

(21, 34) (55, 89)

G=0.01 G=0.001

(8, 13)
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0
1

1
2

2
5

1
3

3
8

5
13

8
21

13
34
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100
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, 2
5
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, 16
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100
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�2

Fig. 3. Divergence angle convergents. (A) For each pattern (here, forG=0.1,

α=41/100), one can observe the spiraling arms in two families of parastichies

(only one if the arms are straight), turning in opposite directions, as in plants,

and whose numbers are consecutive denominators in the list of convergents of

the divergence angle, here
0

1
;

1

2
;

2

5
;

7

17
;

9

22
;

16

39
;

41

100
are the convergents of

41/100. The number of spirals in these two families define the mode. At T=0.1,

for example, the mode is (5, 17). When T decreases, the spiral motif passes

successively through modes (1, 2), (2, 5), (5, 17), (22, 17), (22, 39) until we

reach the 100 straight arms configuration, where the other 39 spirals are no

longer visible. (B) When the divergence angle is the golden angle, for

decreasing growth indexG, the spiral motif passes throughmodes (1, 2), (2, 3),

(3, 5), (5, 8), (8, 13),… that are consecutive denominators in the series of

convergents of the golden angle. These pairs of numbers are consecutive

numbers of the Fibonacci sequence. (C) Drastic change of spiral patterns in the

neighborhood of the golden angle (the growth index is fixed to G=0.1).
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young primordia (Fig. 1F; Fig. 4A). By their local inhibitory action,

these primordia inhibit the formation of new primordia, provided

they keep close enough to the CZ. However, owing to growth, the

CZ drifts away from the existing primordia and new primordia can

form as soon as sufficient space is available. This process results in

‘contacts’ between primordia at the edge of their individual

inhibitory zones (Hofmeister, 1868). These contacts reflect the

geometry of zones of inhibition, be they due to physical contact or

chemical signal. With growth, this contact pattern is often preserved

in compact structures (Fig. 4C) and remains visible in vasculature of

elongated stem portions (Plantefol, 1948; Kirchoff, 1984).

Altogether, the prevalent hypotheses governing local interactions

between organs at the tip of growing meristems are: (1) Circular

symmetry – the meristem can be approximated by a surface of

revolution (disk, cone, cylinder...). (2) Center inhibition– no organ can

form in the CZ of the circular meristem. (3) Primordia inhibition:

young primordia inhibit the formation of new adjacent organs.

(4) Tissue growth – previously formed primordia are left behind the

growing tip, or equivalently they are seen moving radially away from

the initiation zone at the tip of the SAM. The primordia themselves

grow in size, keeping their original contacts. (5) Deterministic

initiation – primordia form at the edge of the CZ when and where

overall inhibition is sufficiently low, thus establishing initial close

packing with the previous primordia.

Many phyllotaxis morphogenesis models imply, more or less

explicitly, these five major assumptions (Schwendener, 1878; Snow

and Snow, 1952; Veen and Lindenmayer, 1977; Mitchison, 1977;

Douady and Couder, 1996a,b,c; Atela et al., 2003; Atela, 2011;

Smith and Prusinkiewicz, 2006; Pennybacker et al., 2015). In the

simplest (and oldest) instance of these models (Schwendener,

1878), the geometry of meristems is abstracted as a packing of

circular organs (Fig. 4B), for which ‘contact’ parastichies can be

identified by joining each primordium to its two older contact

neighbors (see Glossary, Box 2). Depending on whether one

concentrates on the top, so-called ‘centric’ view of the meristem

(Fig. 4A,B) or on a ‘cylindrical’ view (Fig. 4C,D) the underlying

geometry is either approximated by a planar annulus or a cylinder,

respectively, which can be put into a one-to-one mathematical

correspondence (Supplementary information, section 2). Given this

correspondence, the geometric assumptions that follow are not overly

simplistic.

We thus represent the region around the meristem of diameter

D by a cylinder which, unrolled, turns into a rectangle of width

C=πD, the circumference of the CZ. The upper boundary

corresponds to the rim of the CZ and the primordia are

represented as disks with identical (for now) diameter d on the

surface of the cylinder (Fig. 4C). As the geometry of this system is

preserved for identical values of the geometric ratio (see glossary,

Box 2), d/C, up to a scaling factor, we conveniently set the CZ

circumference C=1 in our model, meaning that d should be

considered as the ratio of the primordium diameter over the diameter

of the CZ. In this cylindrical representation, angles between two

primordia are represented by the horizontal distance between their

centers with values between 0 and 1: as before, we choose the unit of

angle to be a turn. Likewise, assuming as before that the

displacement velocity V=1, the vertical distances between

successive primordia centers, corresponding as before to the

growth index G, can be thought also as the time lag that separates

their initiation (plastochron). Divergence angles α are thus

represented by the horizontal component of the vector between

pairs of consecutively initiated primordia, while growth indices G

correspond to their vertical components.

Box 4. Guessing divergence angles from spirals: the

fundamental theorem of phyllotaxis

813

*

Selected

organ

Next

organ

If we assume that a spiral motif was created with a constant divergence

angle (as with our simple geometric model), the previous analysis makes

it possible to derive information about the divergence angle from the

observation of spiral motifs. Let us illustrate how this works on an

example. Consider the pinecone with (8, 13) phyllotaxis mode in the

figure. According to the previous analysis, here is what can be deduced

from this spiral organization:

(1) Spiral numbers are the traces of fractional approximations of the

divergence angle (assumed constant in time).

(2) The accuracy of this approximation relies on the size of organs: the

smaller the organs, the more precise the approximation.

(3) The divergence angle is comprised between two convergents of the

golden angle, 8 and 13 being two consecutive numbers in the Fibonacci

sequence.

(4) More precisely, the divergence angle is comprised between 3/8 and 5/

13. Indeed we know that 8 and 13 are necessarily denominators of a pair of

consecutive convergents of the divergence angle (fractions that best

approximate the divergence angle at a precision imposed by organ size).

One of these fractions approaches the divergence angle from below,

whereas the other approaches it from above (the convergents are

alternating around their target). These convergents are of the form Fn−2/

Fn, leading to the two angles: 3/8=0.375 (135°) and 5/13=0.385 (138.6°).

(5) For a chosen initial organ, the next organ is approximately at 3×1/8

turns from the initial organ. This means that this next organ lies three spiral

arms away from theoriginal one in the eight-arm family of spirals. Similarly,

it lies approximately 5×1/13 turns away, or five arms away, in the opposite

direction, in the 13-arms family. It must then be at the intersection of these

two arms. Depending on which direction you start counting, this yields two

possible positions for the next organ. Out of these, pick the one farthest

from the center (the other choice gives the preceding organ). That organ is

shown as the intersection of dashed spirals in the picture. One can

observe that the angle is, as expected, close to 137°.

Another way to find the organ succeeding a given one is to notice that, in a

regular pattern, the initiationnumberof aprimordium increasesby thenumber

of parastichies in a family along a parastichy of that family. This gives the

property that the element in the diagonal (orthostichy) has a number sum of

the number of spirals. Using this property, all the elements can be numbered

one by one by local spiral connections, and then eventually thewhole pattern

can be numbered. Then the divergence angle can bemeasured. The spirals

thus create a reference systemwhere one can recover the exact ontogenetic

ordering and position of every organ (if we assume that the plastochron was

regular enough and did not induce permutations of organs).
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Fig. 4. Spiral and cylinder lattices. (A) Top (centric) view of a spruce meristem (micrograph courtesy of Rolf Rutishauser, University of Zurich, Switzerland).

The primordia shown here were to form needles. They are numbered by increasing age. There are eight green contact parastichies and 13 red ones. The

divergence angle is not far from the golden angle. Dashed lines indicate the front for this plant. (B) Logarithmic spiral lattice structure with (8, 13) mode mimicking

the spruce in A. The virtual primordia are expanding away from the CZ at a speed proportional to their distance from the center. (C) Cylindrical view of a digitally

unrolled pineapple. The vertical white lines represent the same line on the pineapple, and points P and P′ are also identical there. Dashed segments indicate

the front when P was the newest primordium. (D) A cylinder (rhombic) lattice corresponding to the spiral lattice in B in a specific mathematical sense. Its

parastichies are parallel lines on the unrolled cylinder. Note that there is no contact between organs 0 and 1, or 1 and 2, etc. Instead, 0 is in contact with its older

contact neighbors 8 and 13. These also give the number of parastichies. The black rhombus shows that parastichies draw rhombi. (E) van Iterson diagram (in

black) in the (α, G) plane – where α is the angular displacement (divergence angle) and G the vertical displacement between a point and the next one up in a

cylindrical lattice. Regions of constant mode (i, j ) are colored. Points labelled a-d correspond to the lattices shown with same labels (below), and point e

corresponds to panel D. Lattice a is not rhombic: the parastichy through 0, 2 and 4, etc. is not a contact parastichy. Lattices b-e on the other hand are all rhombic:

their parastichies join disks in contact and they draw a repeating pattern of rhombi. Accordingly, they all belong to the upside-down tree-like van Iterson diagram

(in black), formed by the vertical segment in region (1, 1) (the trunk) and otherwise arcs of circle (the branches).

9

HYPOTHESIS Development (2020) 147, dev165878. doi:10.1242/dev.165878

D
E
V
E
L
O
P
M

E
N
T



Using this cylindrical representation, we can upgrade the

previous descriptive toy model and make use of a mechanism of

pattern formation: our five rules come down to the simple disk

stacking model, initially introduced by (Schwendener, 1878). In this

model, disks are stacked one by one on the surface of the cylinder in

the lowest possible place above the previous disks, without overlap.

Given a rate of growth, both the plastochron and the divergence can

be read from the vertical and horizontal displacement between the

new disk and the previous one. This reflects hypothesis (5) above:

primordia form when and where inhibition is sufficiently low, i.e.

when and where there is enough space. Regularity of the divergence

and plastochron over the longer run, when it happens, is then an

emergent consequence of this fundamentally local mechanism.

Contrary to the earlier geometric model, this model enforces contact

between every new primordium and at least two older neighbors

located on opposite sides of it. This contact constraint, which can be

seen as a local spatial optimization by the plant morphogenesis,

drastically reduces the space of possible observable pairs (α, G) and is

at the origin of phyllotaxis as a self-organizing process.

Coupling of growth index and divergence: the van Iterson diagram

To understand how taking into account the contacts between

primordia reduces pattern possibilities, let us use our simple contact

model and stack disks of constant diameter d on the cylinder while

keeping α and G constant. For each value of the pair (α, G), this

process produces a regular motif (Fig. 4B,D). Joining nearest

neighbors gives rise to two (sometimes three) sets of parallel straight

lines (i.e. the parastichies). These straight lines crisscross the

unrolled stem cylinder into a lattice motif. For that reason, these

regular disk patterns are called cylindrical lattices, or lattices for

short (Fig. 4Ea-Ed; see Glossary, Box 2.). Note that, rolled back on

the cylinder, the straight parastichies are helices.

If, as in our first toy geometric model, the contact constraints are

not taken into account, α and G can take any value independently.

Each pair (α,G) gives rise to a particular latticemotifmade of two (or

three) families of parastichies. The number of parastichies in each

family (the mode of the lattice, as for the previous toy model) can be

nicely read off the index of the two disks closest to the referenceDisk

0 (Braun, 1831): if the closest disks are Disks 8 and 13, for example,

there must be eight parastichies parallel to the one through Disks 0

and 8 (Fig. 4D, red lines). Likewise, there are 13 parastichies parallel

to the one through Disks 0 and 13 (Fig. 4D, green lines). So, the

parastichy numbers, or mode, are (8, 13) here. They are also easily

counted in the corresponding centric view (Fig. 4B).

Each pair (α,G) thus corresponds to a lattice with a specific mode

(i, j ). Let us associate a unique color with each different mode (i, j )

and color each point of the α, G-plane with the color of its

corresponding lattice’s mode. This produces colored ‘(i, j )-regions’

that form a beautiful fractal pattern (Fig. 4E). These regions have

different sizes and are separated by arcs of circles, with the smaller

regions, of higher modes, accumulating down near the α-axis

(Supplementary information, section 5). This makes sense, as a

smaller G corresponds to smaller d or, equivalently, to a larger stem

diameter (i.e. a later stage of development).

However, as discussed above, in the more realistic contact model,

primordia are formed in contact with existing ones. Therefore, not all

pairs of points (α, G) realistically represent plant patterns. Indeed, in

plants, each disk (primordium) has two older contact neighbors

below it, which must be its closest neighbors. Thus, in this case, all

parastichies connect contacting disks (contact parastichies; see

Glossary, Box 2). Lattices formed with that contact property are

called rhombic lattices (see Glossary, Box 2), because the segments

joining contacting disk centers all have the same length d and thus the

parastichies partition the cylinder into identical rhombic tiles (Atela

and Golé, 2007 preprint) (Fig. 4D). Imposing the contacts of the disks

also links the geometric ratio d/C and the growth index G (or the

plastochron) as G∼(d/C)2 when contacts are assumed (van Iterson,

1907; Douady, 1998) (Supplementary information, section 2).

Moving in the α, G-plane while keeping the disks of the

corresponding lattice in contact strongly constrains the possible moves

(the reader can dynamically experiment these constraints with the online

geogebra app at https://www.geogebra.org/m/atpsecjr). Van Iterson

(1907) realized that such constraints impose moving along a tree-like

structure embedded in the α, G-plane. To show this, he expressed the

constraint for lattices to be rhombic as quadratic equations in α and G.

In the α, G-plane, these equations represent arcs of circles arranged

like branches of an upside-down tree-like figure (Fig. 4E, black

curves), each branch, that we call (i, j)-branch, traversing a unique

(i, j)-region (Supplementary information, section 5). Van Iterson

drew a remarkably precise representation of this tree, suggestive of its

fractal nature, which is now called the van Iterson diagram (see

Glossary, Box 2). Each point in the tree represents a value of α andG

giving rise to a rhombic lattice, compatible with the stacking process.

Note that most points in the α, G-plane are outside the tree and give

rise to lattices that are not rhombic (e.g. the lattice in Fig. 4Ea only has

one set of contact parastichies).

Lowering G while making sure that the corresponding lattice

remains rhombic, the lattice changes mode according to the

Fibonacci rule. In Fig. 4E, one can see the Fibonacci progression

(i, j )=(5,3)→(i, i+j)=(5, 8) in the points (b), (c) and (d) by paying

attention, in the corresponding lattices, to which disks are the older

contact neighbors of the newest disk (labeled 0). At the bottom of

the branch (i, j ), the third disk i+j becomes an older contact

neighbor (Fig. 4Ec). Decreasing G further, the older contact

neighbors must be i+j and the largest of i and j: the other choice

yields contact neighbors on the same side of Disk 0, which is not

allowed by the stacking process (Fig. 4Ed). This is exactly the

Fibonacci adding rule: i, j→max(i, j ), i+j.

In an idealized sense, a developing plant travels down the van

Iterson diagram. Monocots or dicots start on a branch of the diagram

with low mode, for instance (1, 1): the first leaf grows opposite the

cotyledon or pair of them, and the next leaf opposite to the first, etc.

As the meristem grows in girth, although the diameter of the

primordia remains roughly constant, the parameter G decreases.

Eventually, the point (α, G) corresponding to the pattern reaches a

fork where the branches (1, 2) or (2, 1) meet. In this case, going down

on either branch is allowed (this is a choice of chirality in a plant

organ). Say the pattern proceeds down the (2, 1) branch, the next

transition is then determined: following the Fibonacci rule, so it must

be (2, 3) [and not (3, 1) as contact neighbors must be on opposite

sides]. From then on, the continuous deformation of rhombic lattices

imposed by the decrease ofG inexorably yields successive Fibonacci

modes. Moreover, the zigzagging curve travelled during this process

converges on the α-axis to the golden angle γ.

Although Schwendener (also Adler, 1974) believed that lattice

deformation played a role in the pattern formation, van Iterson

initiated a paradigm, further developed by many subsequent authors

(Veen and Lindenmayer, 1977; Mitchison, 1977; Douady and

Couder, 1996a,b; Koch et al., 1998; Kunz, 1995; Atela et al., 2003)

whereby the dynamical process of pattern formation navigates, as

the parameter G varies, from a lattice (or close to it; Atela and Golé,

2007 preprint) to another, along the van Iterson diagram.

This paradigm strongly suggests that the divergence angle is

progressively canalized as the plant grows by the allowed van Iterson
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diagram trajectories towards the golden angle. However, it ignores

much. It relies on the assumption that, under the dynamical process,

patterns naturally tend to become rhombic lattices, which is only true

in restricted circumstances (Atela et al., 2003). Indeed, in general, the

stacking process yields patterns with crooked parastichies, which are

not simple lattices (Golé and Douady, 2020). Moreover, with few

exceptions (van Iterson, 1907; Douady and Couder, 1996c), works

espousing the van Iterson paradigm that patterns evolve from one

lattice to another ignore what patterns actually do in between. To

focus on these transitions, one needs a more local approach to plant

patterns than lattices. However, the van Iterson diagram can remain a

subtle, but useful, guide even in such an approach.

Canalization of Fibonacci phyllotaxis via fronts

When considering plant growth dynamics, the phyllotaxis is not

actually a sequence of stationary modes that might not have time to

stabilize and have significant transitory phases. A model is required

that also accounts for transitions between modes, localized where

primordia are formed. A logical approach concentrates on the

portion of the phyllotactic pattern most immediately responsible for

the future of the pattern, i.e. the most recent layer of primordia

directly surrounding the meristem. In the disk stacking model, this

corresponds to a ‘front’ (see Glossary, Box 2): the top layer of disks

encircling the cylinder (Hotton et al., 2006; Golé et al., 2016)

(Supplementary information, section 7). If a new primordium

appears as soon as there is enough space, the next disk added must

be in contact with disks of the front, and at the lowest possible

position. The history of a pattern can be traced via its successive

fronts, represented by a zigzagging curve joining centers of adjacent

primordia in the front (Fig. 4A-D).

The numbers of line segments joining adjacent primordia of the

front as we move along the front (Fig. 4A-D) define the front

parastichy numbers. In regular patterns (e.g. lattices), these front

parastichy numbers correspond to the usual numbers of parastichies

(the mode) of the whole pattern. The true power of the model arises

when changing the size of the disks with respect to cylinder size (i.e.

changing the geometric ratio d/C). In plants, this occurs when the

meristem’s diameter D grows as the stem matures, while the

primordia’s diameters remain of roughly equal size d.

Let us start with a regular front, i.e. with similar up (green) and

similar down (red) segments, and stack disks on it, in the lowest

possible place without overlap, while slowly decreasing the size d of

the disks as they move up (Fig. 5A-A′′). The evolution of the front

automatically generates a recursive ‘Fibonacci machine’, whereby a

front with parastichy numbers (i, j) with, say, i<j, evolves, after

successive stacking of disks of slowly decreasing size, into another

front with parastichy numbers (i+j, j), (Fig. 5A,B). This remarkable

property of fronts emerges from local ‘triangle transitions’: in general,

a new disk appears at the bottom of a notch of a front, forming a

rhombus with disks on either side of the notch (Fig. 5B′)

(Supplementary information, section 6). In this case there are no

changes to the parastichy numbers. When reducing the disk size,

however, the angles of the notches in the front open up and it is no

longer possible for the new disk to be in contact with disks on opposite
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Fig. 5. Fronts as Fibonacci machines. (A-A″) Fibonacci transition from (5, 3) to (5, 8): the starting front (A) has 5 up, 3 down segments. The up

segments are roughly parallel, as are the down segments. Disks are stacked with decreasing size. At first the transitions are all quadrilateral, without changes in

parastichy numbers (see B′), but as the disks become smaller, the notches of the front open up, forcing triangle transitions (A′). As disks seek the lowest

available space, these occur on the flatter segments (the green, up segments here, as there aremore of them than the red). Each triangle adds an extra (red) down

segment, for a total of five new down segments, which, when added to the three old ones, gives eight of them. On the other hand, there are no added up

(green) segments, but the existing ones have become more slanted, with roughly equal angles. The regularity is preserved, and this new Fibonacci front sets the

stage for the next round. (B) A triangle transition occurs because the angle of the notch 10-7-8 is too wide to form a rhombus: a disk tangent to 10 and 8 would

necessarily intersect 7. The new disk, 12 here, is tangent to 7 and 8, the side of the notch that is flattest. The insert shows that other choices either overlap

or are higher. Segment 12-8 is a net addition of a red segment, increasing the front down-parastichy number by one. (B′) A rhombus (quadrilateral) transition

keeps the parastichy numbers unchanged. (B″) A pentagon transition decreases a parastichy number by 1. This time, the angle between the segments

10-13 and 7-12 is too small to allow a rhombus.
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sides of a notch. Instead, the new disk is in contact with two adjacent

disks on the same side of a notch, these three disks now forming a

triangle. Each such triangle gives rise to an additional new parastichy

(Fig. 5A″,B). To find the lowest position, the new disk appears at the

flattest side of the notch (Fig. 5B, insert). Crucially, to obtain the next

Fibonacci parastichy number, one needs enough regularity of the front

to fall into the right places and in the right number; the flattest segments

must either be all up or all down segments of the front. (Fig. 5A′).

When starting with i=1, j=1 or j=2 (many plants do, with one or two

cotyledons serving as initial leaves), this recursive mechanism yields

the successive Fibonacci modes seen in plants (Fig. 6A,B). Systematic

simulations that sweep the parameter plane of possible angle of (1, 1)

fronts and rates of decrease of d, consistently detect this Fibonacci

pattern formation and its associated front regularity, when d (or d/C)

decreases slowly enough (Fig. 6B′, Supplementary information,

sections 6,7, Fig. S9). The mechanism is reversible in a sense: increase

d/C and the parastichy numbers will decrease, via ordered pentagon

transitions (Fig. 5B″), as happens in compositea inflorescence, where

the diameter of the CZ decreases as primordia fill up the meristem

(Fig. 6C,C′).

This model suggests that the regular geometry of the fronts serves as

the successive checkpoints in the developmental canalization of the

phyllotactic pattern: starting with a regular enough Fibonacci front, the

biological stacking-likemechanism of primordia formation predictably

yields, if the parameter d/C decreases slowly enough, a succession of

fronts that retain their regularity. The regularity, in turn, guarantees that

in the transitions, the parastichy numbers follow the Fibonacci addition

rule. Interestingly, the stacking model also predicts that, when d/C

decreases too quickly, the fronts becomes irregular and the triangle

transitions distribute on both the up and down segments of a front,

yielding parastichy numbers i, j with i/j close to, but not necessarily

equal to 1. This quasi-symmetric phyllotaxis (Golé et al., 2016) is

actually observed in many plant inflorescences such as corn, peace lily

and strawberry (Supplementary information, section 7).
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Fig. 6. Fibonacci transitions in vivo and in silico. (A) Unrolled ornamental cabbage with removed leaves. The pattern of line segments joining adjacent leaf

scars shows a sequence of Fibonacci transitions from (1, 1) to (5, 8) via a succession of clusters of triangle transitions that alternate sides. (B) Although no attempt was

made to exactly match the cabbage pattern, this computer simulation, where the diameter d of the disks decreases linearly with their height, shows the same

alternating pattern of triangle transitions between (1, 1) and (5, 8). (B′) Graph of front parastichy numbers as function of the number of iterations, from the simulation in

B, showing the red and green parastichy numbersmonotonically increase one byone to the sumof the previous two. This is a signature of regular Fibonacci transitions,

easily detectable in computer simulations. (C) Filled-in inflorescence meristem of an artichoke (scanning electron microscopy courtesy of J. Dumais, Universidad

Adolfo IbáñezFacultad de Ingenierıá y Ciencias, Viña del Mar, Chile). (C′) Graph obtained by drawing all the successive fronts on the artichoke inflorescence in

C. Three concentric fronts are shown, with parastichy numbers (34, 55), (34, 21) and (13, 21) transitioning via pentagons as fronts move closer to the center.

12

HYPOTHESIS Development (2020) 147, dev165878. doi:10.1242/dev.165878

D
E
V
E
L
O
P
M

E
N
T

https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental
https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental
https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental
https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental


The golden angle as an emergent phenomenon

A constant angle of divergence is not required in the front-based

explanation of Fibonacci pattern formation; therefore, it is not

the driving concept behind phyllotaxis morphogenesis. Is it a

by-product then?When looking at the graph of the divergence angle

along simulated Fibonacci growth (Fig. 7A,A′,B) it appears not to

be. Indeed, the divergence angle oscillates closer and closer to the

golden angle up to 30 iterations, but then it breaks up in large

oscillations, even though the pattern itself appears to be relatively

regular (Fig. 6B). Importantly, the angles between which the
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Fig. 7. Fronts and angle of divergence. (A,A′) (3, 2) and (8, 5) fronts (blue), and the next disk (dark pink) show the emergence of the golden angle,

as their parastichy numbers increase through the Fibonacci sequence. These fronts, extracted from rhombic lattices, each have identical up and identical down

segments. (A″) A slight, random perturbation of the front in A′ (the last down and up segments to the right of the front are slightly different from the others

in the front) results in a change in the order of initiation of primordia: whereas the divergence for the first and second new disk was roughly γ in A′, it is close to γ and

2γ in this case. (B,C) Angle of divergence at each iteration of the simulation of Fig. 6B. Although at first the divergence appears to converge towards the

golden angle α, it then starts oscillating widely. However, the values it hits are all close tomultiples of α. This is explained by permutations of the vertical order of the

disks, as in A″. (D) The permutations seen in B are averaged out when taking the mean of the divergence angle over a front: in the right coordinate frame, the

solid curves in this graph espouse closely the Fibonacci branch of the van Iterson diagram of Fig. 4E. The dashed lines correspond to triangle transition

irregularity (the triangle transitions cannot all happen at the same level and at the same time). (E) Visualization, in the (d, α) coordinates, of the points in the same

simulation as in B. Points outside the range shown were omitted. In blue, the van Iterson diagram, as represented in these coordinates. (E′) Same data as

in E, but averaged over one rolling front. Note the striking fit to the van Iterson diagram.
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divergence oscillates are all close to multiples of the golden angle

(Douady and Couder, 1996b; Golé et al., 2016) (Fig. 7C). This

explanation becomes clearer when inspecting the order in which the

disks appear on the front: as the disks become smaller, small

irregularities of the front may induce permutations in the stacking

order of these new disks on the front (Fig. 7A′,A″). This

permutation phenomenon is not an artifact of simulations: it is

observed in Magnolia, Arabidopsis and Birch catkins (Zagórska-

Marek, 1994; Zagórska-Marek and Szpak, 2016; Besnard et al.,

2014; Douady and Golé, 2016), and studied in the framework of

stochastic processes to account for biological noise in plant

molecular processes (Refahi et al., 2016).

Do these wide divergence angle fluctuations invalidate the

hypothesis of the golden angle being central to phyllotaxis? Not

quite. By taking the mean of the divergence angle over each front, the

permutations average out and the regularity of the divergence angle

reappears (Fig. 7D), which closely follows the oscillating

convergence to the golden angle along the van Iterson diagram

(Fig. 7E,E′). In this precise sense – although it is not its mechanistic

principle – the golden angle divergence is an emergent by-product of

Fibonacci patterning.

Biological interpretation of lateral inhibition models

In the last two decades, the molecular and physical origins of the

concepts used in phyllotaxis models, (e.g. CZ, inhibitory fields,

organ initiation threshold, growth or fronts), have been investigated

using model plants such as Arabidopsis thaliana (Kuhlemeier,

2007; Traas, 2013; Galvan-Ampudia et al., 2016; Bhatia and

Heisler, 2018). Instead of an inhibitor, an activator was found: the

accumulation of auxin (a ubiquitous phytohormone) induces organ

initiation at the CZ rim (Reinhardt et al., 2003). Auxin is mainly

synthetized in the young organs (Reinhardt et al., 2003; Galván-

Ampudia et al., 2020) and is actively transported at the meristem

tip, through membrane transporters of the PIN1 family (Reinhardt

et al., 2003; Barbier de Reuille et al., 2006; Smith et al., 2006;

Jönsson et al., 2006). Local accumulation triggers organ

outgrowth, subsequently depleting local auxin, which is equated

with the abstract inhibitory fields hypothesized in phyllotactic

models: a meristem tip is abundant with auxin, except around the

places where young organs have been initiated. The CZ that is

determined by a dynamic gene regulatory loop that maintains a

stem cell niche (Yadav et al., 2013), also contains high levels of

auxin (Barbier de Reuille et al., 2006; Vernoux et al., 2011;

Galván-Ampudia et al., 2020). However, the CZ remains

insensitive to the auxin signal, and no organ can form there

(Barbier de Reuille et al., 2006; Vernoux et al., 2011; Ma et al.,

2019). The fronts correspond to the spatial variation of auxin

concentration along the CZ rim (Fig. 8), which shows creases

between existing organs, prefiguring the positions of upcoming

initiations (Refahi et al., 2016; Galván-Ampudia et al., 2020).

This cellular work shows that all the mechanisms are local. The

intricate instabilities described explain how a primordium is

initiated at some distance of the CZ and of the other primordia,

exactly as described by Hofmeister (1868). There is no mechanism

found that imposes a fixed divergence from a distant previous

primordia, reinforcing the vision that phyllotaxis is purely the

result of front local dynamics, which canalizes the possible

outcomes.

Azimuth

A  Inhibition of fronts (model) A�   �   Inhibition at CZ periphery in the model  

B  Observed qDII maps B�  �  Measured qDII at CZ periphery

Fig. 8. Free space for next primordia (in model and observed auxin maps). (A) A (3, 5) front of disks, with an inhibitory field diffusing from them to

indicate the free space around them. Three main holes are visible at different heights. The position of the next disk is indicated by a dotted circle, as well as the

position of the rim of the central zone by a dashed line. The arrow indicates the minimum at which the new disk will be placed. (A′) Field value at the line

corresponding to the rim of the central zone, indicated by the dashed line in A. The arrow indicates the position of the new disk. (B) Average map of qDII

(quantitative negative auxin reporter: auxin is high in the dark region and low in the bright regions) after registration of several SAMs imaged with a confocal

microscope (adapted from Galván-Ampudia et al., 2020). The young organs deplete auxin at the CZ periphery (dotted circle) and create together a front that

prescribes the positions of the new primordium (indicated by an arrow). (B′) Corresponding qDII profile unrolled along the CZ periphery. Its minimum (arrow)

indicates the position of the next primordia. This curve, obtained from quantitative measurement of auxin on real SAMs (Galván-Ampudia et al., 2020), strikingly

parallels the inhibitory curves in A′ obtained from front diffusion in simple disk stacking models (A).
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Summary

Organ initiation rules in SAM and fronts provide a simple explanation

of the nature of developmental constraints at the origin of spiral

phyllotaxis patterns in plants. Contrary to original hypotheses (Bravais

and Bravais, 1837), developmental constraints apply locally to

parastichies, which in turn determine the mean divergence angle (not

vice versa). This is because all lateral organs in plant stems, be they part

of compressed or elongated structures, are initiated in a tiny region at

the SAM where competition for space is paramount. There, patterning

is dominated by the opportunistic initiation of organs as the initiation

zone progressively leaves the already initiated organs, governed by the

geometric arrangement of recently initiated organs (the fronts) and by

the plant growth (the geometric ratio d/C) and its variations.

During stem growth, phyllotaxis is progressively canalized from

a (1, 1) front with a divergence angle of 180° (1/2 turn) to higher

order Fibonacci fronts with average divergence angles that converge

to the golden angle. These features emerge from the inhibition- and

growth-based iterative process of primordia formation making

transitions from front to front. If the variation is slow enough, and

starting from a regular enough front, this localized positioning

mechanism leads to a global order – imperfect but robust. This

regularity imposes not only the continuation of the pattern but also

the successive addition of the ‘right’ numbers of spirals following

the Fibonacci rule at the transitions. The system starting with an

angle of 1/2 a turn between the first two primordia, imposes the

coarser convergents of the divergence angle: 1/2 then 1/3. Any

divergence angle that would have both 1/2 and 1/3 as its first

convergents would then be consistent with the pattern. The precise

angle is determined by the rate of decrease of the organ size relative

to the center size (d/C), and by intrinsic biological variability. As

growth continues and the size of the disks decreases, Fibonacci

modes augment due to the Fibonacci adding property of the fronts

and new convergents are imposed to the divergence angle that have

average values close to 2/5, then 3/8, 5/13, etc., thus imposing

progressively and more precisely a range of divergence angles that

converges, on front-based average, towards the golden angle,

although never exactly reaching it. For high order modes, this

process traps the divergence angle, keeping it close to the golden

angle with an amazing precision, but only on average. Therefore, the

increase in numbers of parastichies is constrained, canalized, by the

number of previous ones, via the front and a slow increase of the CZ.

This multiscale canalization process is particularly robust as the

fronts can produce many values of divergence angles at the level of

individual primordia, without modifying the macroscopic patterns

(the parastichies). This is a remarkable example of pattern

canalization during development.

This space competition occurs locally, in the notches of the

fronts, between two or three preexisting primordia. One notch does

not interact with the other notches around and, except in small

parastichy numbers, the largest notch is not in contact with the last-

grown primordia, as this one filled some recently free notch. In this

way, estimating the divergence angle and plastochron is just a

description tool, rather than a construction principle. This appears to

be meaningful as, first, at high d/C (low mode numbers), the

probability of organ initiation disorder is low (Refahi et al., 2016)

and the divergence angle oscillates robustly around a relatively

stable value, and second, even at low d/C, if that parameter does not

change for some time, the models show that the arrangements

converge towards rather regular states (Golé and Douady, 2020). On

compressed structures such as pine cones, the parastichies allow the

drawing of a putative generative spiral, and propose an ordering of

the primordia. From this, a mean divergence and plastochron can be

measured. But the positioning is not perfect, there are fluctuations,

thus the divergence and plastochron have a meaning only on average

(Fig. 7). This is especially true when the position fluctuations are

large in elongated stems, such as Arabidopsis thaliana inflorescence,

which present permutations of the order of appearance of the

primordia from a putative regular generative spiral (Besnard et al.,

2014), or in large Asteraceae inflorescences, where the models

(Douady and Couder, 1996b) show that the primordia order (and thus

divergence) can fluctuate widely, although the overall pattern is

regular: the numbers of parastichies are not disturbed, and this allows

us to define a meaningful averaged divergence.

Epistemological perspective

Phyllotaxis shows how the idealization of a pattern and its

mathematical properties can overshadow its developmental reality.

One is irresistibly attracted to think that these properties (convergents,

golden angle, Fibonacci) are the deep reason behind the amazing

phyllotaxis patterns, overlooking the iterative growth process, and its

observable missteps (Jean and Barabé, 2001; Wiss and Zagórska-

Marek, 2012; Besnard et al., 2014; Fierz, 2015). It also remarkably

illustrates that, although it may be tempting to interpret the

development of an organism with striking patterns as the result of

natural selection on these patterns, they may just result from

developmental constraints, the dynamics of which have to be

analyzed in detail to understand how they can unfold into such

surprising motifs. Here, natural selection is not on any number of

spirals or divergence angle, but on the choice between Fibonacci

spirals and quasi-symmetry. Before invoking natural selection to

explain a shape, this suggests that one has first to consider the few

possibilities left downstream of developmental canalization.

Acknowledgements

We thank Rob Dorit for useful discussions about developmental canalization, Teva

Vernoux and Jan Traas for a long-standing and fruitful collaboration on molecular

patterning at the SAM, and members of the Reproduction and Development of

Plants Lab (RDP) for their encouragement to transform a series of talks on

phyllotaxis into a primer paper.We address special thanks to the editor, Alex Eve, for

his tremendous help in editing this manuscript, and to the referees for their helpful

suggestions and remarks to make this text accessible to a wide audience.

Competing interests

The authors declare no competing or financial interests.

Funding

This research received no specific grant from any funding agency in the public,

commercial or not-for-profit sectors.

Supplementary information

Supplementary information available online at

https://dev.biologists.org/lookup/doi/10.1242/dev.165878.supplemental

References
Adler, I. (1974). A model of contact pressure in phyllotaxis. J. Theor. Biol. 45, 1-79.

doi:10.1016/0022-5193(74)90043-5
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Atela, P. and Golé, C. (2007). Rhombic tilings and primordia fronts of phyllotaxis

(preprint). http://arxiv.org/abs/1701.01361.
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