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Abstract

As high-throughput transcriptome sequencing provides evidence for novel transcripts
in many species, there is a renewed need for accurate methods to classify small genomic
regions as protein-coding or non-coding. We present PhyloCSF, a novel comparative
genomics method that analyzes a multi-species nucleotide sequence alignment to de-
termine whether it is likely to represent a conserved protein-coding region, based on a
formal statistical comparison of phylogenetic codon models. We show that PhyloCSF’s
classification performance in 12-species Drosophila genome alignments exceeds all other
methods we compared in a previous study, and we provide a software implementation
for use by the community. We anticipate that this method will be widely applicable as
the transcriptomes of many additional species, tissues, and subcellular compartments
are sequenced, particularly in the context of ENCODE and modENCODE, and as in-
terest shifts to long non-coding RNAs, defined primarily by their lack of protein-coding
potential rather than conserved RNA structures.

Introduction

High-throughput transcriptome sequencing (mRNA-Seq) is yielding precise structures for novel
transcripts in many species, including mammals [1]. Accurate computational methods are needed
to classify these transcripts and the corresponding genomic exons as protein-coding or non-coding,
even if the transcript models are incomplete or if they only reveal novel exons of already-known
genes. In addition to classifying novel transcript models, such methods also have applications in
evaluating and revising existing gene annotations [2, 3, 4, 5, 6], and as input features for de novo gene
structure predictors [7, 8]. We have previously [9] compared numerous methods for determining
whether an exon-length nucleotide sequence is likely to be protein-coding or non-coding, including
single-sequence metrics that analyze the genome of interest only, and comparative genomics metrics
that use alignments of orthologous regions in the genomes of related species.

Among the comparative methods benchmarked in our previous study, one of our original contri-
butions was the Codon Substitution Frequencies (CSF) metric, which assigns a score to each codon
substitution observed in the input alignment based on the relative frequency of that substitution
in known coding and non-coding regions. We showed that CSF is highly effective, performing
competitively with a phylogenetic modeling approach with much less computational expense, and
indeed we have applied it successfully in flies [10, 3], fungi [5], and mammals [4, 11, 1]. However,
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as discussed in our previous work, CSF has certain drawbacks arising from its ad hoc scheme for
combining evidence from multiple species. For example, it makes only partial use of the evidence
available in a multi-species alignment, and it produces a score lacking a precise theoretical inter-
pretation, meaningful only relative to its empirical distributions in known coding and non-coding
regions.

This paper introduces a rigorous reformulation of CSF, which frames the evaluation of a given
alignment as a statistical model comparison problem, choosing between phylogenetic models esti-
mated from known coding and non-coding regions as the best explanation for the alignment. This
new “PhyloCSF” method fully leverages multiple alignments in a phylogenetic framework, produces
meaningful likelihood ratios as its output, and rests upon the sweeping theoretical foundation for
statistical model comparison. Benchmarking on the classification datasets from our original study,
we show that PhyloCSF outperforms all of the other methods we had previously considered. Lastly,
we briefly describe our software implementation, which we make publicly available, as well as several
recent applications in fungi, flies, and mammals.

Phylogenetic tests for distinguishing coding and non-coding regions

PhyloCSF is based on the well-established theoretical framework for statistical phylogenetic model
comparison. In this context, phylogenetic models are generative probabilistic models that produce
alignments of molecular sequences, based on a prior distribution over a common ancestral sequence,
the topology and branch lengths of a phylogenetic tree relating the descendants, and a substitution
process along each branch giving the rates (per unit branch length) at which each character changes
to any other. In phylogenetic model comparison, we wish to choose between two competing models
as the better explanation for a given alignment. A standard approach is to decide based on the
likelihood ratio between the two models, which quantifies how much more probable the alignment
is under one model than under the other. This general approach has been used to explore many
different aspects of the evolution of protein-coding genes, as recently reviewed in [12] and [13].

To distinguish coding and non-coding regions, we design one phylogenetic model to represent
the evolution of codons in protein-coding genes, and another to represent the evolution of nucleotide
triplet sites in non-coding regions. These models may have one or more parameters θ that adjust
them to the genomic region of interest, e.g. the neutral substitution rate or G+C content. To
analyze a given alignment A of extant sequences, we first determine the probability of the alignment
under the maximum likelihood estimate (MLE) of the parameters for the coding model, pC =
maxθC Pr(A|Coding, θC). We similarly estimate the alignment’s probability under the non-coding
model, pN = maxθN Pr(A|Noncoding, θN ). Finally, we decide if the alignment is more likely to
represent a protein-coding region or a non-coding region based on the log-likelihood ratio Λ =
log pC

pN
. The cutoff can be chosen to achieve a certain level of statistical significance, based on

known asymptotic convergence properties of the log-likelihood ratio statistic [14, 15, 16], or it can
be chosen empirically based on classification performance in a test set; we use the latter strategy
in this work.

The dN/dS test

A standard method for detecting purifying selection on protein-coding sequences is to test for
evidence that non-synonymous substitutions occur at a slower rate than synonymous substitutions.
In the widely used PAML implementation of this test [17, 18], the codon frequencies π and the ratio
of transition to transversion rates κ are the only parameters used to determine all triplet substitution
rates in the background/non-coding model, while the coding model additionally supposes that non-
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synonymous codon substitution rates are reduced relative to synonymous rates by a scale factor
ω (also called dN/dS). PAML takes the phylogenetic tree topology as input, and estimates the
branch lengths, π, κ, and ω for each alignment. The log-likelihood ratio between the coding and
non-coding models can then be obtained from PAML’s output. (By convention, the log-likelihood
ratio is set to zero if the estimated ω ≥ 1.)

Our previous work [9] showed this to be one of the best comparative methods for distinguishing
coding and non-coding regions, outperforming our CSF metric according to standard classification
error measures. Notably however, the dN/dS test performed worse than CSF for short regions
(≤ 180nt). This is not surprising since PAML was designed for evolutionary analysis of complete
open reading frames, not short exon-length regions, which probably provide too little information
to reliably estimate both the branch lengths and codon frequencies in addition to the two rate
parameters.

PhyloCSF

PhyloCSF differs from the standard dN/dS test in two main ways. First, it takes advantage of recent
advances in phylogenetic codon models that enable much more detailed representations of coding
and non-coding sequence evolution. Specifically, while the dN/dS test uses only a few parameters
to model the rates of all possible codon substitutions [17], PhyloCSF uses empirical codon models

(ECMs) based on several thousand parameters modeling these rates [19] – one ECM estimated
from alignments of many known coding regions, and another ECM from non-coding regions. By
comparing these two rich evolutionary models, PhyloCSF can observe many additional informative
features of a given alignment compared to the dN/dS test. For example, the coding ECM captures
not only the decreased overall rate of non-synonymous substitutions, but also the different rates
of specific non-synonymous substitutions reflecting the chemical properties of the amino acids.
(Earlier codon modeling approaches also incorporate amino acid distances, e.g. [20], but to our
knowledge, these are not widely used for distinguishing coding and non-coding regions.) Also, our
ECMs explicitly model the very low rates of nonsense substitutions (giving rise to stop codons) in
coding regions compared to non-coding regions.

Second, PhyloCSF also takes advantage of genome-wide training data to provide prior infor-
mation about the branch lengths in the phylogenetic tree and the codon frequencies, rather than
attempting to re-estimate these a priori in each individual alignment. PhyloCSF assumes a fixed
tree “shape” based on the genome-wide MLEs of the branch lengths, and estimates only two scale
factors ρC and ρN , applied uniformly to all of the branch lengths in the coding and non-coding
models respectively, for each individual region analyzed. This allows PhyloCSF to accomodate
some region-specific rate variation and reduces its sensitivity to the absolute degree of conservation
– without needing to estimate a large number of parameters for each alignment, which may be
difficult for short regions.

In summary (Figure 1), PhyloCSF relies on two ECMs fit to genome-wide training data, which
include estimates for the branch lengths, codon frequencies, and codon substitution rates for known
coding and non-coding regions. To evaluate a given nucleotide sequence alignment, PhyloCSF (1)
determines the MLE of the scale factor ρ on the branch lengths for each of these models, (2)
computes the likelihood of each model (the probability of the alignment under the model) using
the MLE of the scale factor, and (3) reports the log-likelihood ratio between the coding and non-
coding models.
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Figure 1: PhyloCSF method overview. (A) PhyloCSF uses phylogenetic codon models estimated
from genome-wide training data based on known coding and non-coding regions. These models include
a phylogenetic tree and codon substitution rate matrices QC and QN for coding and non-coding regions,
respectively, shown here for 12 Drosophila species. QC captures the characteristic evolutionary signatures of
codon substitutions in conserved coding regions, while QN captures the typical evolutionary rates of triplet
sites in non-coding regions. (B) PhyloCSF applied to a short region from the first exon of the D. melanogaster

homeobox gene Dfd. The alignment of this region shows only synonymous substitutions compared to the
inferred ancestral sequence (green). Using the maximum likelihood estimate of a scale factor ρ applied to the
assumed branch lengths, the alignment has higher probability under the coding model than the non-coding
model, resulting in a positive log-likelihood ratio Λ. (C) PhyloCSF applied to a conserved region within
a Dfd intron. In contrast to the exonic alignment, this region shows many non-synonymous substitutions
(red), nonsense substitutions (blue, purple), and frameshifts (orange). The alignment has lower probability
under the coding model, resulting in a negative score.
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PhyloCSF outperforms other methods

We used the datasets and benchmarks from our previous study [9] to evaluate our new method.
Briefly, the datasets consist of known protein-coding regions and randomly selected non-coding
regions (about 50,000 total regions) in the genome of the fruitfly Drosophila melanogaster, aligned
with eleven other Drosophila species using MULTIZ [21, 22, 10]. The lengths of the regions in both
the coding and non-coding sets match the length distribution of fly coding exons. Consistent with
our previous work, we trained and applied PhyloCSF on this dataset using four-fold cross-validation,
to ensure that any observed performance differences are not due to overfitting. We assessed the
results by examining ROC curves and computing the minimum average error (MAE), the average
false positive and false negative rates at the cutoff that minimizes this average. To compare the
power of the methods for short exons specifically, we additionally computed these benchmarks only
for the 37% of examples from 30 to 180 nucleotides in length (a range which includes three-quarters
of mammalian coding exons).

These benchmarks show that PhyloCSF outperforms the other comparative methods we pre-
viously benchmarked (Figure 2, left column), effectively dominating them all at good sensitiv-
ity/specificity tradeoffs. PhyloCSF’s overall MAE was 19% lower than that of the Reading Frame
Conservation metric, 15% lower than that of our older CSF method, and 8% lower than the dN/dS
test’s. PhyloCSF also clearly outperformed the other methods for short exons (Figure 2B), with
an MAE 11% lower than the dN/dS test’s. Our previous study [9] showed that these comparative
methods in turn outperform single-species metrics based on sequence composition (e.g. interpolated
Markov models and the Z curve discriminant).

We also compared PhyloCSF to the other methods using only pairwise alignments between D.

melanogaster and D. ananassae, which we previously showed to be the best single informant for
this purpose. PhyloCSF also dominates other methods in these pairwise alignments (Figure 2, right
column), with MAE at least 24% lower for all aligned regions and at least 21% lower for the short
regions. Some of PhyloCSF’s greater relative advantage in the pairwise case arises from its ability
to produce an informative score even for regions lacking alignment with D. ananassae, based on
the composition of the D. melanogaster region and the codon frequencies included in PhyloCSF’s
generative ECMs.

Overall, these benchmarks show that PhyloCSF provides superior power to distinguish fly coding
and non-coding regions based on either multi-species or pairwise genome alignments.

Using non-independence of codon sites to increase accuracy

Like most codon modeling approaches, PhyloCSF assumes statistical independence of each codon
site from all the others in the alignment (conditional on the model parameters). We next studied
the extent to which this assumption is violated in the real alignments in our dataset, and sought
to use this to further improve our ability to distinguish the coding and non-coding regions.

One simple way of assessing the dependence of codon sites in a set of alignments is to measure
the relationship between the PhyloCSF log-likelihood ratio, Λ, and the number of sites in each
alignment, n. It can be shown that, for alignments consisting of n independent sites all generated
form either the coding or non-coding ECM, the standard deviation SD(Λ) ∝ n1/2 [16]. On the other
hand, SD(Λ) ∝ n under complete dependence of the sites in each alignment – that is, where each
alignment consists of a single randomly sampled site, repeated n times. We applied a numerical
procedure to estimate coefficients A and B in SD(Λ) ∼ AnB based on the real alignments in our
dataset. For coding regions, we found BC = 0.91 and for non-coding regions, we found BN = 0.75.
Compared to the expected values of B = 0.5 under complete indpendence and B = 1 under
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Figure 2: PhyloCSF performance benchmarks. ROC plots and error measures for several methods
to distinguish known protein-coding and randomly selected non-coding regions in D. melanogaster.
The top row of plots shows the results for our full dataset of approximately 50,000 regions matching
the fly exon length distribution, while the bottom row of plots is based only the 37% of these regions
between 30 and 180 nucleotides in length. The left-hand plots show the performance of the methods
applied to multiple alignments of 12 fly genomes, while the right-hand plots use pairwise alignments
between D. melanogaster and D. ananassae. PhyloCSF effectively dominates the other methods.
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superior discriminant in the full 12 fly dataset.

complete dependence, these results suggest strong site-to-site dependencies in the real alignments
– considerably stronger in coding regions than non-coding regions.

The differing length-dependent dispersions of Λ for coding and non-coding regions suggest
that a better classification rule could be obtained by interpreting the log-likelihood ratio for each
example in the context of the alignment’s length. This contrasts with the suggestion of the “law
of likelihood” that, under the model’s independence assumptions, any information pertinent to the
decision would already be captured in the likelihood (Hacking 1965).

We defined a new log-odds score Ψ for each alignment by assuming that Λ normally distributes
with mean and variance as different functions of n for coding and non-coding regions:

Ψ(Λ, n) = log
N

(

Λ;nµC , (ACn
BC )2

)

N (Λ;nµN , (ANnBN )2)

where N (x;µ, σ2) is the normal density and the six parameters µC , AC , BC , µN , AN , and BN are
estimated numerically from the training dataset (see Methods).

We calculated Ψ for each of the examples in our Drosophila dataset (with cross-validation) and
found that it indeed provides a superior overall discriminant between the coding and non-coding
regions (Figure 3), with an MAE 17% lower than that of Λ and 23% lower than the dN/dS test’s.
While Ψ somewhat distorts the formal inferential meaning captured by Λ, this approach exploits
information from site-to-site dependencies in a principled way at negligible additional computational
cost – in contrast to attempts to explicitly capture such dependencies in the generative codon models
[12, 13].

Implementation and availability

To facilitate the use of PhyloCSF by the community, we provide an implementation that evaluates
an input sequence alignment in Multi-FASTA format and reports the resulting log-likelihood ratio
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in units of decibans. The program supports batch processing of many alignments, and can either
evaluate the alignments as-is or search for high-scoring open reading frames within them. We also
provide the ECMs and other parameter settings for several phylogenies. The Objective Caml source
code and executables for several platforms are available at: http://compbio.mit.edu/PhyloCSF

Applying PhyloCSF in fungi, flies, and mammals

We now briefly discuss several recent applications of PhyloCSF in three different phylogenies. While
biological results of each of these applications are presented elsewhere in greater detail, together
they illustrate PhyloCSF’s usefulness in practice.

Recent efforts to reconstruct the transcriptome of the fission yeast Schizosaccharomyces pombe

based on mRNA-Seq experiments suggested numerous novel transcript models. We generated
whole-genome alignments of S. pombe with S. octosporus, S. japonicus and S. cryophilus, and
identified 89 novel protein-coding genes that are highly conserved among these species, even though
they do not show primary sequence similarity to known proteins. The mRNA-Seq reconstruction
also suggested several hundred revisions to the exon-intron structures of existing gene annotations.
PhyloCSF showed that the revised transcript models strongly tend to have higher coding potential
than the originals, confirming the quality of the proposed revisions (Rhind et al., “Comparative
functional genomics reveals fission yeast innovation in centromere structure, transcriptional control,
carbon metabolism and antisense transcription of meiotic genes”, submitted).

The modENCODE project undertook a comprehensive effort to map the transcriptome of D.

melanogaster, identifying 1938 novel transcribed loci in this well-studied genome. Using Phy-
loCSF with the 12-species whole-genome alignments, we identified 138 of these likely to represent
novel coding genes (The modENCODE Consortium, 2010). We also used PhyloCSF in concert
with the modENCODE data to identify and characterize 238 known D. melanogaster genes that
show high coding potential immediately downstream of their stop codon, suggesting a surprisingly
widespread mechanism of stop codon readthrough (Jungreis et al., “Evidence of abundant stop
codon readthrough in Drosophila and other metazoa”, submitted). PhyloCSF’s ability to system-
atically resolve small regions was especially important in this application, as many of these putative
readthrough regions are quite short (mean 67 codons).

Lastly, we have also used PhyloCSF in the human and mouse genomes, using alignments of
29 placental mammals (2X Mammals Sequencing and Analysis Consortium, in prep.). We applied
PhyloCSF to transcript models reconstructed from mRNA-Seq on 16 human tissues to identify
several candidate novel coding genes (Figure 4), despite the extensive decade-long efforts to annotate
the human genome. We also used CSF and PhyloCSF to evaluate coding potential in novel mouse
transcripts, helping to identify thousands of long non-coding RNAs with diverse functional roles
[11] (Hung et al., “Extensive and choreographed transcription of noncoding RNAs within cell cycle
promoters”, submitted).

Discussion

We have introduced PhyloCSF, a comparative genomics method for distinguishing protein-coding
and non-coding regions, and shown that it outperforms all previous methods. In addition to its
superior discriminatory power, PhyloCSF is far more theoretically attractive than our older CSF
and other ad hoc metrics, relying on a formal statistical comparison of phylogenetic codon models.
However, we note that PhyloCSF and CSF produce highly correlated scores (Pearson coefficient 0.95
in our dataset), and the new method is much more computationally demanding. Also, unlike many
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Figure 4: A novel human coding gene found with the help of PhyloCSF. Transcriptome recon-
struction by Scripture [1] based on brain mRNA-Seq data provided by Illumina, Inc. produced
two alternative transcript models lying antisense to an intron of GTF2E2, a known protein-coding
gene. PhyloCSF identified a 95-codon ORF in the third exon of this transcript, highly conserved
across placental mammals. The color schematic illustrates conservation (white), synonymous and
conservative codon substitutions (green), other non-synonymous codon sibstitutions (red), stop
codons (blue/magenta/yellow), and frame-shifted regions (orange) in the genome alignment of 29
mammals. Despite its unmistakable protein-coding evolutionary signatures, the ORF shows no
sequence similarity to known proteins.

of the other methods compared in our previous study, CSF and PhyloCSF require extensive genome-
wide training data from known coding and non-coding regions, which can present an obstacle to
their use outside of well-studied phylogenies such as mammals and flies.

The classification approach described here, in which we are given individual sequence alignments
and must decide whether each one represents a coding or non-coding region, is complementary to
de novo comparative gene predictors that attempt to parse the complete primary genome sequence
into exon-intron structures and intergenic regions. In particular, we suggest that the classification
approach is more naturally applicable to transcript models reconstructed from expression evidence
such as mRNA-Seq, where the exon-intron structure is essentially known. Moreover, the rapidly
decreasing cost of such transcriptome sequencing is arguably reducing the need for de novo structure
gene predictors, although they will remain useful for predicting possible lowly- or rarely-expressed
genes.

Methods

PhyloCSF

PhyloCSF’s trained parameters include a phylogenetic tree (with branch lengths) and two 64-
by-64 codon rate matrices QC and QN representing coding and non-coding sequence evolution,
respectively, as reversible, homogeneous, continuous-time Markov processes. To evaluate a given
alignment, we first evaluate the likelihood of the coding model as follows. We define an alignment-
specific parameter ρC that operates as a scale factor applied to all of the branch lengths in the
predefined tree. Given a setting of ρC , the substitution probability matrix along any branch with
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length t is given by P = exp(tρCQC). We can then compute the probability of the full alignment
using Felsenstein’s algorithm [23] – assuming independence of the codon sites, using the equilibrium
frequencies implicit in QC as the prior distribution over the common ancestral sequence, and
marginalizing out any gapped or ambiguous codons. We numerically maximize this probability
over ρC to obtain the likelihood of the coding model pC . We then evaluate the likelihood of the
non-coding model pN in the same way, using QN and an independent scale factor ρN , and report
the log-likelihood ratio log pC

pN
as the result.

Estimation of empirical codon models

To estimate the phylogenetic tree and the empirical rate matrices QC and QN for the species of
interest, we rely on sequence alignments of many known coding and random non-coding regions.
Given this genome-wide training data, we optimize the parameters for the coding and non-coding
models using an expectation-maximization approach. The E-step is carried out as previously de-
scribed [24, 25]. In each M-step, we update the ECM exchangeability parameters using a spectral
approximation method [26] and the branch lengths by numerical optimization of the expected
log-likelihood function [25]. Meanwhile, the codon/triplet frequencies are fixed to their empirical
averages in the training examples, and we assume a fixed species tree topology.

Parameter estimation for Ψ transformation

We estimated the parameters needed for the Ψ transformation by first defining a Z-score for each
training example i,

Zi =
Λi − niµ

AnB
i

where Λi is the PhyloCSF log-likelihood ratio for the i’th example and ni is the number of codon
sites in this example. We then numerically solve these three equations for the three parameters µ,
A, and B:

∑

i

Zi = 0

∑

i

Z2

i = 1

Cor(Z,Λ) = 0

leading to Z-scores which have mean 0 and variance 1, and do not correlate with length. We apply
this procedure separately for all the coding and all the non-coding examples in the training dataset
to obtain the six parameters µC , AC , BC , µN , AN , and BN .
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