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Abstract.—Modeling across site variation of the substitution process is increasingly recognized as important for obtaining
more accurate phylogenetic reconstructions. Both finite and infinite mixture models have been proposed and have been
shown to significantly improve on classical single-matrix models. Compared with their finite counterparts, infinite mixtures
have a greater expressivity. However, they are computationally more challenging. This has resulted in practical compromises
in the design of infinite mixture models. In particular, a fast but simplified version of a Dirichlet process model over
equilibrium frequency profiles implemented in PhyloBayes has often been used in recent phylogenomics studies, while
more refined model structures, more realistic and empirically more fit, have been practically out of reach. We introduce a
message passing interface version of PhyloBayes, implementing the Dirichlet process mixture models as well as more classical
empirical matrices and finite mixtures. The parallelization is made efficient thanks to the combination of two algorithmic
strategies: a partial Gibbs sampling update of the tree topology and the use of a truncated stick-breaking representation for
the Dirichlet process prior. The implementation shows close to linear gains in computational speed for up to 64 cores, thus
allowing faster phylogenetic reconstruction under complex mixture models. PhyloBayes MPI is freely available from our
website www.phylobayes.org. [Bayesian inference; Dirichlet process; mixture models; phylogenetics; phylogenomics.]

Phylogenetic studies often rely on genetic sequences
that are sufficiently conserved to be alignable at
large evolutionary scale. The sequences of interest are
therefore typically under a regime of strong purifying
selection, characterized by site-specific constraints for
subsets of acceptable nucleotides or amino acids. Such
selective regimes in turn result in a substantial variation
across sites of the substitution process which, if not
properly modeled, may represent a major cause of
systematic errors in phylogenetic reconstruction of deep
evolutionary relationships.

Mixture models have been proposed as a natural
and simple approach for modeling site-specific effects
and have been applied to nucleotides (Pagel and
Meade 2004; Evans and Sullivan 2012), amino acids
(Koshi and Goldstein 1998, 2001; Lartillot and Philippe
2004; Le et al. 2008; Quang et al. 2008; Wang et al.
2008) and, more recently, codon alignments (Rodrigue
et al. 2010). The limiting case of countably infinite
mixtures, such as Dirichlet processes (Ferguson 1973),
can be seen as nonparametric approaches (Green and
Richardson 2001). They have been used in phylogenetics
for fitting general distributions of random effects across
sites (Lartillot and Philippe 2004; Huelsenbeck et al.

2006; Huelsenbeck and Suchard 2007; Rodrigue et al.
2010).

A particular case of infinite mixture, the CAT
model (Lartillot and Philippe 2004), was devised for
accomodating the rich structure of among-site variation
in substitution patterns present in real data. The CAT
model, implemented in PhyloBayes (Lartillot et al.
2009), has a better fit than classical empirical matrices
on many phylogenomic data sets and is less sensitive
to systematic errors (Lartillot et al. 2007; Philippe et al.
2009, 2011a, 2011b). For this reason, it is increasingly
used in phylogenomic studies, especially for solving
phylogenetic problems spanning deep evolutionary
times (e.g., Cox et al. 2008; Kocot et al. 2011). However,
the CAT model has several limitations. In particular, it is
a mixture of F81 (Felsenstein 1981) processes, such that,
upon a substitution, the probability of the final state does
not depend on the initial state. This choice was primarily
motivated by computational considerations (Lartillot
and Philippe 2004; Lartillot 2006). Yet, F81 processes
offer a poor representation of observed substitution
patterns both in nucleotide sequences, characterized by
unequal rates of transitions and transversions, and in
amino acid sequences, where the constraint of the genetic
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code results in unequal exchangeabilities between amino
acids.

A more general version of the infinite mixture, the
CAT–GTR model (Lartillot and Philippe 2004), combines
the advantages of the CAT model (a Dirichlet process
mixture on equilibirium-frequency profiles) with the
richer expressivity of general time reversible Markov
processes. However, estimating phylogenies under the
CAT–GTR model, or even under the faster CAT settings
in the case of very large phylogenomic data sets, remains
computationally challenging and requires more efficient
algorithmic strategies. To address this practical problem,
here we introduce an message passing interface (MPI)
parallelization of the PhyloBayes program, resulting in
significant gains in computational speed and making
CAT–GTR a viable alternative to both classical empirical
mixtures and the CAT model for large phylogenomic
data sets.

DESCRIPTION

Parallelization of the MCMC sampler is done
by having one master process dispatching the
computational tasks, collecting and summing the
results, and K−1 slave processes, each in charge of
a segment of the multiple sequence alignment or of
a subset of the components of the mixture. Most of
the computational burden is thus equally divided
among slaves. The MCMC proceeds in two phases:
a dynamic-programming phase, alternating with a
data-augmentation phase.

During the dynamic-programming phase, the master
broadcasts current parameter values and sends orders
to the slaves, specifying tasks to be undertaken (e.g.,
rearranging the tree in specific ways or computing the
likelihood). Each slave executes the orders and returns
to the master the information needed for the master to
decide whether to accept or reject the move. The tree
topology is updated by subtree pruning and regrafting,
according to a partial Gibbs sampling algorithm. This
move is initiated by the master randomly choosing a
subtree to be pruned and broadcasting the outcome
of this choice to all slaves. Each slave then performs
a complete scan of all possible topologies obtained by
regrafting the subtree onto the main tree, computing
the likelihood of each of the resulting topologies for
the segment of the data set under its responsibility, and
using a caching method (similar to Hordijk and Gascuel
2005) to accelerate likelihood computation. Once this
is done, each slave sends back to the master an array
contaning one single log likelihood for each regrafting
point. The master collects the arrays, sums them up
over all slaves for each regrafting position, and chooses
a regrafting position based on the Gibbs-sampling
decision rule.

The data-augmentation phase starts by having all
slaves sample a substitution history, or mapping,
from the conditional posterior distribution at each site
under their charge (Nielsen 2002; Rodrigue et al. 2008),

calculate sufficient statistics based on these substitution
mappings (Lartillot 2006), and send the sufficient
statistics to the master. Conditional on these sufficient
statistics, the master then performs updates of
the parameters of the model, comprising branch
lengths, the alpha parameter of the discrete gamma
distribution of rates across sites, and the relative
exchangeabilities between states (Lartillot 2006).
The updating of the Dirichlet process mixture over
equilibrium frequency profiles is also conditional on
the mapping-based sufficient statistics. A truncated
stick-breaking representation of the Dirichlet process
prior is used (Ishwaran and James 2001), which
represents a parameter expansion more easily amenable
to parallelization (Suchard et al. 2010) than the
classical Chinese restaurant representation (Neal
2000). In addition, we developed a hybrid between
Gibbs-sampling and Metropolis–Hastings, inspired by
(Papaspiliopoulos and Roberts 2008), for resampling
the allocations of the sites to the components of
the mixture. Our method, which improves on the
plain Gibbs sampling classically used in this context
(Ishwaran and James 2001), hinges on the realization
that most components of the truncated yet large
mixture have negligible weights, so that an exhaustive
evaluation of the likelihood of all possible allocations
of a given site is most often not necessary (see
Supplementary Information, available from Dryad
under doi:10.5061/dryad.c459h).

BENCHMARK

The MPI implementation was checked against the
serial version of PhyloBayes (Supplementary Table S1
and Supplementary Fig. S2). The scaling properties
of the parallel version were then evaluated on a
dedicated cluster (Intel Quad Core Xeon E5450 3 GHz
bi-processors, 8 cores per node, DDR2 667 Mhz, 16 Go
RAM), under linux CentOS 5.8 and using low latency
communication (Infiniband). Under either the CAT or
the CAT–GTR model (Fig. 1), for large data sets (>15000
aligned positions) close to linear gains are obtained for
up to 64 cores (eight nodes). For smaller data sets, 24–32
cores appear to represent a reasonable compromise
between computational speed and occupation of
resources. Similar gains were observed on other clusters,
although less optimal hardware (e.g., Ethernet instead of
Infiniband) or competition for the bandwidth between
jobs could possibly result in decreased efficiency when
the run is dispatched over several nodes of the cluster.
We also observed consistent differences in efficiency
between alternative architectures (e.g., Intel-Xeon vs.
AMD-opteron processors).

Comparisons with the serial version of PhyloBayes
are less straightforward, as multiple differences in the
underlying implementations and algorithms, combined
with the specific constraints inherent to parallelization,
result in different mixing behavior and computational
speed for the two implementations. From the data sets
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FIGURE 1. Gain in computational speed under the CAT–GTR (left) and the CAT (right) models. Gains are relative to a two-core computation
(one master and one slave). Open circles: bilaterian data set (79 taxa, 14 909 positions Lartillot and Philippe 2008); diamonds: plastid data set (28
taxa, 10 137 positions Rodríguez-Ezpeleta et al. 2007).

that we studied and that are sufficiently small to be
analyzed using both implementations, analyses under
both CAT and CAT–GTR appear to reach convergence
about 10 times faster under the parallel (with 32 cores)
than under the serial version. This, however, may depend
on the specific data set under investigation.

The program allows for standard Bayesian estimation
of posterior consensus trees under CAT, CAT–GTR, finite
models, and empirical matrices. As in the original serial
version, it also implements posterior predictive checks
and cross-validation methods for measuring model fit.
It can be noted, however, that both CAT and single-
matrix models are submodels of CAT–GTR. The use
of CAT–GTR therefore amounts to an implicit model-
averaging procedure, which should automatically select
the most adequate configuration, thus suggesting that
the CAT–GTR model could be used by default in many
practical cases.

BIOLOGICAL EXAMPLES

As a first example, we ran the program on a
concatenation of 62 nuclear protein-coding genes (13 087
coding positions) from 80 species representing all
major groups of Panarthropoda (Regier et al. 2010).
The nucleotide data set (21 823 aligned nucleotide
positions, excluding third codon positions and those
first codon positions encoding at least one leucine
or arginine codons, as in the original article) was
analyzed under GTR and CAT–GTR. The amino acid
recoded matrix was analyzed under GTR, CAT and
CAT–GTR. Two independent chains were run in each

case. Convergence and mixing were assessed visually
and quantified using convergence diagnostics based on
discrepancy measures between the two chains, as well
as empirical autocorrelations (Lartillot et al. 2009). Since
runs were dispatched over two clusters differing in their
architecture, in the following, we report all running times
in Xeon-equivalent days (with 32 cores per run).

In the case of the nucleotide data set, a difference
of at most 0.1 in bipartition support between the two
chains, and an effective sample size greater than 300,
were obtained after approximately 3 days under the
two models. Excluding constant positions improved
convergence and mixing. The tree inferred under
CAT–GTR (Fig. 2) is globally compatible with the original
analysis under GTR (Supplementary Fig. S3; Regier et al.
2010), although with several interesting and supported
differences, in particular within Arachnida, suggesting
that mixture models might be an interesting alternative
to classical one-matrix models for nucleotide data (Pagel
and Meade 2004; Evans and Sullivan 2012).

In the case of the amino acid data set, and excluding
constant positions, differences in bipartition posterior
probabilities not exceeding 0.15, and effective sample
sizes greater than 100, were obtained after 5 days under
CAT and 10 days under CAT–GTR. As for nucleotides,
several supported incompatibilities are observed
between the trees inferred under homogeneous and
mixture models (Supplementary Figs S4 and S5),
confirming previous observations collected across
several examples of large-scale reconstruction using
amino acid data (Lartillot et al. 2007; Philippe et al. 2009,
2011a, 2011b). On the other hand, the differences
between the two infinite mixture models, CAT
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FIGURE 2. Posterior consensus tree obtained for a 62 nuclear protein-coding genes (13 087 coding positions) from 80 panarthropod
species (Regier et al. 2010) under the CAT–GTR model. Posterior probability supports not distinguishable from 1 are not indicated.

and CAT–GTR, are more subtle and more weakly
supported (Supplementary Figs S4 and S5, see also
Stabelli et al. 2012).

As a second and larger example, a concatenate of
38 330 aligned positions for 66 animal taxa (Philippe et al.
2011a) was reanalyzed here with the MPI version under
the CAT and the CAT–GTR models. Constant positions
were removed, leaving a set of 27 290 nonconstant
positions for subsequent analysis. The estimation took

5 days under CAT, and 15 days under CAT–GTR, for
a maximum difference in posterior probability support
of 0.15. Effective sample sizes were greater than 100
for all summary statistics under CAT, but remained
small under the CAT–GTR model, particularly for
the summary statistics monitoring the mixing of the
exchangeability parameters and of the Dirichlet process.
This particular example is therefore at the limit of
tractability under the CAT–GTR model, and perhaps the
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main advantage of the use of the MPI version in the
present case lies in the faster rate of convergence under
CAT. In the present case, the consensus tree obtained
under CAT–GTR (Supplementary Fig. S6) was similar to
the tree inferred under CAT (Philippe et al. 2011a).

Altogether, when computational resources permit it,
we suggest exploring the use of the CAT–GTR model,
now rendered more tractable with the present MPI
implementation, while benefiting from faster analysis
under CAT and one-matrix models for the largest
phylogenomic data sets.

SUPPLEMENTARY MATERIAL

Supplementary material, including data files
and/or online-only appendices, can be found in
the Dryad data repository at http://datadryad.org,
doi:10.5061/dryad.c459h.
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