# Phylogenetic Analyses of the Constituents of Type III Protein Secretion Systems

# Lily Nguyen<sup>1</sup>, Ian T. Paulsen<sup>2</sup>, Jason Tchieu, Christoph J. Hueck<sup>3</sup>, and Milton H. Saier, Jr.\*

Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA <sup>1</sup>Present Address: Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS G-19, Atlanta, GA 30333, USA <sup>2</sup>Present Address: The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA <sup>3</sup>CREATOGEN GmbH, Ulmer Strasse 160a, 86156 Augsburg, Germany

# Abstract

Multicomponent Type III protein secretion systems transfer Gram-negative bacterial virulence factors directly from the bacterial cytoplasm to the cytoplasm of a host eukaryotic cell in a process that may involve a single energy-coupled step. Extensive evidence supports the conclusion that the genetic apparatuses that encode these systems have been acquired independently by different Gram-negative bacteria, presumably by lateral transfer. In this paper we conduct phylogenetic analyses of currently sequenced constituents of these systems and their homologues. The results reveal the relative relatedness of these systems and show that they evolved with little or no exchange of constituents between systems. This fact suggests that horizontal transmission of the genes encoding these systems always occurred as a unit without the formation of hybrid gene clusters. Moreover, homologous flagellar proteins show phylogenetic clustering that suggests that the flagellar systems and Type III protein secretory systems diverged from each other following very early duplication of a gene cluster sharing many (but not all) genes. Phylogenies of most or all of the flagellar proteins follow those of the source organisms with little or no lateral gene transfer suggesting that homologous flagellar proteins are true orthologues. We suggest that the flagellar apparatus was the evolutionary precursor of Type III protein secretion systems.

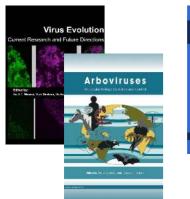
#### Introduction

Bacteria use a plethora of mechanisms for the secretion of macromolecules from the site of synthesis (the cell cytoplasm) to their sites of action. Comprehensive analyses of these systems have revealed the occurrence of seven types of systems that allow transfer of intact proteins across

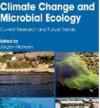
Received January 31, 2000; accepted January 31, 2000. \*For correspondence. Email msaier@ucsd.edu; Tel. (858) 534-4084; Fax. (858) 534-7108.

the cytoplasmic membranes of Gram-negative bacteria (the ABC, Sec, Vir, Conj, Tat, MscL and holin-type systems; Table 1) and nine types of systems that facilitate transport of these molecules across the outer membranes of these organisms (the Vir, Conj, MTB, FUP, AT, OMR, OMF, TEC and secretin-type systems; Table 1) (Saier, 1998; Saier, 1999) (see our website [http://www-biology.ucsd.edu/ ~msaier/transport/]). While some of these systems are found ubiquitously within the three domains of living organisms, the majority appears to be bacterial or even Gram-negative bacterial specific. Some of these systems are simple, consisting of just one or a few proteins, but others are complex, consisting of over a dozen constituents. While the former types are often protein specific, the latter types generally transport multiple protein species (Anderson et al., 1999; Rossier et al., 1999; Young et al., 1999).

Perhaps the most complex of these are the Type III protein secretion systems (TIIIPS; Vir type; TC #3.A.6) which function in the nearly exclusive export of virulence factors in Gram-negative bacteria (Lee, 1997; Hueck, 1998; Galán and Collmer, 1999). These complex systems can catalyze the translocation of proteins into the extracellular medium, the cytoplasmic membrane of the host cell, or directly into the host cell cytoplasm (Hueck, 1998; Galán and Collmer, 1999; Lee and Schneewind, 1999; Wachter et al., 1999). They thus can transfer proteins across two or three membranes: the two membranes of the Gramnegative bacterial cell envelope and the cytoplasmic membrane of the host animal or plant cell. Although it is frequently assumed that TIIIPS systems function via a onestep secretion mechanism involving a single energycoupled step, there is currently little evidence to support this postulate.


The organization of Type III protein secretory systemencoding genetic apparatuses is shown in Figure 1. All TIIIPS constituents of a particular system are usually (but not always) encoded within a single gene cluster. Moreover, in many of these clusters, similar gene orders are observed (for a detailed discussion of these similarities see Hueck, 1998). These TIIIPS system genes are often found together with those encoding secreted or potentially secreted proteins, chaperone proteins specific for these secreted proteins and transcriptional regulatory proteins controlling expression of the represented operons. Only the TIIIPS system genes in *Chlamydia* and the flagellar biosynthetic genes in *E. coli* are not located contiguously (Figure 1).

TIIIPS systems have been shown to exhibit broad specificity with respect to their protein substrates (Hermant *et al.*, 1995; Rosqvist *et al.*, 1995; Frithz-Lindsten *et al.*, 1997; Anderson *et al.*, 1999; Rossier *et al.*, 1999). Two possibilities exist with respect to the mechanism of transfer: (1) the proteins of a Type III secretory system could function in a coordinated, cooperative process in which all constituents are interconnected due to dependencies on extensive protein-protein interactions, or (2) the proteins might function as a set of subcomplexes that catalyze the


# **Further Reading**

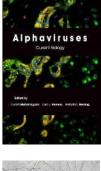
**Caister Academic Press** is a leading academic publisher of advanced texts in microbiology, molecular biology and medical research. Full details of all our publications at **caister.com** 

- MALDI-TOF Mass Spectrometry in Microbiology Edited by: M Kostrzewa, S Schubert (2016) www.caister.com/malditof
- Aspergillus and Penicillium in the Post-genomic Era Edited by: RP Vries, IB Gelber, MR Andersen (2016) www.caister.com/aspergillus2
- The Bacteriocins: Current Knowledge and Future Prospects Edited by: RL Dorit, SM Roy, MA Riley (2016) www.cajster.com/bacteriocins
- Omics in Plant Disease Resistance Edited by: V Bhadauria (2016) www.caister.com/opdr
- Acidophiles: Life in Extremely Acidic Environments Edited by: R Quatrini, DB Johnson (2016) www.caister.com/acidophiles
- Climate Change and Microbial Ecology: Current Research and Future Trends Edited by: J Marxsen (2016) www.caister.com/climate
- Biofilms in Bioremediation: Current Research and Emerging Technologies Edited by: G Lear (2016) www.caister.com/biorem
- Microalgae: Current Research and Applications Edited by: MN Tsaloglou (2016) www.caister.com/microalgae
- Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives Edited by: H Shintani, A Sakudo (2016) www.caister.com/gasplasma
- Virus Evolution: Current Research and Future Directions Edited by: SC Weaver, M Denison, M Roossinck, et al. (2016) www.caister.com/virusevol
- Arboviruses: Molecular Biology, Evolution and Control Edited by: N Vasilakis, DJ Gubler (2016) www.caister.com/arbo
- Shigella: Molecular and Cellular Biology Edited by: WD Picking, WL Picking (2016) www.caister.com/shigella
- Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
   Edited by: AM Romaní, H Guasch, MD Balaguer (2016)
   www.caister.com/aquaticbiofilms
- Alphaviruses: Current Biology Edited by: S Mahalingam, L Herrero, B Herring (2016) www.caister.com/alpha
- Thermophilic Microorganisms Edited by: F Li (2015) www.caister.com/thermophile
















Probiotics and Prebiotic





- Flow Cytometry in Microbiology: Technology and Applications Edited by: MG Wilkinson (2015) www.caister.com/flow
- Probiotics and Prebiotics: Current Research and Future Trends Edited by: K Venema, AP Carmo (2015) www.caister.com/probiotics
- Epigenetics: Current Research and Emerging Trends Edited by: BP Chadwick (2015) www.caister.com/epigenetics2015
- Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications Edited by: A Burkovski (2015) www.caister.com/cory2
- Advanced Vaccine Research Methods for the Decade of Vaccines Edited by: F Bagnoli, R Rappuoli (2015) www.caister.com/vaccines
- Antifungals: From Genomics to Resistance and the Development of Novel Agents Edited by: AT Coste, P Vandeputte (2015) www.caister.com/antifungals
- Bacteria-Plant Interactions: Advanced Research and Future Trends Edited by: J Murillo, BA Vinatzer, RW Jackson, et al. (2015) www.caister.com/bacteria-plant
- Aeromonas
  Edited by: J Graf (2015)
  www.caister.com/aeromonas
- Antibiotics: Current Innovations and Future Trends Edited by: S Sánchez, AL Demain (2015) www.caister.com/antibiotics
- Leishmania: Current Biology and Control Edited by: S Adak, R Datta (2015) www.caister.com/leish2
- Acanthamoeba: Biology and Pathogenesis (2nd edition) Author: NA Khan (2015) www.caister.com/acanthamoeba2
- Microarrays: Current Technology, Innovations and Applications Edited by: Z He (2014) www.caister.com/microarrays2
- Metagenomics of the Microbial Nitrogen Cycle: Theory, Methods and Applications Edited by: D Marco (2014) www.caister.com/n2

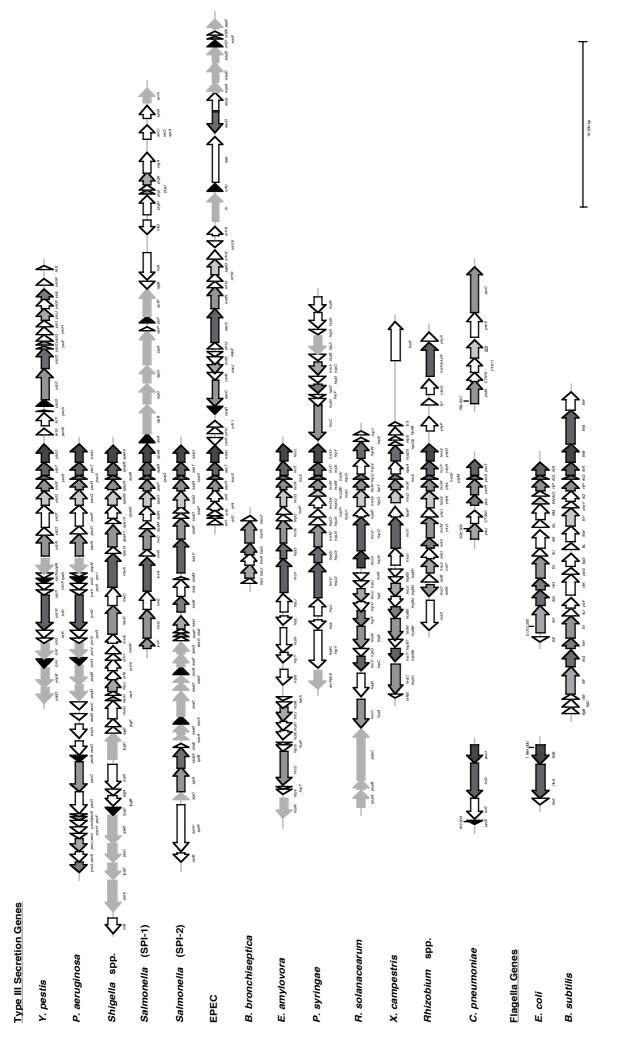



Figure 1. Schematic overview of the genes encoding Type III protein secretion systems in various bacterial pathogens and homologous flagellar biosynthetic genes in *E. coli* and *B. subtilis*. Arrows denote genes and their direction of transcription. The name of eacing genes is shown underneath the arrow. In cases of different names for the same gene, these names are shown in columns, separated by *I*. The more actual name is shown above. A scale (in bp) is shown transcription. The name of eacing genes is shown underneath the arrow. In cases of different names for the same gene, these names are shown in columns, separated by *I*. The more actual name is shown above. A scale (in bp) is shown activity conserved proteins of the secretion genes of *A* harm/*d* as pp. and the flagellar biosynthetic genes of *E. coli* and *B. subtilis*. Field black arrows: Genes are acceled or porteins. The Type III spectrup agrees of *A* harm/*d* as pp. and the flagellar biosynthetic genes of *E. coli* are not located or contiguous stretches of DNA. For these genes, small numbers above the genes derived proteins. The Type III excertion genes of these organisms. In *Chlam/dia*, the flagellar biosynthetic gene *fills* is located in proximity to the *yscC* gene.

| PT#        | Туре                    | Name                                                                                                                      | TC#           | Bacteria | Archaea | Eukarya          | #Proteins | Energy         |
|------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------|---------|------------------|-----------|----------------|
| I          | ABC                     | ATP-binding cassette translocase                                                                                          | 3.A.1         | +        | +       | +                | 1-2       | ATP            |
| 11         | Sec                     | General secretory translocase                                                                                             | 3.A.5         | +        | +       | +                | ~12       | GTP or ATP+pmf |
|            | Vir                     | Virulence-related translocase                                                                                             | 3.A.6         | +        | -       | -                | >10       | ATP            |
| IV         | Conj                    | Conjugation-related translocase                                                                                           | 3.A.7         | +        | -       | -                | >6        | ATP            |
| V          | Tat                     | Twin arginine targeting translocase                                                                                       | 2.A.64        | +        | +       | + (chloroplasts) | 5         | pmf            |
| VI         | MPT                     | Mitochondrial protein translocase                                                                                         | 3.A.8         | -        | -       | + (mitochondria) | ~20       | ATP            |
| VII        | CEPT                    | Chloroplast envelope protein translocase                                                                                  | 3.A.9         | +        | -       | + (chloroplasts) | 3         | GTP            |
| VIII<br>IX | MTB<br>Channels         | Main terminal branch of the Sec translocase<br>(Gram-negative bacterial outer membranes)<br>Cytoplasmic membrane channels | 3.A.5         | +        | -       | -                | ~14       | ATP?           |
|            | (a) Bcl-2               | Bcl-2 family                                                                                                              | 1.A.21        | -        | -       | +                |           | None           |
|            | (b) MscL                | Large conductance mechano-sensitive<br>channel family                                                                     | 1.A.22        | +        | -       | -                |           | None           |
| v          | (c) Holins              | Holin functional superfamily                                                                                              | 1.A.28-1.A.43 | +        | -       | -                |           | None           |
| Х          | OMPs                    | Gram-negative bacterial outer membrane<br>channel-forming translocases                                                    |               |          |         |                  |           |                |
|            | (a) FUP                 | Fimbrial usher protein                                                                                                    | 1.B.11        | +        | -       | -                | 1         | None           |
|            | (b) AT                  | Auto transporter                                                                                                          | 1.B.12        | +        | -       | -                | 1         | None           |
|            | (c) OMR                 | Outer membrane receptor                                                                                                   | 1.B.14        | +        | -       | -                | 1         | None           |
|            | (d) OMF                 | Outer membrane factor                                                                                                     | 1.B.17        | +        | -       | -                | 1         | None           |
|            | (e) TEC                 | Toxin export channel                                                                                                      | 1.B.20        | +        | -       | -                | 1         | None           |
|            | (f) Secretins           | Secretin                                                                                                                  | 1.B.22        | +        | -       | -                | 1         | None           |
| XI         | Toxins                  | Channels targeted to cells other than<br>ones that synthesize them                                                        |               |          |         |                  |           |                |
|            | (a) DT <sup>a</sup>     | Diphtheria toxin family                                                                                                   | 1.C.7         | +        | -       | -                |           | None           |
|            | (b) BTT <sup>a</sup>    | Botulinum and tetanus toxin family                                                                                        | 1.C.8         | +        | -       | -                |           | None           |
|            | (c) IIITCP <sup>a</sup> | Bacterial type III-target cell pore family                                                                                | 1.C.36        | +        | -       | -                |           | None           |

<sup>a</sup>Made by bacteria but inserted into host animal or plant cell membranes. http://www-biology.ucsd.edu/~msaier/transport/titlepage.html

overall secretory process as a series of independent steps, each with relative autonomy. If the latter mechanism were operative, then each subcomplex could undergo evolutionary divergence independently of the other subcomplexes. However, if the former mechanism were operative, the entire system would be expected to undergo functional divergence in a mutualistic process that would prevent homologous sequence divergent proteins from substituting for each other without loss of transport efficiency. Such protein-protein interdependencies would thus prevent exchange of constituents between systems once a certain degree of sequence divergence had been attained.

Table 1. Protein Translesses in Gram Negative Posteria and Eukanyotic Organitation

In order to attempt to distinguish these possibilities, we have conducted phylogenetic analyses of all essential constituents of Type III systems and their homologues. These homologues include basal body constituents of the bacterial flagellum that have been reported to exhibit the capacity to transport virulence factors (Young *et al.*, 1999). The results of our phylogenetic analyses show that little or no exchange of constituents between systems has occurred, even when two or more systems are present in a single bacterial cell. The results of these analyses support a cooperative, concerted mechanism of secretion.

# Proteins of Type III Protein Secretion (TIIIPS) Systems and Their Homologues

Table 2 summarizes the available structural, functional and subcellular localization information about components of the *Yersinia* virulence-related, Type III secretion system which are broadly conserved in other TIIIPS systems and the homologous flagellar proteins in *S. typhimurium* and *E. coli* (see also Figure 1 and Hueck, 1998 for further

discussion). The broadly conserved components of the Yersinia Ysc system comprise 12 proteins varying in size between 87 residues and 704 residues. Six of these proteins are predicted to be in the inner membrane; three may be cytoplasmic; one is a lipoprotein, possibly connecting the inner and outer membranes; and one is the outer membrane secretin that forms the transmembrane pore in this structure. The twelve non-homologous Ysc protein constituents which are broadly conserved in other TIIIPS systems were included in the phylogenetic analyses to be reported here (Tables 2 and 3). Nine of these proteins have homologues in the flagellar complex, and one protein family, the secretins, lacking in the flagellar complex, include numerous homologues that are involved in Types II (TIIPS) and III protein secretion, in fimbrial (pilin) export, and in phage assembly and export (Table 3). A few secretins are involved in still other processes such as competence for DNA uptake, export of toxins, and nodulation of leguminous plants by N<sub>2</sub>-fixing bacteria (Table 3). Table 3 also shows the unified nomenclature for the broadly conserved TIIIPS constituents, with the general designation Sct for secretion and cellular translocation, as has been proposed earlier (Hueck, 1998).

Table 4 lists the organisms alphabetically and indicates the type of pathogen (plant, animal or bacterial) as well as the type of secretion system present (Types II (G) and III (T) secretion systems; pilin export (P); flagellar protein export (F); bacteriophage assembly (V); nodulation (N), and competence (C)). It is noteworthy that several organisms have more than one system, and that four systems have been identified in both *E. coli* and *P. aeruginosa* (general (G) and Type III (T) secretion systems as well as flagellar (F) and fimbrial (pilin; P) systems).

| Table 2. Broadly                                                  | Conserved Corr   | ponents of the Y | <i>ersinia</i> Type I                | II Protein Se    | cretion Syste    | m and Hom        | ologues in the   | Bacterial Flag | gellar Syste | m     |                            |                  |
|-------------------------------------------------------------------|------------------|------------------|--------------------------------------|------------------|------------------|------------------|------------------|----------------|--------------|-------|----------------------------|------------------|
| Conserved<br><i>Yersinia</i> or<br>TIIIPS<br>protein <sup>a</sup> | LcrD             | YscN             | YscQ                                 | YscR             | YscS             | YscT             | YscU             | YscC           | YscD         | YscF  | YscJ                       | YscL             |
| Size of<br><i>Yersinia</i><br>TIIIPS<br>Protein <sup>b</sup>      | 704              | 439              | 307                                  | 217              | 88               | 261              | 354              | 607            | 418          | 87    | 244                        | 223              |
| Size range of homologues <sup>b</sup>                             | 582-733          | 430-473          | 102-382                              | 172-306          | 76-95            | 251-289          | 345-376          | 412-921        | 310-432      | 71-87 | 190-599                    | 193-314          |
| Fla protein in<br>Eco or Sty <sup>c</sup>                         | FlhA<br>(Ex App) | Flil<br>(ATPase) | FliNM<br>(C-ring)                    | FliP<br>(Ex App) | FliQ<br>(Ex App) | FliR<br>(Ex App) | FlhB<br>(Ex App) | -              | -            | -     | FliF<br>(MSring)           | FliH<br>(Ex App) |
| Size of Fla<br>protein in<br>Eco or Sty <sup>b,c</sup>            | 694 (Sty)        | 456 (Sty)        | N, 137<br>M, 344<br>(Eco)            | 245<br>(Eco)     | 89<br>(Eco)      | 261<br>(Eco)     | 383<br>(Sty)     |                |              |       | 560<br>(Sty)               | 235<br>(Sty)     |
| Probable location <sup>d</sup>                                    | IM               | Cyt              | ?                                    | IM               | IM               | IM               | IM               | OM             |              | Cyt   | LP                         | Cyt?             |
| # putative<br>TMSs <sup>e</sup>                                   | 8                | 0                | 0-2?                                 | 4                | 2                | 6                | 4                | Secretin (ß)   | 1-2          | 0     | 1-3                        | 0                |
| Proposed function <sup>d</sup>                                    | IM pore?         |                  | Energize<br>secretion<br>or assembly | ý                |                  |                  | Regulation       | OM pore        |              |       | Bridge<br>btw IM<br>and OM |                  |

<sup>a</sup>All proteins except LcrD are designated Ysc. Only those Yersinia TIIIPS proteins are included which have sequenced hornologues in several other TIIIPS systems. <sup>b</sup>Protein sizes are indicated in numbers of amino acids. <sup>c</sup>Eco *E. coli*; Sty, *S. typhimurium*; Ex App, Export Apparatus; C-ring, the flagellar basal body ring exposed to the cytoplasm; MS-ring the flagellar basal body ring embedded in the

cytoplasmic membrane. <sup>o</sup>The abbreviations are: Cyt. cytoplasm, IM, inner membrane; OM, outer membrane; LP. lipoproteins which may bridge inner and outer membranes. <sup>o</sup># putative rdNss, number of putative α-helical transmembrane spanners; ß, ß-structure. YscR has its N- and C-termini in the periplasm; YscS and YscT have their N- and C-termini in the cytoplasm (see Hueck, 1998).

#### **16S Ribosomal RNA Phylogenetic Trees**

In order to provide a reference point for organismal phylogeny, two phylogenetic trees were constructed based on 16S ribosomal RNAs from a representative species of each bacterial genus that (1) possesses a Type III protein secretion system (Figure 2; see Table 3 for genuses included and organismal abbreviations) or possesses flagellar proteins included in this study (Figure 3; see Table 3). The genuses represented in these figures and the organismal 3-letter abbreviations used in these figures are presented in Table 3. At the bottom of the tree shown in Figure 2 are close relatives of the enteric bacteria: *Shigella* flexneri, Escherichia coli, Salmonella typhimurium, Erwinia amylovora and Yersinia enterocolitica. The Pseudomonas aeruginosa 16S rRNA clusters very loosely with those from the enteric bacteria. Also as expected, Rhizobium spp. clusters tightly with Sinorhizobium fredii while Burkholderia pseudomallei, Ralstonia solanacearum and Bordetella bronchiseptica cluster loosely together. The other organisms represented (Chlamydia trachomatis and Xanthomonas campestris) do not exhibit significant clustering as these two branches emanate from points near the center of the unrooted tree. These relationships are taken as an indication of organismal phylogeny (Olsen et al., 1994).

Figure 3 presents a comparable 16S rRNA tree for the genuses from which sequenced flagellar proteins were obtained. Two major clusters and two minor clusters can be observed. The first major cluster (bottom of Figure 3) includes the rRNAs of the enteric bacteria and their close relatives including S. typhimurium and E. coli, Y. enterocolitica and Erwinia carotovara, Proteus mirabilis, Vibrio parahaemolyticus, Legionella pneumophila, and Pseudomonas aeruginosa with increasing distance from S. typhimurium in that order. The second major cluster (top of Figure 3) includes Sinorhizobium meliloti and

Agrobacterium tumefaciens clustering tightly together with increasing distances from Brucella abortus, Rhodobacter sphaeroides. Caulobacter crescentus and Zvmomonas mobilis in this order. The two small clusters, each with only two members, include the two spirochetes, Treponema pallidum and Borrelia burgdorferi (left hand side of Figure 3), and Campylobacter jejuni and Helicobacter pylori (right hand side of Figure 3). The remaining organisms, Bacillus subtilis, Aquifex aeolicus and Chlamydia trachomatis, are localized to branches that stem from points near the center of the tree. These relationships are assumed to reflect organismal phylogenies (Olsen et al., 1994).

#### **Protein Phylogenetic Trees**

Phylogenetic trees were constructed using two different programs, and one of the programs was applied to two different subsets of proteins. (1) The TREE program (Feng and Doolittle, 1990) was used to construct trees for the LcrD, YscC, YscD, YscN, and YscQ-U families. (2) The ClustalX program (Thompson et al., 1997) was used to construct trees for (a) those protein families for which the largest numbers of homologues are available in both the TIIIPS and flagellar (Fla) systems (LcrD, YscC, YscJ, YscN, and YscQ-U families). In this first set of trees we included only proteins from those TIIIPS and Fla systems for which the sequences of all or all but one member of these systems are available (indicated in Table 3 in bold print). The ClustalX program was also used to (b) construct extended trees for all protein families listed in Table 3, including essentially all fully sequenced protein homologues for each of these twelve families. Only partially sequenced proteins and homologues which were extremely similar in sequence (>90% identical) to one that was included were omitted from this last study. The omitted proteins are indicated by the superscript letter "c" in Tables 5-16 (see footnotes to Table 5) and by asterisks in Table 3. Trees that were

| Table 3. F     | Proteins Included in This Study <sup>a</sup>             |                     |                |                |                      |                |                |                      |                   |              |                 |                |                |
|----------------|----------------------------------------------------------|---------------------|----------------|----------------|----------------------|----------------|----------------|----------------------|-------------------|--------------|-----------------|----------------|----------------|
| Unified no     | nomenclature:<br>omenclature for<br>stem constituents:   | LcrD<br>SctV        | YscN<br>SctN   | YscQ<br>SctQ   | YscR<br>SctR         | YscS<br>SctS   | YscT<br>SctT   | YscU<br>SctU         | YscC<br>SctC      | YscD<br>SctD | YscF<br>SciF    | YscJ<br>SctJ   | YscL<br>SctL   |
| Abbr.          | Organism                                                 | 0011                | 0011           | 0010           | 00011                | 0010           | 0011           | 0010                 | 0010              | 0010         | 001             | 0010           | COLL           |
|                | Type III protein secretion                               |                     |                |                |                      |                |                |                      |                   |              |                 |                |                |
| Bps<br>Bbr     | Burkholderia pseudomallei<br>Bordetella bronchiseptica   | ?                   | ?<br>BscN      | SctQ<br>?      | SctR<br>?            | SctS<br>?      | ?<br>?         | ?                    | ?<br>?            | ?            | ?<br>?          | ?<br>BscJ      | ?<br>BscL      |
| Cca            | Chlamydia caviae                                         | Cds2*               | ?              | ?              | ?                    | ?              | ?              | Cds2*                | ?                 | ?            | ?               | ?              | ?              |
| Cpn<br>Ctr     | Chlamydia pneumoniae<br>Chiamydia trachomatis            | LcrD*<br>LcrD       | YScN*<br>YscN  | -<br>YscQ      | YscR*<br>YscR        | YscS*<br>YscS  | YscT*<br>YscT  | YscU*<br>YscU        | YscC*<br>YscC     | -            | -               | YScJ*<br>YscJ  | YScL*<br>YscL  |
| Eam            | Erwinia amvlovora                                        | Hrpl                | HrcN           | HrcQ           | HrcR                 | HrcS           | HrcT           | HrcU                 | HrcC              | HrpQ         | ?               | HrcJ           | HrpE           |
| Ech<br>Ehe     | Erwinia chrysanthemi<br>Erwinia herbicola                | ?<br>?              | ?<br>?         | ?<br>HrcQ2*    | ?<br>HrcR*           | ?<br>HrcS*     | ?<br>HrcT*     | ?<br>HrcU*           | HrcC*<br>?        | ?            | ?               | ?<br>?         | ?              |
| Eco<br>Eco     | Escherichia coli<br>Escherichia coli                     | EscV                | EscN           |                | EscR                 | EscS<br>InvX   | EscT           | EscU                 | EscC              | EscD         | EscF            | EscJ           |                |
| Pae            | Pseudomonas aeruginosa                                   | PcrD                | PscN           | ?              | ?                    | ?              | ?              | ?                    | PscC              | PscD         | PscF            | PscJ           | PscL           |
| Psy<br>Psy     | Pseudomonas syringae (gly)<br>Pseudomonas syringae (phs) | ?<br>?              | ?<br>?         | Y<br>HrcQ2     | ?<br>HrcR            | HrcS           | HrcT           | HrcU*<br>HrcU        | ?<br>?            | ?<br>?       | ?<br>?          | HrcJ<br>?      | HrpE<br>?      |
| Psy<br>Rso     | Pseudomonas syringae (syr)<br>Ralstonia solanacearum     | Hrpl<br>HrpQ        | HrpJ4<br>HrpE  | HrpU*<br>HrpQ  | ?<br>HrpT            | ?<br>HrpU      | ?<br>HrpC      | HrpY*<br><b>HrpN</b> | HrcC<br>HrpA      | ?            | ?               | HrpC*<br>Hrpl  | -<br>HrpF      |
| Rhi            | Rhizobium spp                                            | Y4yR                | Y4yl           | Y4yK           | Y4yL                 | Y4yM           | Y4yN           | Y4yO                 | Y4yJ              | - 2          | -               | ?              | ?              |
| Sdu<br>Sen     | Salmonella dublin<br>Salmonella enterica                 | InvA*               | ?              | SpaO*<br>SpaO  | SpaP                 | SpaQ*<br>SpaQ  | ?              | ?                    | ?                 | ?            | ?<br>?          | ?              | ?              |
| Sti<br>Sty     | Salmonella typhi<br>Salmonella typhimurium SPII          | ?<br>SsaV           | ?<br>SsaN      | SpaO*<br>SsaQ  | SpaP*<br><b>YscR</b> | ?<br>SsaS      | ?<br>SsaT      | ?<br>SsaU            | ?<br>SpiA         | ?<br>SpiB    | ?<br>SsaH       | ?<br>SsaJ      | ?<br>SsaK      |
| Sty            | Salmonella typhimurium SPI2                              | InvA                | SpaL           | SpaO           | SpaP                 | SpaQ           | SpaR           | SpaS                 | InvG              | SsaD         | Prgl            | PrgK           | -              |
| SfÍ<br>Sso     | Shigella flexneri<br>Shigella sonnei                     | MxiA<br>Orf*        | SpaL<br>?      | ?<br>?         | SpaP<br>Orf*         | SpaQ<br>?      | SpaR<br>?      | SpaS<br>MxiD*        | MxiD<br>?         | ?            | MxiH<br>MxiJ*   | MxiJ<br>?      | -              |
| Sfr<br>Xca     | Sinorhizobium fredii<br>Xanthomonas campestris           | ?<br>HrcP2          | HrcN*<br>HrpB6 | HrcQ*<br>HrcQ  | HrcR*<br>HrcR        | HrcS*<br>HrcS  | HrcT*<br>HrpB8 | HrcU*<br>?           | ?<br>HrpAl        | ?<br>HrpD5   | ?<br>HrpB3HrpB5 | ?              | ?              |
| Xor            | Xanthomonas oryzae                                       | ?                   | ?              | ?              | ?                    | ?              | ?              | ?                    | HrpA*             | ?            | ?               | ?              | ?              |
| Yen<br>Yen     | Yersinia enterocolitica<br>Yersinia enterocolitica       | <b>LcrD</b><br>YsaA | YscN           | YscQ<br>-      | YscR<br>-            | YscS<br>-      | YscT<br>-      | YscU                 | YscC              | YscD         | YscF            | YscJ<br>-      | YscL           |
| Ype<br>Yps     | Yersinia pestis<br>Yersinia pseudotuberculosis           | LcrD*<br>LcrD*      | YscN*<br>YScN* | YscQ*<br>YScQ* | YscR*<br>YscR*       | YscS*<br>YscS* | YscT*<br>YscT* | YscU*<br>YscU*       | <b>YscC*</b><br>? | YscD*<br>?   | YscF*<br>?      | YScJ*<br>YScJ* | YScL*<br>YScL* |
|                | Flagellar                                                |                     |                |                |                      |                |                |                      | ·                 | ·            |                 |                |                |
| Atu<br>Aae     | Agrobacterium tumefaciens<br>Aquifex aeolicus            | ?<br>FlhA           | Flil<br>Flil   | FliN<br>FliN   | Flip<br>Flip         | ?<br>FliQ      | ?<br>FliR      | FlhB<br><b>FlhB</b>  | -                 | -            | -               | ?<br>FliF      | ?<br>-         |
| Bsu<br>Bbu     | Bacillus subtilis<br>Borrelia burgdorferi                | FlhA<br>FlhA        | Flil<br>Flil   | FliY<br>FliN   | FliP<br>FliP         | FliQ<br>FliQ   | FliR<br>FliR   | FlhB<br>FlhB         | -                 | -            | -               | FIIF<br>FIIF   | FliH<br>FliH   |
| Bab            | Brucella abortus                                         | ?                   | ?              | ?              | ?                    | ?              | ?              | ?                    | -                 | -            | -               | FliF           | ?              |
| Cje<br>Ccr     | Campylobacter jejuni<br>Caulobacter crescentus           | FlhA<br><b>FlhA</b> | ?<br>Flil      | FliN<br>FliN   | ?<br>FliP            | ?<br>FliQ      | ?<br>FliR      | FlhB<br><b>PodW</b>  | -                 | -            | -               | ?<br>FliF      | ?<br>?         |
| Cpn<br>Ctr     | Chlamydia pneumoniae<br>Chlamydia trachomatis            | FlhA*<br>FlhA       | -              | -              |                      |                |                |                      |                   |              |                 |                |                |
| Eca            | Erwinia carotovara                                       | ?                   | ?              | FliN           | FliP                 | FliQ           | FliR           | ?                    | -                 | -            | -               | ?              | ?              |
| Eco<br>Eco     | Escherichia coli<br>Escherichia coli                     | <b>FlhA</b><br>FhiA | Flil           | FliN           | FliP<br>-            | FliQ           | FliR<br>-      | FlhB                 | -                 | -            | -               | FliL<br>-      | FliH<br>-      |
| Hpy<br>Lpn     | Helicobacter pylori<br>Legionella pneumophila            | FlhA                | Flil<br>Flil   | FliN<br>?      | FliP<br>?            | FliQ           | FliR<br>?      | FIhB                 | -                 | -            | -               | FliF<br>?      | FliH<br>?      |
| Pmi            | Proteus mirabilis                                        | FlhA                | ?              | ?              | ?                    | ?              | ?              | FlhB*                | -                 | -            | -               | ?              | ?              |
| Pae<br>Ppu     | Pseudomonas aeruginosa<br>Pseudomonas putida             | ?<br>FlhA*          | ?<br>?         | FliN<br>?      | FliP<br>FliP*        | ?<br>?         | ?<br>FliR*     | ?<br>?               | -                 | -            | -               | FliF<br>?      | ?<br>?         |
| Rsp<br>Sty     | Rhodobacter sphaeroides                                  | ?<br>FlhA           | Flil           | FliN<br>FliN   | FliP<br>FliP         | FliQ           | FliR<br>FliR   | FlhB<br>FlhB         | -                 | -            | -               | FliF<br>FliF   | ?<br>FliH      |
| Sme            | Salmonella typhimurium<br>Sinorhizobium meliloti         | ?                   | Flil           | FliN           | FliP                 | ?              | ?              | FlhB                 | -                 | -            | -               | FliF           | ?              |
| Tde<br>Tpa     | Treponema denticola<br>Treponema pallidum                | -<br>FlhA           | Flil*<br>Flil  | ?<br>?         | FliP*<br>FliP        | FliQ           | -<br>FliR      | -<br>FlhB            | -                 | -            | -               | FIiF*<br>FIiF  | FIiH*<br>FIiH  |
| Vpa<br>Yen     | Vibrio parahaemolyticus<br>Yersinia enterocolitica       | FlhA<br>FlhA        | Flil<br>?      | FliN           | FliP<br>?            | FliQ<br>?      | FliR<br>?      | <b>FlhB</b><br>FlhB  | -                 | -            | -               | - ?            | FliH<br>?      |
| Zmo            | Zymomonas mobilis                                        | FlhA                | ?              | ?              | ?                    | ?              | ?              | ?                    | -                 | -            | -               | FİF            | ?              |
| Ahy            | Type II protein secretion<br>Aeromonas hydrophila        | -                   | -              | -              | -                    | -              | -              | -                    | GspD              | -            | -               | -              | -              |
| Ahý<br>Asa     | Aeromonas hydrophila<br>Aeromonas salmoncida             | -                   | -              | -              | -                    | -              | -              | -                    | SpsD<br>GspD*     | -            | -               | -              | -              |
| Aae            | Aquifex aeolicus                                         | -                   | -              | -              | -                    | -              | -              | -                    | GspD              | -            | -               | -              | -              |
| Bps<br>Cpn     | Burkholderia pseudomallei<br>Chlamydia pneumoniae        | -                   | -              | -              | -                    | -              | -              | -                    | GspD<br>GspD*     | -            | -               | -              | -              |
| Ctr<br>Cli     | Chlamydia trachomatis<br>Chlorobium limicola             | -                   | -              | -              | -                    | -              | -              | -                    | GspD<br>Exp       | -            | -               | -              |                |
| Eca            | Erwinia carotovora                                       | -                   | -              | -              | -                    | -              | -              | -                    | GspD              | -            | -               | -              | -              |
| Ech<br>Eco     | Erwinia chrysanthemi<br>Escherichia coli                 | -                   | -              | -              | -                    |                | -              | -                    | GspD*<br>EtpD     | -            | -               | -              | -              |
| Eco<br>Eco     | Escherichia coli<br>Escherichia coli                     | -                   | -              | -              | -                    | -              | -              | -                    | GspD<br>HofQ*     | -            | -               | -              | -              |
| Kpn            | Klebsiella pneumoniae                                    | -                   | -              | -              | -                    | -              | -              | -                    | GspD              | -            | -               | -              | -              |
| Pae<br>Pae     | Pseudomonas aeruginosa<br>Pseudomonas aeruginosa         | -                   | -              | -              | -                    | -              | -              | -                    | GspD<br>XqhA      | -            | -               | -              | -              |
| Syn<br>Vch     | Synechocystis spp.<br>Vibrio cholerae                    | -                   | -              | -              | -                    | -              | -              | -                    | GspD<br>GspD      | -            | -               | :              | -              |
| Xca            | Xanthomonas campestris                                   | -                   | -              | -              | -                    | -              | -              | -                    | GspD              | -            | -               | -              | -              |
| Aae            | Pilin secretion<br>Aquifex aeolicus                      | -                   | -              | -              | -                    | -              | -              | -                    | Orf               | -            | -               | -              | -              |
| Cbu<br>Eco     | Coxiella bunietii<br>Escherichia coli                    | -                   | -              | -              | -                    | -              | -              | -                    | Orf*<br>BfpB      | -            | -               | :              | -              |
| Mxa            | Myxococcus xanthus                                       | -                   | -              | -              | -                    | -              | -              | -                    | PilQ              | -            | -               | -              | -              |
| Ngo<br>Nme     | Neisseria gonorrhoeae<br>Neisseria meningitidis          | -                   | -              | -              | -                    | -              | -              | -                    | PilQ<br>PilQ*     | -            | -               | -              | -              |
| Pac<br>Pal     | Pseudomonas aeruginosa<br>Pseudomonas alcaligenes        | -                   | -              | -              | -                    | -              | -              | -                    | PilQ<br>XcpQ*     | -            | -               | :              | -              |
| Ppu            | Pseudomonas putida                                       | -                   | -              | -              | -                    | -              | -              | -                    | XcpQ*             | -            | -               | -              | -              |
| Vch            | Vibrio cholerae<br>Bacteriophage assembly                | -                   | -              | -              | -                    | -              | -              | -                    | ТсрС              | -            | -               | -              | -              |
| BPfl<br>BPfd   | Bacteriophage fi<br>Racteriophage fd                     | -                   | -              | -              | -                    | -              | -              | -                    | VG4<br>VG4        | -            | -               | :              | -              |
| BPfs2          | Bacteriophage fs-2                                       | -                   | -              | -              | -                    | -              | -              | -                    | VG4               | -            | -               | -              | -              |
| BP122<br>BPlf1 | Bacteriophage I2-2<br>Bacteriophage Ifi                  | -                   | -              | -              | -                    | -              | -              | -                    | VG4<br>VG4        | -            | -               | -              | -              |
| BPIke<br>BPM13 | Bacteriophage Ike<br>Bacteriophage M13                   | -                   | -              | -              | -                    | -              | -              | -                    | VG4<br>VG4        | -            | -               | -              | -              |
| BPPf3          | Bacteriophage Pf3                                        | -                   | -              | -              | -                    | -              | -              | -                    | VG4<br>VG4        | -            | -               | -              | -              |
| Rhi            | Nodulation<br>Rhizobium spp.                             | -                   | -              | -              | -                    | -              | -              | -                    | NolW              | -            | -               | NoIT           | No1V           |
|                | Sinorhizobium fredii                                     | -                   | -              | -              | -                    | -              | -              | -                    | NolW*             | -            | NoIT            | -              |                |
| Sfr            |                                                          |                     |                |                |                      |                |                |                      |                   |              |                 |                |                |
| Sfr<br>Hin     | Competence<br>Haemophilus influenzae                     | -                   | -              | -              | -                    | -              | -              | -                    | ComE              | -            | -               | -              | -              |

Table 4. Species Analyzed for Type III Protein Secretion Systems and Homologues

| Organism                                     | Abbreviation | Type of<br>pathogen <sup>a</sup> | Type of system(s) <sup>b</sup> |
|----------------------------------------------|--------------|----------------------------------|--------------------------------|
| Bacteria                                     |              |                                  |                                |
| Aeromonas hydrophila                         | Ahy          | Animal                           | G                              |
| Aeromonas salmoncida                         | Asa          | Animal                           | G                              |
| Aquifex aeolicus                             | Aae          | -                                | F, G, P                        |
| Bacillus subtilis                            | Bsu          | -                                | F                              |
| Bordetella bronchiseptica                    | Bbr          | Animal                           | Т                              |
| Brucella abortus                             | Bab          | Animal                           | F                              |
| Burkholderia pseudomallei                    | Bps          | Plant                            | T, G                           |
| Campylobacter jejuni                         | Cje          | Animal                           | F                              |
| Caulobacter crescentus                       | Ccr          | -                                | F                              |
| Chlamydia caviae                             | Cca          | Animal                           | T                              |
| Chlamydia pneumoniae                         | Cpn          | Animal                           | T, F, G                        |
| Chlamydia trachomatis<br>Chlorobium limicola | Ctr<br>Cli   | Animal                           | T, F, G<br>G                   |
| Coxiella burnetti                            | Chu          | -<br>Animal                      | P                              |
| Erwinia amylovora                            | Eam          | Plant                            | T                              |
| Erwinia carotovora                           | Eca          | Plant                            | F, G                           |
| Erwinia chrysanthemi                         | Ech          | Plant                            | T, G                           |
| Erwinia herbicola                            | Ehe          | Plant                            | T                              |
| Escherichia coli                             | Eco          | Animal                           | T, F, G, P                     |
| Haemophilus influenzae                       | Hin          | Animal                           | C                              |
| Helicobacter pylori                          | Hpy          | Animal                           | F                              |
| Klebsiella pneumoniae                        | Kpn          | Animal                           | G                              |
| Legionella pneumophila                       | Lpn          | Animal                           | F                              |
| Myxococcus xanthus                           | Mxa          | Plant?                           | Р                              |
| Neisseria gonorrhoeae                        | Ngo          | Animal                           | Р                              |
| Neisseria meningitidis                       | Nme          | Animal                           | Р                              |
| Proteus mirabilis                            | Pmi          | Animal                           | F                              |
| Pseudomonas acaligenes                       | Pac          | Animal?                          | G                              |
| Pseudomonas aeruginosa                       | Pae          | Animal                           | T, F, G, P                     |
| Pseudomonas putida                           | Ppu          | ?                                | F, G                           |
| Pseudomonas syringae                         | Psy          | Plant                            | T                              |
| Ralstonia solanacearum                       | Rso          | Plant                            | T                              |
| Rhizobium spp.                               | Rhi          | Plant                            | T, N                           |
| Rhodobacter sphaeroides                      | Rsp          | -<br>Animal                      | F                              |
| Salmonella dublin                            | Sdu<br>Sen   | Animal                           | T<br>T                         |
| Salmonella enterica<br>Salmonella typhi      | Sti          | Animal<br>Animal                 | T                              |
| Salmonella typhimurium                       | Sty          | Animal                           | ,<br>Т, F                      |
| Shigella flexneri                            | Sfl          | Animal                           | T                              |
| Shigella sonnei                              | Sso          | Animal                           | τ .                            |
| Sinorhizobium fredii                         | Sfr          | Plant                            | T, N                           |
| Sinorhizobium meliloti                       | Sme          | Plant                            | F                              |
| Synechocystis spp.                           | Syn          | -                                | G                              |
| Treponema denticola                          | Tde          | Animal                           | F                              |
| Treponema pallidum                           | Тра          | Animal                           | F                              |
| Vibrio cholerae                              | Vch          | Animal                           | G, P                           |
| Vibrio parahaemolyticus                      | Vpa          | Animal                           | F                              |
| Xanthomonas campestris                       | Xca          | Plant                            | T, G                           |
| Xanthomonas oryzae                           | Xor          | Plant                            | Т                              |
| Yersinia enterocolitica                      | Yen          | Animal                           | T, F                           |
| Yersinia pestis                              | Ype          | Animal                           | Т                              |
| Yersinia pseudotuberculosis                  | Yps          | Animal                           | T                              |
| Zymomonas mobilis                            | Zmo          | Plant?                           | F                              |
| Viruses                                      |              |                                  |                                |
| Bacteriophage f1                             | BPf1         | Bacteria                         | V                              |
| Bacteriophage fd                             | BPfd         | Bacteria                         | V                              |
| Bacteriophage fs-2                           | BPfs2        | Bacteria                         | V                              |
| Bacteriophage I2-2                           | BPI22        | Bacteria                         | V                              |
| Bacteriophage If1                            | BPIf1        | Bacteria                         | V                              |
| Bacteriophage Ike                            | BPIke        | Bacteria                         | V                              |
| Bacteriophage M13                            | BPM13        | Bacteria                         | V                              |
| Bacteriophage Pf3                            | BPPf3        | Bacteria                         | V                              |

<sup>a</sup>The bacteria are pathogens or symbionts of plants or animals, as indicated above, or they are not pathogens (-). Phage are considered as bacterial pathogens.

<sup>b</sup>Systems are designated as follows: Type III protein secretion, T; Flagellar, F; General (Type II protein secretion), G; Pilin secretion, P; Phage assembly and export, V; Nodulation, N; Competence, C.

Type III PS 16S rRNA tree

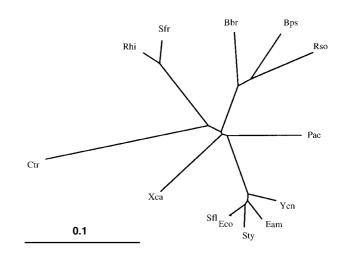



Figure 2. Phylogenetic tree of 16S rRNAs derived from Gram-negative bacterial genuses that include Type III protein secretion systems tabulated in Table 3 and included in this study.

constructed with both the TREE and ClustalX programs (LcrD, YscC, and YscR-U families) generally yielded good agreement. In both sets, the Fla and TIIIPS proteins clustered separately, and clustering within each of these two groups of proteins was similar. Consequently, only one of these sets of trees, that produced with the ClustalX program, will be presented.

### Flagellar 16S rRNA tree

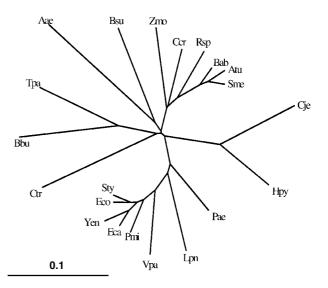



Figure 3. Phylogenetic tree of 16S rRNAs derived from the bacterial genuses that include flagellar proteins tabulated in Table 3 and included in this study.

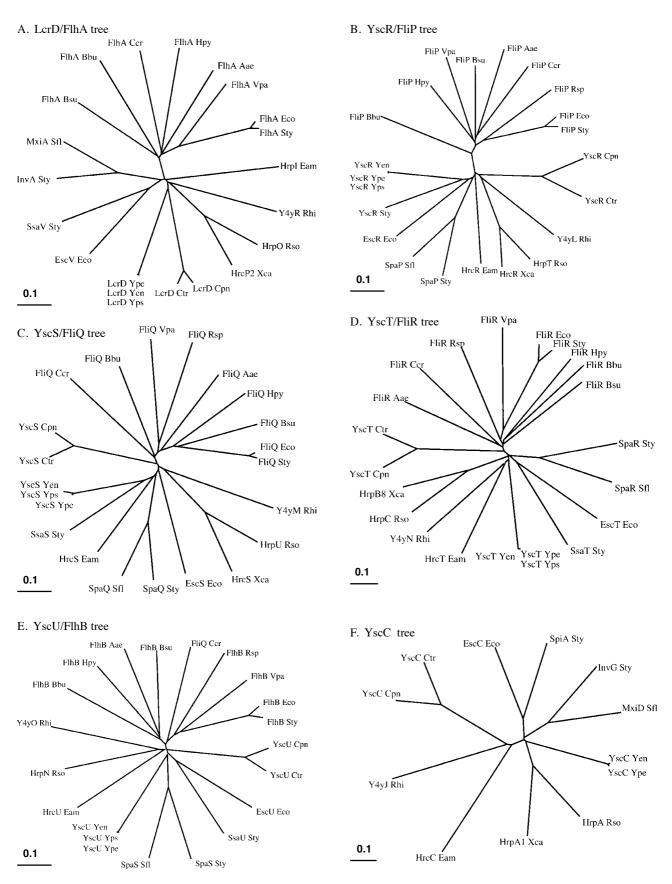



Figure 4. Phylogenetic trees for six families of TIIIPS-Fla homologues. Protein constituents from only the most completely sequenced TIIIPS systems are represented. Thus, the following proteins are missing from the trees shown in Figures A-F as indicated in Table 3. A: The *R.spheroides* FlhA homologue; B-D, no proteins are missing; E, the *X. campestris* Hrp/Hrc homologue is missing; F: all secretin homologues are lacking. The ClustalX program (Thompson *et al.*, 1997) was used to generate these trees as well as those portrayed in Figures 5-16.

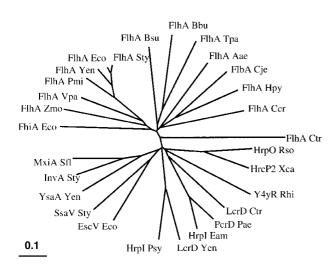



Figure 5. Phylogenetic tree for the LcrD/FlhA family.

#### Table 5. LcrD/FlhA Group

## Phylogenetic Trees for Homologous Constituents of Completely Sequenced TIIIPS and Fla Systems

For the ClustalX trees that were constructed for the LcrD, YscC, YscJ, YscN, and YscQ-U families from the complete or nearly complete TIIIPS and Fla systems analyzed, clustering was comparable for all nine trees. Six of these trees (LcrD, YscC, and YscR-U families) are presented in Figures 4A-F. The specific observations derived from these trees are summarized as follows: (1) In all nine trees, the Fla proteins (when present) clustered separately from the TIIIPS proteins, except that in the YscQ tree (not shown), FliN Aae clustered loosely with the TIIIPS proteins. No Fla proteins were included in the YscC tree as the flagellar apparatus lacks secretin homologues (Figure 1F; Table 3). (2) The two chlamydial TIIIPS proteins (C. pneumoniae and C. trachomatis) always clustered tightly together, as did the three TIIIPS Yersinia proteins and the two Fla proteins of E. coli and S. typhimurium. (3) The TIIIPS R. solanacearum and X. campestris proteins as well as the Inv/Spa proteins of the first TIIIPS system of S. typhimurium

| Designation <sup>a</sup> | Description                    | Organism                    | No. of residues | GenBank<br>GI No. | Accession<br>No. <sup>b</sup> |
|--------------------------|--------------------------------|-----------------------------|-----------------|-------------------|-------------------------------|
| FlhA Aae                 | Flagellar export protein       | Aquifex aeolicus            | 678             | 2983661           | gbAE000729                    |
| FlhA Bsu                 | Flagellar export protein       | Bacillus subtilis           | 677             | 544312            | spP35620                      |
| FlhA Bbu                 | Flagellar export protein       | Borrelia burgdorferi        | 673             | 1165256           | qbU43739                      |
| FlbA Cje                 | Flagellar biosynthesis protein | Campylobacter jejuni        | 724             | 477572            | pirA49217                     |
| FlhA Ccr                 | Flagellar export protein       | Caulobacter crescentus      | 700             | 462103            | spQ03845                      |
| Cds2 Cca <sup>c</sup>    | Type III secretion protein     | Chlamydia caviae            | 709             | 2358257           | gbU88070                      |
| LcrD Cpn <sup>c</sup>    | Type III secretion protein     | Chlamydia pneumoniae        | 710             | 4376601           | gbAE001617                    |
| FlhA Cpn <sup>c</sup>    | Flagellar biosynthesis protein | Chlamydia pneumoniae        | 582             | 4376639           | gbAE001620                    |
| LcrD Ctr                 | Type III secretion protein     | Chlamydia trachomatis       | 708             | 3328486           | gbAE001283                    |
| FlhA Ctr                 | Flagellar biosynthesis protein | Chlamydia trachomatis       | 605             | 3328453           | gbAE001280                    |
| Hrpl Eam                 | Type III secretion protein     | Erwinia amylovora           | 697             | 547673            | spP35654                      |
| EscV Eco                 | Type III secretion protein     | Escherichia coli            | 675             | 2865289           | gbAF022236                    |
| FhiA Eco                 | Inner membrane transporter     | Escherichia coli            | 579             | 2494467           | spQ47153                      |
| FlhA Eco                 | Flagellar biosynthesis protein | Escherichia coli            | 692             | 2494468           | spP76298                      |
| FlhA Hpy                 | Flagellar biosynthesis protein | Helicobacter pylori         | 733             | 2494469           | spO06758                      |
| FlhA Pmi                 | Flagellar biosynthesis protein | Proteus mirabilis           | 696             | 2494470           | spQ51910                      |
| PcrD Pae                 | Type III secretion protein     | Pseudomonas aeruginosa      | 706             | 2459978           | gbAF010150                    |
| FlhA Ppu <sup>c</sup>    | Flagellar biosynthesis protein | Pseudomonas putida          | 223             | 2853594           | abAF031898                    |
| Hrpl Psy                 | Type III secretion protein     | Pseudomonas syringae (syr)  | 695             | 547674            | spP35655                      |
| HrpO Rso                 | Type III secretion protein     | Ralstonia solanacearum      | 690             | 547677            | spP35656                      |
| Y4vR Rhi                 | Type III secretion protein     | Rhizobium spp.              | 697             | 2494472           | spP55726                      |
| InvA Sen <sup>c</sup>    | Type III secretion protein     | Salmonella enterica         | 650             | 1236873           | qbU43271                      |
| InvA Sty                 | Type III secretion protein     | Salmonella typhimurium      | 665             | 547727            | spP35657                      |
| SsaV Sty                 | Type III secretion protein     | Salmonella typhimurium      | 681             | 3024658           | spP74856                      |
| FlhA Sty                 | Flagellar biosynthesis protein | Salmonella typhimurium      | 692             | 729521            | spP40729                      |
| MxiA Sfl                 | Type III secretion protein     | Shigella flexneri           | 686             | 2506402           | spP35533                      |
| Orf Sso <sup>c</sup>     | Type III secretion protein     | Shigella sonnei             | 688             | 829074            | qbD50601                      |
| FlhA Tpa                 | Flagellar export protein       | Treponema pallidum          | 707             | 1216383           | gbU36839                      |
| FlhA Vpa                 | Flagellar biosynthesis protein | Vibrio parahaemolyticus     | 699             | 4322011           | gbAF069392                    |
| HrcP2 Xca                | Type III secretion protein     | Xanthomonas campestris      | 645             | 462307            | spP80150                      |
| YsaA Yen                 | Inner membrane transporter     | Yersinia enterocolitica     | 690             | 2352530           | gbAF005744                    |
| LcrD Yen                 | Type III secretion protein     | Yersinia enterocolitica     | 704             | 4324341           | spP21210                      |
| FlhA Yen                 | Flagellar biosynthesis protein | Yersinia enterocolitica     | 692             | 2494471           | spQ56887                      |
| LcrD Ype <sup>c</sup>    | Type III secretion protein     | Yersinia pestis             | 704             | 400174            | spP31487                      |
| LcrD Yps <sup>c</sup>    | Type III secretion protein     | Yersinia pseudotuberculosis | 704             | 155461            | gbM96850                      |
| FlhA Zmo                 | Flagellar biosynthesis protein | Zymonas mobilis             | 707             | 4378865           | gbAF124349                    |

<sup>a</sup>The four letter designations of the proteins are followed by three letter abbreviations of the source organism (e.g. Eco, *E. coli*). Format of presentation is the same for Tables 6-16.

<sup>b</sup>Accession numbers reported in this table and Tables 6-16 are derived from the following databases: GenBank, gb; Protein Information Resource, pir; and Swiss-Prot, sp.

<sup>c</sup>These proteins (in this table and Tables 6-16) were not included in the phylogenetic trees either because their sequences are very similar to some that were included, or because their sequences are incomplete.

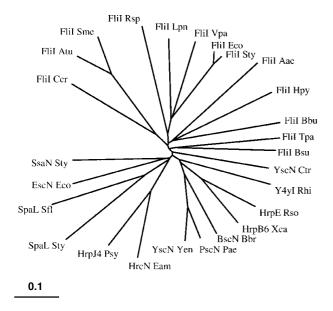



Figure 6. Phylogenetic tree for the YscN/Flil family.

(encoded in *Salmonella* pathogenicity island 1, SPI-1) and the Mxi/Spa proteins of *S. flexneri* always clustered moderately closely together. (4) The Fla proteins of *V. parahaemolyticus* cluster very loosely with the corresponding proteins of E. coli and S. typhimurium in four of six of the trees in which these proteins are all found. The two exceptions were the FliP and FliQ proteins of V. parahaemolyticus that did not cluster with the corresponding E. coli and S. typhimurium proteins (Figures 4C and D). (5) The E. coli Esc and S. typhimurium Ssa proteins (from the second S. typhimurium TIIIPS system, encoded in SPI-2) cluster loosely together in seven of the seven trees in which both homologues appear, and these two proteins cluster loosely with the Inv/Spa Sty / Mxi/Spa Sfl cluster in all of these trees. (6) All other proteins or protein clusters branch from points near the centers of these trees, and variability is probably due to experimental error. These results are consistent with the conclusion that all of the constituents of both TIIIPS and Fla systems underwent sequence divergence at fairly constant rates, and that essentially no shuffling of constituents occurred during the evolution of these systems. All of the (minor) differences between these trees may reflect experimental error. It is also important to note that phylogenetic distances for the TIIIPS systems generally do not reflect the relative phylogenetic distances of the organisms established using the sequences of 16S RNAs. However, those for the Fla proteins do represent an approximation to the phylogenetic distances observed for the organisms. It should be noted, however, that only one Gram-positive bacterium, only one Spirochete and several very distantly related Gramnegative bacteria were included in these analyses.

| Designation <sup>a</sup> | Description                     | Organism                    | No. of<br>residues | GenBank<br>GI No. | Accession<br>No. <sup>b</sup> |
|--------------------------|---------------------------------|-----------------------------|--------------------|-------------------|-------------------------------|
| Flil Atu                 | Flagellar-specific ATP synthase | Agrobacterium tumefaciens   | 473                | 2459709           | gbU95165                      |
| Flil Aae                 | Flagellar-specific ATP synthase | Aquifex aeolicus            | 443                | 3913671           | spO67531                      |
| Flil Bsu                 | Flagellar-specific ATP synthase | Bacillus subtilis           | 440                | 120331            | spP23445                      |
| BscN Bbr                 | Type III secretion protein      | Bordetella bronchiseptica   | 444                | 2935537           | gbAF049488                    |
| Flil Bbu                 | Flagellar-specific ATP synthase | Borrelia burgdorferi        | 436                | 1706850           | spP52607                      |
| Flil Ccr                 | Flagellar-specific ATP synthase | Caulobacter crescentus      | 444                | 1938379           | gbU93180                      |
| YscN Cpn <sup>c</sup>    | Type III secretion protein      | Chlamydia pneumoniae        | 442                | 4377010           | gbAE001652                    |
| YscN Ctr                 | Type III secretion protein      | Chlamydia trachomatis       | 442                | 3329120           | gbAE001337                    |
| HrcN Eam                 | Type III secretion protein      | Erwinia amylovora           | 454                | 1181169           | gbL25828                      |
| EscN Eco                 | Type III secretion protein      | Escherichia coli            | 446                | 2865290           | gbAF022236                    |
| Flil Eco                 | Flagellar-specific ATP synthase | Escherichia coli            | 457                | 2506213           | spP52612                      |
| Flil Hpy                 | Flagellar-specific ATP synthase | Helicobacter pylori         | 434                | 2493149           | spO07025                      |
| Flil Lpn                 | Flagellar-specific ATP synthase | Legionella pneumophila      | 449                | 1938361           | gbU85783                      |
| PscN Pae                 | Type III secretion protein      | Pseudomonas aeruginosa      | 440                | 2459981           | gbAF010151                    |
| HrpJ4 Psy                | Type III secretion protein      | Pseudomonas syringae (syr)  | 449                | 507390            | gbU07346                      |
| HrpE Rso                 | Type III secretion protein      | Ralstonia solanacearum      | 439                | 2120692           | pirS61858                     |
| Y4yl Rhi                 | Type III secretion protein      | Rhizobium spp.              | 451                | 2493150           | spP55717                      |
| Flil Rsp                 | Flagellar-specific ATP synthase | Rhodobacter sphaeroides     | 442                | 1272678           | gbX97201                      |
| SsaN Sty                 | Type III secretion protein      | Salmonella typhimurium      | 433                | 3024659           | spP74857                      |
| Flil Sty                 | Flagellar-specific ATP synthase | Salmonella typhimurium      | 456                | 120332            | spP26465                      |
| SpaL Sty                 | Type III secretion protein      | Salmonella typhimurium      | 432                | 730791            | spP39444                      |
| SpaL Sfl                 | Type III secretion protein      | Shigella flexneri           | 430                | 548969            | spP35531                      |
| HrcN Sfr <sup>c</sup>    | Type III secretion protein      | Sinorhizobium fredii        | 450                | 1648933           | gbL12251                      |
| Flil Sme                 | Flagellar-specific ATP synthase | Sinorhizobium meliloti      | 467                | 2916791           | gbAJ224445                    |
| Flil Tde                 | Flagellar-specific ATP synthase | Treponema denticola         | 473                | 2105151           | gbU78776                      |
| Flil Tpa                 | Flagellar-specific ATP synthase | Treponema pallidum          | 447                | 3322685           | gbAE001218                    |
| Flil Vpa                 | Flagellar-specific ATP synthase | Vibrio parahaemolyticus     | 439                | 4322012           | gbAF069392                    |
| HrpB6 Xca                | Type III secretion protein      | Xanthomonas campestris      | 442                | 462306            | spP80153                      |
| YscN Yen                 | Type III secretion protein      | Yersinia enterocolitica     | 439                | 732261            | spP40290                      |
| YscN Ype <sup>c</sup>    | Type III secretion protein      | Yersinia pestis             | 439                | 2996241           | gbAF053946                    |
| YscN Yps <sup>c</sup>    | Type III secretion protein      | Yersinia pseudotuberculosis | 439                | 732262            | spP40291                      |

<sup>a,b,c</sup>footnotes for tables 6-16 are as for table 5.

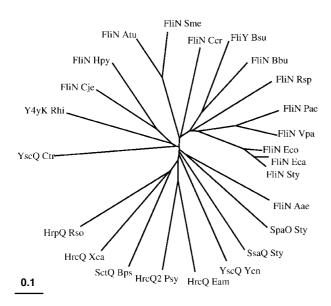



Figure 7. Phylogenetic tree for the YscQ/FliN family.

### Phylogenetic Trees Constructed with All Sequenced Homologues of TIIIPS Constituents

Complete trees, including almost all homologues identified in the databases for each of the 12 families analyzed, were

#### Table 7. YscQ/FliN Group

generated with the ClustalX program. These trees are shown in Figures 5-16. Most of the conclusions summarized above with the trees constructed using members of the complete or nearly complete TIIIPS and Fla systems (Figure 4A-F) were confirmed and extended in these trees. Therefore, only novel observations, not noted above, will be cited here.

Tables 5-16 present the members of each of the twelve families of TIIIPS protein constituents, and Figures 5-16 show the corresponding phylogenetic trees where all proteins in the tables except those noted with the superscript letter "c" were analyzed. In the tables, proteins are arranged alphabetically according to organism, and those eliminated from the reported analyses (in bold print) are those that either exhibit a high degree of similarity with another protein that was included, or are obvious fragments of incompletely or incorrectly sequenced proteins. A few of the proteins included in the phylogenetic analyses may be slightly truncated. Truncation would be expected to increase the branch length without appreciably altering the branching position. Below we systematically analyze the two principal phylogenetic clusters of these trees in greater detail.

### The Flagellar (Fla) Proteins

Figures 5-11, 15 and 16 include Fla proteins. The tree in Figure 5 shows clustering of the *S. typhimurium, E. coli, Y. enterocolitica, P. mirabilis, V. parahaemolyticus* and *Z. mobilis* FlhA proteins with increasing distance in that order. Additionally, the two spirochete FlhA proteins, those of *B. burgdorferi* and *T. pallidum*, cluster loosely together as do

|                          |                                |                             | No. of   |         | Accession        |
|--------------------------|--------------------------------|-----------------------------|----------|---------|------------------|
| Designation <sup>a</sup> | Description                    | Organism                    | residues | GI No.  | No. <sup>b</sup> |
| FliN Atu                 | Flagellar motor switch protein | Agrobacterium tumefaciens   | 179      | 3913685 | spQ57259         |
| FliN Aae                 | Flagellar motor switch protein | Aquifex aeolicus            | 112      | 2983912 | gbAE000745       |
| FliY Bsu                 | Flagellar motor switch protein | Bacillus subtilis           | 378      | 585146  | spP24073         |
| FliN Bbu                 | Flagellar motor switch protein | Borrelia burgdorferi        | 113      | 2494553 | spQ44903         |
| SctQ Bps                 | Type III secretion protein     | Burkholderia pseudomallei   | 310      | 4206077 | gbAF074878       |
| FliN Cje                 | Flagellar motor switch protein | Campylobacter jejuni        | 102      | 2274910 | gbAJ000400       |
| FliN Ccr                 | Flagellar motor switch protein | Caulobacter crescentus      | 110      | 462113  | spQ03593         |
| YscQ Ctr                 | Type III secretion protein     | Chlamydia trachomatis       | 373      | 3329123 | gbAE001337       |
| HrcQ Eam                 | Type III secretion protein     | Erwinia amylovora           | 338      | 1181172 | gbL25828         |
| FliN Eca                 | Flagellar motor switch protein | Erwinia carotovora          | 106      | 547912  | spP35539         |
| HrcQ2 Ehe <sup>c</sup>   | Type III secretion protein     | Erwinia herbicola           | 108      | 1483321 | gbX99768         |
| FliN Eco                 | Flagellar motor switch protein | Escherichia coli            | 137      | 120347  | spP15070         |
| FliN Hpy                 | Flagellar motor switch protein | Helicobacter pylori         | 123      | 2313688 | gbAE000571       |
| FliN Pae                 | Flagellar motor switch protein | Pseudomonas aeruginosa      | 157      | 2494554 | spQ51466         |
| HrcQ2 Psy <sup>c</sup>   | Type III secretion protein     | Pseudomonas syringae (phs)  | 128      | 3282780 | gbAF04344        |
| HrpU Psy                 | Type III secretion protein     | Pseudomonas syringae (syr)  | 133      | 818890  | gbU25812         |
| HrpQ Rso                 | Type III secretion protein     | Ralstonia solanacearum      | 354      | 2120698 | pirS62086        |
| Y4yK Rhi                 | Type III secretion protein     | Rhizobium spp.              | 358      | 2494558 | spP55719         |
| FliN Rsp                 | Flagellar motor switch protein | Rhodobacter sphaeroides     | 152      | 2315250 | gbY14335         |
| SpaO Sdu <sup>c</sup>    | Type III secretion protein     | Salmonella dublin           | 303      | 2494555 | spQ53968         |
| SpaO Sen <sup>c</sup>    | Type III secretion protein     | Salmonella enterica         | 303      | 975754  | gbU29359         |
| SpaQ Sti <sup>c</sup>    | Type III secretion protein     | Salmonella typhi            | 303      | 2494557 | spQ56022         |
| SpaO Sty                 | Type III secretion protein     | Salmonella typhimurium      | 303      | 730795  | spP40699         |
| SsaQ Sty                 | Type III secretion protein     | Salmonella typhimurium      | 322      | 3024662 | spP74860         |
| FliN Sty                 | Flagellar motor switch protein | Salmonella typhimurium      | 137      | 120348  | spP26419         |
| HrcQ Sfr <sup>c</sup>    | Type III secretion protein     | Sinorhizobium fredii        | 382      | 1648935 | gbL12251         |
| FliN Sme                 | Flagellar motor switch protein | Sinorhizobium meliloti      | 198      | 2916786 | gbAJ224445       |
| FliN Vpa                 | Flagellar motor switch protein | Vibrio parahaemolyticus     | 136      | 4322005 | gbAF069392       |
| HrcQ Xca                 | Type III secretion protein     | Xanthomonas campestris      | 268      | 4494847 | gbAF056246       |
| YscQ Yen                 | Type III secretion protein     | Yersinia enterocolitica     | 307      | 4324350 | gbAF102990       |
| YscQ Ype <sup>c</sup>    | Type III secretion protein     | Yersinia pestis             | 307      | 1176912 | spP42713         |
| YscQ Yps <sup>c</sup>    | Type III secretion protein     | Yersinia pseudotuberculosis | 307      | 732265  | spP40296         |

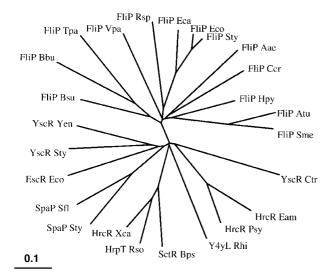



Figure 8. Phylogenetic tree for the YscR/FliP family.

the *C. jejuni* and *H. pylori* proteins. All other Fla proteins branch from points near the center of the Fla portion of the tree. These relative distances are in agreement with expectation on the basis of the phylogenetic relationships of the organisms. Because of the large sizes of these FlhA proteins (Table 5), this tree should be highly reliable. The tree for Flil homologues (Table 6; Figure 6) similarly reveals rough clustering according to the phylogenies of the organisms although the two spirochete proteins do not

Table 8. YscR/FliP Group

cluster together.

FliN homologues (Table 7; Figure 7) similarly show clustering as expected according to organismal phylogeny. As in Figures 6 and 8, *A. tumefaciens* and *S. meliloti* cluster together. These three figures are the only ones where Fla proteins from both of these organisms are represented. Contrary to expectation, the *B. burgdorferi* and *B. subtilis* proteins cluster loosely together, and no *T. pallidum* FliN protein homologue is present.

The tree for FliP homologues (Table 8; Figure 8) is essentially as expected from organismal phylogenies, except that the *R. sphaeroides* protein proves to be closer to the cluster of proteins from *S. typhimurium*, *E. coli* and *E. carotovora* than is the *V. parahaemolyticus* protein. This observation may be related to the fact that unlike the other Fla systems, that from *V. parahaemolyticus* transports Na<sup>+</sup> instead of H<sup>+</sup>. As in Figure 5, the two spirochete FliP homologues cluster loosely together.

The FliQ tree (Table 9; Figure 9) is also in accordance with expectation except that the *V. parahaemolyticus* homologue clusters distantly from the *S. typhimurium-E. coli-E. carotovora* cluster as was observed for the FliP tree as noted for Figure 8. This unexpectedly great divergence between the enteric and *V. parahaemolyticus* FliP and FliQ proteins may reflect divergence for a unique function such as accommodation of Na<sup>+</sup> rather than H<sup>+</sup> as the transported ion that drives flagellar rotation. If this functional difference does prove to be responsible for the phylogenetic differences noted, it suggests that FliP and FliQ play a role in using the smf versus the pmf.

Trees for the FliR (Table 10; Figure 10), FlhB (Table 11; Figure 11), FliF (Table 15; Figure 15) and FliH (Table 16; Figure 16) families are fully consistent with expectation

| Designation <sup>a</sup> | Description                    | Organism                    | No. of residues | GenBank<br>GI No. | Accession<br>No. <sup>b</sup> |
|--------------------------|--------------------------------|-----------------------------|-----------------|-------------------|-------------------------------|
| FliP Atu                 | Flagellar biosynthetic protein | Agrobacterium tumefaciens   | 245             | 2494560           | spQ44344                      |
| FliP Aae                 | Flagellar biosynthetic protein | Aquifex aeolicus            | 239             | 2984179           | gbAE000763                    |
| FliP Bsu                 | Flagellar biosynthetic protein | Bacillus subtilis           | 221             | 544315            | spP35528                      |
| FliP Bbu                 | Flagellar biosynthetic protein | Borrelia burgdoferi         | 254             | 2494561           | spQ44763                      |
| SctR Bps                 | Type III secretion protein     | Burkholderia pseudomallei   | 216             | 4206078           | gbAF074878                    |
| FliP Ccr                 | Flagellar biosynthetic protein | Caulobacter crescentus      | 266             | 2494562           | spQ45980                      |
| YscR Cpn                 | Type III secretion protein     | Chlamydia pneumoniae        | 306             | 4377137           | gbAE001663                    |
| YscR Ctr                 | Type III secretion protein     | Chlamydia trachomatis       | 306             | 3329003           | gbAE001327                    |
| HrcR Eam                 | Type III secretion protein     | Erwinia amylovora           | 217             | 2494566           | spQ46646                      |
| FliP Eca                 | Flagellar biosynthetic protein | Erwinia carotovara          | 258             | 462610            | spP34200                      |
| HrcR Ehe                 | Type III secretion protein     | Erwinia herbicola           | 217             | 2494567           | spQ47856                      |
| EscR Eco                 | Type III secretion protein     | Escherichia coli            | 217             | 2865276           | gbAF022236                    |
| FliP Eco                 | Flagellar biosynthetic protein | Escherichia coli            | 245             | 416997            | spP33133                      |
| FliP Hpy                 | Flagellar biosynthetic protein | Helicobacter pylori         | 172             | 4580427           | gbAE000581                    |
| FliP Pae                 | Flagellar biosynthetic protein | Pseudomonas aeruginosa      | 141             | 2494563           | spQ51468                      |
| FliP Ppu                 | Flagellar biosynthetic protein | Pseudomonas putida          | 124             | 4104062           | gbAF031418                    |
| HrcR Psy                 | Type III secretion protein     | Pseudomonas syringae (phs)  | 208             | 3282781           | gbAF043444                    |
| HrpT Rso                 | Type III secretion protein     | Ralstonia solanacearum"     | 217             | 2494568           | spQ52488                      |
| Y4yL Rhi                 | Type III secretion protein     | Rhizobium spp.              | 222             | 2494571           | spP55720                      |
| FliP Rsp                 | Flagellar biosynthetic protein | Rhodobacter sphaeroides     | 301             | 3435109           | gbAF044580                    |
| SpaP Sen                 | Type III secretion protein     | Salmonella enterica         | 224             | 973278            | gbU29350                      |
| SpaP Sti                 | Type III secretion protein     | Salmonella typhi            | 224             | 2494565           | spQ56023                      |
| FİIP Sty                 | Flagellar biosynthetic protein | Salmonella typhimurium      | 245             | 1706856           | spP54700                      |
| YscR Śty                 | Pathogenicity islands          | Salmonella typhimurium      | 215             | 2494570           | spP74890                      |
| SpaP Sty                 | Type III secretion protein     | Salmonella typhimurium      | 224             | 730796            | spP40700                      |
| SpaP Sfl                 | Type III secretion protein     | Shigella flexneri           | 216             | 548966            | spP35529                      |
| HrcR Sfr                 | Type III secretion protein     | Sinorhizobium fredii        | 249             | 1648936           | gbL12251                      |
| FliP Sme                 | Flagellar biosynthetic protein | Sinorhizobium meliloti      | 245             | 2506424           | spP37827                      |
| FliP Tde                 | Flagellar biosynthetic protein | Treponema denticola         | 271             | 4426951           | gbAF122909                    |
| FliP Tpa                 | Flagellar biosynthetic protein | Treponema pallidum          | 271             | 2494564           | spP74930                      |
| FliP Vpa                 | Flagellar biosynthetic protein | Vibrio parahaemolyticus     | 289             | 4322007           | gbAF069392                    |
| HrcR Xca                 | Pathogenicity island           | Xanthomonas campestris      | 216             | 1346805           | spP37828                      |
| YscR Yen                 | Type III secretion protein     | Yersinia enterocolitica     | 217             | 4324351           | gbAF102990                    |
| YscR Ype                 | Type III secretion protein     | Yersinia pestis             | 217             | 732266            | spP40297                      |
| YscR Yps                 | Type III secretion protein     | Yersinia pseudotuberculosis | 217             | 475123            | gbL25667                      |

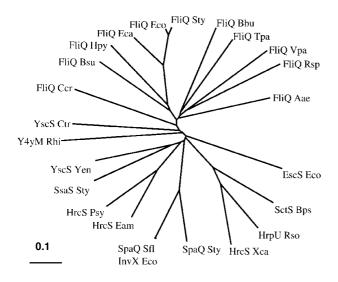



Figure 9. Phylogenetic tree for the YscS/FliQ family.

based on organismal phylogenies. Moreover, clustering of the two distantly related spirochete proteins is as expected for six of the eight trees in which both proteins are represented. The exceptions were Flil (Figure 6) and FliR (Figure 10). It can therefore be concluded that with only a very few exceptions, all 9 Fla protein families exhibit

#### Table 9. YscS/FliQ Group

clustering patterns in agreement with organismal phylogeny, a result consistent with the suggestion that all or most of the Fla homologues portrayed in these trees are orthologues. In these cases, the exceptions noted may be due to experimental error.

#### The Type III Protein Secretion (TIIIPS) Proteins

As noted above and illustrated in the trees depicted in Figure 4, several pairs of close homologues derived from the same TIIIPS systems paired together in all trees represented. The more complete trees shown in Figures 5-16 confirmed and extended this conclusion. For example, all R. solanacearum proteins are most closely related to the corresponding homologues from X. campestris, and all but one of the Y. enterocolitica proteins are most similar to the homologues in P. aeruginosa when the sequences of these proteins are available. Further, the E. amylovora proteins paired with either the P. syringae (phs) proteins (Figures 8-11) or the P. syringae (syr) proteins (Figures 6, 7 and 12). The systems from these two strains of P. syringae are probably very similar. However, one of the trees (Figure proved exceptional. The two exceptions shown in Figure 5 were Hrpl of E. amylovora that clustered with PcrD of P. aeruginosa, and LcrD of Y. enterocolitica that paired with Hrpl of P. syringae (syr). The P. syringae (phs) LcrD homologue is not available. Note: except for Hrpl of P. syringae (Figure 5) all other P. aeruginosa proteins paired with the Y. enterocolitica proteins in the trees shown in Figures 12-16. Thus, this one example (Figure 5) represents the single case in which horizontal transfer of

| Designation <sup>a</sup>          | Description                                              | Organism                                      | No. of residues | GenBank<br>GI No. | Accession<br>No. <sup>b</sup> |
|-----------------------------------|----------------------------------------------------------|-----------------------------------------------|-----------------|-------------------|-------------------------------|
| FliQ Aae                          | Flagellar biosynthetic protein                           | Aquifex aeolicus                              | 89              | 2984201           | gbAE000765                    |
| FliQ Bsu                          | Flagellar biosynthetic protein                           | Bacillus subtilis                             | 89              | 544316            | spP35535                      |
| FliQ Bbu                          | Flagellar biosynthetic protein                           | Borrelia burgdorferi                          | 87              | 3023774           | spQ44906                      |
| SctS Bps                          | Type III secretion protein                               | Burkholderia pseudomallei                     | 87              | 4206079           | gbAF074878                    |
| FliQ Ccr                          | Flagellar biosynthetic protein                           | Caulobacter crescentus                        | 87              | 3023776           | spQ45974                      |
| YscS Cpn <sup>c</sup>             | Type III secretion protein                               | Chlamydia pneumoniae                          | 95              | 4377136           | gbAE001663                    |
| YscS Ctr                          | Type III secretion protein                               | Chlamydia trachomatis                         | 94              | 3329004           | gbAE001327                    |
| HrcS Eam                          | Type III secretion protein                               | Erwinia amylovora                             | 86              | 1181174           | gbL25828                      |
| FliQ Eca                          | Flagellar biosynthetic protein                           | Erwinia carotovora                            | 89              | 462611            | spP34201                      |
| HrcS Ehe <sup>c</sup>             | Type III secretion protein                               | Erwinia herbicola                             | 76              | 1483323           | gbX99768                      |
| EscS Eco                          | Type III secretion protein                               | Escherichia coli                              | 89              | 2865277           | gbAF022236                    |
| FliQ Eco                          | Flagellar biosynthetic protein                           | Escherichia coli                              | 89              | 416998            | spP33134                      |
| InvX Eco                          | Invasion membrane protein                                | Escherichia coli                              | 86              | 538746            | pirA40611                     |
| FliQ Hpy                          | Flagellar biosynthetic protein                           | Helicobacter pylori                           | 88              | 2314593           | gbAE000642                    |
| HrcS Psy                          | Type III secretion protein                               | Pseudomonas syringae (phs)                    | 88              | 3282782           | gbAF043444                    |
| HrpU Rso                          | Type III secretion protein                               | Ralstonia solanacearum                        | 86              | 2120700           | pirS61850                     |
| Y4yM Rhi                          | Type III secretion protein                               | Rhizobium spp.                                | 91              | 2494572           | spP55721                      |
| FliQ Rsp                          | Flagellar biosynthetic protein                           | Rhodobacter sphaeroides                       | 88              | 3435110           | gbAF044580                    |
| SpaQ Sdu <sup>c</sup>             | Type III secretion protein                               | Salmonella dublin                             | 86              | 973259            | gbU29345                      |
| SpaQ Sen <sup>c</sup><br>SsaS Sty | Type III secretion protein<br>Type III secretion protein | Salmonella enterica<br>Salmonella typhimurium | 86<br>88        | 973295<br>3024663 | gbU29354<br>spP74891          |
| SpaQ Sty                          | Type III secretion protein                               | Salmonella typhimurium                        | 82              | 730797            | spP40704                      |
| FliQ Sty                          | Flagellar biosynthetic protein                           | Salmonella typhimurium                        | 89              | 1706857           | spP54701                      |
| SpaQ Sfl                          | Type III secretion protein                               | Shigella flexneri                             | 86              | 730798            | spP40705                      |
| Orf Sso <sup>c</sup>              | Type III secretion protein                               | Shigella sonnei                               | 80              | 829081            | gbD50601                      |
| HrcS Sfr <sup>c</sup>             | Type III secretion protein                               | Sinorhizobium fredii                          | 92              | 1648937           | gbL12251                      |
| FliQ Tpa                          | Flagellar biosynthetic protein                           | Treponema pallidum                            | 94              | 3023764           | spP74931                      |
| FliQ Vpa                          | Flagellar biosynthetic protein                           | Vibrio parahaemolyticus                       | 89              | 4322008           | gbAF069392                    |
| HrcS Xca                          | Type III secretion protein                               | Xanthomonas campestris                        | 86              | 4494849           | gbAF056246                    |
| YscS Yen                          | Type III secretion protein                               | Yersinia enterocolitica                       | 88              | 4324352           | gbAF102990                    |
| YscS Ype <sup>c</sup>             | Type III secretion protein                               | Yersinia pestis                               | 79              | 1176913           | spP42715                      |
| YscS Yps <sup>c</sup>             | Type III secretion protein                               | Yersinia pseudotuberculosis                   | 88              | 732267            | spP40298                      |



Figure 10. Phylogenetic tree for the YscT/FliR family.

the gene *pcrD* of *P. aeruginosa* might have occurred from a system similar to the *E. amylovora* system, replacing the homologue which should be similar to the protein from *Y. enterocolitica*.

# The Secretin Phylogenetic Tree

The tree of secretins shown in Figure 12 shows that all TIIIPS secretins cluster together on a single branch. The same is observed for the phage-encoded secretins. Further, all of the general Type II protein secretion (TIIPS) secretins cluster loosely together. The same is true of the pilin secretins. However, the ComE competence protein of *H*.

*influenzae* clusters loosely with the pilin secretins. Finally, the NoIW protein of *Rhizobium*, which plays an unidentified biochemical role in nodulation of the host plant by the bacterium, does not cluster with any of the other secretins, branching from a point near the center of the tree.

### Discussion

Type III protein secretion (TIIIPS) systems are found exclusively in Gram-negative bacterial pathogens and may facilitate transfer of virulence proteins directly from the bacterial cytoplasm to the eukaryotic host cell cytoplasm in a single energy-coupled step (Lee, 1997; Hueck, 1998; Galán and Collmer, 1999). Although it seems clear that gene clusters encoding these systems have been transferred horizontally between various pathogens (Groisman and Ochman, 1993; Lee, 1996; Groisman and Ochman, 1997), their evolutionary origins and the mechanisms of their transfer are poorly understood (Karaolis *et al.*, 1999; Mirold *et al.*, 1999).

The gene clusters which encode the TIIIPS systems usually comprise genes for secreted virulence proteins that produce pathogenic responses in the host animal or plant cell (reviewed in Hueck, 1998). In contrast to the sequence conservation of the majority of constituents of the TIIIPS apparatus, the secreted virulence proteins are highly variable both within a given pathogen and between pathogens. Many of these virulence proteins show structural and/or biochemical similarity to certain signal transduction proteins of the host cell and interfere with host cell signal transduction pathways (Guan and Dixon, 1990; Rosqvist et al., 1991; Galyov et al., 1993; Collmer and Bauer, 1994; Bonas, 1994; Chen et al., 1996; Hardt et al., 1998; Mudgett and Staskawicz, 1998; Norris et al., 1998; Fu and Galán, 1998; Spiik et al., 1999). Therefore, the genes encoding the secreted proteins may have been captured from the host by the pathogen during the evolutionary past. Since specificity of secretion appears to

| Designation <sup>a</sup> | Description                    | Organism                    | No. of residues | GenBank<br>GI No. | Accession<br>No. <sup>b</sup> |
|--------------------------|--------------------------------|-----------------------------|-----------------|-------------------|-------------------------------|
| FliR Aae                 | Flagellar biosynthetic protein | Aquifex aeolicus            | 258             | 2984202           | gbAE000765                    |
| FliR Bsu                 | Flagellar biosynthetic protein | Bacillus subtilis           | 259             | 544317            | spP35537                      |
| FliR Bbu                 | Flagellar biosynthetic protein | Borrelia burgdorferi        | 269             | 3913681           | spQ44907                      |
| FliR Ccr                 | Flagellar biosynthetic protein | Caulobacter crescentus      | 251             | 3023777           | spQ45975                      |
| YscT Cpn <sup>c</sup>    | Type III secretion protein     | Chlamydia pneumoniae        | 289             | 4377135           | gbAE001663                    |
| YscT Ctr                 | Type III secretion protein     | Chlamydia trachomatis       | 289             | 3329005           | gbAE001327                    |
| HrcT Eam                 | Type III secretion protein     | Erwinia amylovora           | 265             | 1181175           | ğbL25828                      |
| FliR Eca                 | Flagellar biosynthetic protein | Erwinia carotovora          | 261             | 462612            | spP34202                      |
| HrcT Ehe <sup>c</sup>    | Type III secretion protein     | Erwinia herbicola           | 265             | 1483324           | gbX99768                      |
| EscT Eco                 | Type III secretion protein     | Escherichia coli            | 258             | 2865278           | gbAF022236                    |
| FliR Eco                 | Flagellar biosynthetic protein | Escherichia coli            | 261             | 2506425           | spP33135                      |
| FliR Hpy                 | Flagellar biosynthetic protein | Helicobacter pylori         | 255             | 2313256           | gbAE000537                    |
| FliR Ppu <sup>c</sup>    | Flagellar biosynthetic protein | Pseudomonas putida          | 130             | 4104063           | gbAF031418                    |
| HrcT Psy                 | Type III secretion protein     | Pseudomonas syringae (phs)  | 264             | 3282783           | gbAF043444                    |
| HrcC Rso                 | Type III secretion protein     | Ralstonia solanacearum"     | 282             | 2120690           | pirS61860                     |
| Y4yN Rhi                 | Type III secretion protein     | Rhizobium spp.              | 272             | 2494573           | spP55722                      |
| FliŘ Rsp                 | Flagellar biosynthetic protein | Rhodobacter sphaeroides     | 269             | 3435111           | gbAF044580                    |
| FliR Sty                 | Flagellar biosynthetic protein | Salmonella typhimurium      | 264             | 1706858           | spP54702                      |
| SsaT Sty                 | Type III secretion protein     | Salmonella typhimurium      | 259             | 3024667           | spP96068                      |
| SpaR Sty                 | Type III secretion protein     | Salmonella typhimurium      | 263             | 730799            | spP40701                      |
| SpaR Sfi                 | Type III secretion protein     | Shigella flexneri           | 256             | 730800            | spP40706                      |
| HrcT Sfr <sup>c</sup>    | Type III secretion protein     | Sinorhizobium fredii        | 272             | 1648938           | gbL12251                      |
| FliR Tpa                 | Flagellar biosynthetic protein | Treponema pallidum          | 265             | 3023765           | spP74932                      |
| FliR Vpa                 | Flagellar biosynthetic protein | Vibrio parahaemolyticus     | 260             | 4322009           | gbAF069392                    |
| HrpB8 Xca                | Type III secretion protein     | Xanthomonas campestris      | 276             | 984885            | gbU33548                      |
| YscT Yen                 | Type III secretion protein     | Yersinia enterocolitica     | 261             | 4324353           | gbAF102990                    |
| YscT Ype <sup>c</sup>    | Type III secretion protein     | Yersinia pestis             | 261             | 3822065           | gbAF074612                    |
| YscT Yps <sup>c</sup>    | Type III secretion protein     | Yersinia pseudotuberculosis | 261             | 732268            | spP40299                      |

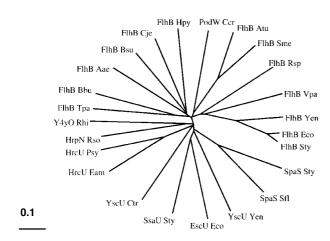



Figure 11. Phylogenetic tree for the YscU/FlhB family.

be dictated by the secreted proteins (and possibly cognate chaperonic factors; Cheng and Schneewind, 1999) rather than by biochemical properties of the secretory system (Hermant *et al.*, 1995; Rosqvist *et al.*, 1995; Frithz-Lindsten *et al.*, 1997; Anderson *et al.*, 1999; Rossier *et al.*, 1999), TIIIPS apparatuses appear to function as multi-purpose bacterial syringes, capable of injecting a variety of different poisons into host cells. While the biochemical functions of

#### Table 11. YscU/FlhB group

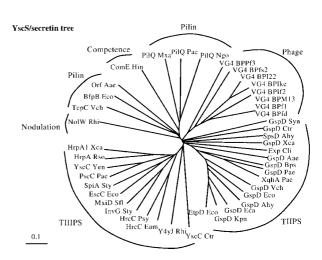
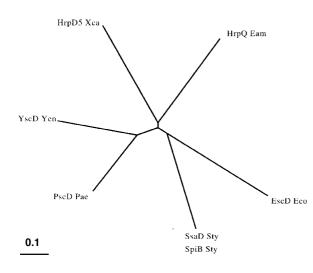



Figure 12. Phylogenetic tree for the YscC/secretin family.

many virulence proteins secreted by TIIPS systems have been analyzed in great detail, very little is known about the biochemistry of the actual secretion process. On the contrary, abundant sequence information for TIIPS system genes is available. Here we have used this information to analyze the evolutionary relationships of the constituents of TIIPS systems. We have used two programs, and analyses were conducted either (a) with just those

| Designation <sup>a</sup> | Description                    | Organism                    | No. of residues | GenBank<br>GI No. | Accession<br>No. <sup>b</sup> |
|--------------------------|--------------------------------|-----------------------------|-----------------|-------------------|-------------------------------|
| FlhB Atu                 | Flagellar biosynthetic protein | Agrobacterium tumefaciens   | 360             | 2459702           | gbU95165                      |
| FlhB Aae                 | Flagellar biosynthetic protein | Aquifex aeolicus            | 350             | 2984250           | gbAE000768                    |
| FlhB Bsu                 | Flagellar biosynthetic protein | Bacillus subtilis           | 360             | 544313            | spP35538                      |
| FlhB Bbu                 | Flagellar biosynthetic protein | Borrelia burgdorferi        | 372             | 3023773           | spQ44760                      |
| FlhB Cje                 | Flagellar biosynthetic protein | Campylobacter jejuni        | 362             | 4105266           | gbAF044271                    |
| PodW Ccr                 | Flagellar biosynthetic protein | Caulobacter crescentus      | 361             | 1147737           | gbU42203                      |
| Cds1 Cca <sup>c</sup>    | Type III secretion protein     | Chlamydia caviae            | 360             | 2444073           | gbU88070                      |
| YscU Cpn <sup>c</sup>    | Type III secretion protein     | Chlamydia pneumoniae        | 360             | 4376600           | gbAE001617                    |
| YscU Ctr                 | Type III secretion protein     | Chlamydia trachomatis       | 360             | 3328487           | gbAE001283                    |
| HrcU Eam                 | Type III secretion protein     | Erwinia amylovora           | 360             | 1181176           | gbL25828                      |
| HrcU Ehe <sup>c</sup>    | Flagellar biosynthetic protein | Erwinia herbicola           | 52              | 1483325           | gbX99768                      |
| EscU Eco                 | Type III secretion protein     | Escherichia coli            | 345             | 2865279           | gbAF022236                    |
| FIhB Eco                 | Flagellar biosynthetic protein | Escherichia coli            | 382             | 2494574           | spP76299                      |
| FlhB Hpy                 | Flagellar biosynthetic protein | Helicobacter pylori         | 358             | 3023763           | spP56416                      |
| FlhB Pmi                 | Flagellar biosynthetic protein | Proteus mirabilis           | 74              | 2126141           | pirS61501                     |
| HrcU Psy <sup>c</sup>    | Type III secretion protein     | Pseudomonas syringae (gly)  | 325             | 3603323           | gbAF069652                    |
| HrcU Psy                 | Type III secretion protein     | Pseudomonas syringae (phs)  | 359             | 3282784           | gbAF043444                    |
| HrpY Psy <sup>c</sup>    | Type III secretion protein     | Pseudomonas syringae (syr)  | 359             | 818894            | gbU25812                      |
| HrpN Rso                 | Type III secretion protein     | Ralstonia solanacearum      | 357             | 547676            | spP35652                      |
| Y4yO Rhi                 | Type III secretion protein     | Rhizobium spp.              | 345             | 2494576           | spP55723                      |
| FIhB Rsp                 | Flagellar biosynthetic protein | Rhodobacter sphaeroides     | 376             | 3435112           | gbAF044580                    |
| SsaU Sty                 | Type III secretion protein     | Salmonella typhimurium      | 352             | 3024668           | spP96069                      |
| SpaS Sty                 | Type III secretion protein     | Salmonella typhimurium      | 356             | 730801            | spP40702                      |
| FlhB Sty                 | Flagellar biosynthetic protein | Salmonella typhimurium      | 383             | 729522            | spP40727                      |
| SpaS Sfl                 | Type III secretion protein     | Shigella flexneri           | 342             | 730802            | spP40707                      |
| HrcU Sfr <sup>c</sup>    | Type III secretion protein     | Sinorhizobium fredii        | 351             | 1648939           | gbL12251                      |
| FlhB Sme                 | Flagellar biosynthetic protein | Sinorhizobium meliloti      | 360             | 2916784           | gbAJ224445                    |
| FlhB Tpa                 | Flagellar biosynthetic protein | Treponema pallidum          | 376             | 3323017           | gbAE001244                    |
| FlhB Vpa                 | Flagellar biosynthetic protein | Vibrio parahaemolyticus     | 376             | 4322010           | gbAF069392                    |
| FlhB Yen                 | Flagellar biosynthetic protein | Yersinia enterocolitica     | 383             | 2494575           | spQ56886                      |
| YscU Yen                 | Type III secretion protein     | Yersinia enterocolitica     | 354             | 4324354           | gbAF102990                    |
| YscU Ype <sup>c</sup>    | Type III secretion protein     | Yersinia pestis             | 354             | 3822064           | gbAF074612                    |
| YscU Yps <sup>c</sup>    | Type III secretion protein     | Yersinia pseudotuberculosis | 354             | 732269            | spP40300                      |


homologues for which completely (or nearly completely) sequenced TIIIPS systems are available (Figures 4A-F) or (b) with all (or most) available homologues (Figures 5-16). The two programs used gave comparable results, and regardless of the approach used, the results led to similar conclusions. Several of these conclusions are cited below and interpreted in terms of an evolutionary scheme for the appearance and maintenance of distinct TIIIPS systems.

The homologous protein constituents of different virulence-related TIIIPS systems cluster similarly (*i.e.*, in accordance with system phylogeny) in all trees that include

#### Table 12. YscC/secretin group

sequenced homologues of a particular TIIIPS protein type. This notion is true for the inner membrane components which are homologous to flagellar proteins and for the outer membrane secretins. The pairwise clustering of protein systems corresponds to the pairwise similarities in genetic organization of the encoding genes (see Figure 1). The phylogenetic relationships of these TIIIPS proteins clearly do <u>not</u> follow those of the source organisms (see, for example, the 16S rRNA-derived organismal differences between *R. solanacearum* and *X. campestris*, two pathogens which carry very closely related TIIIPS systems).

| Designation <sup>a</sup> | Description                  | Organism                                | No. of residues | GenBank<br>GI No. | Accession<br>No. <sup>b</sup> |
|--------------------------|------------------------------|-----------------------------------------|-----------------|-------------------|-------------------------------|
| GspD Ahy                 | General secretion protein    | Aeromonas hydrophila                    | 678             | 1170050           | spP31780                      |
| SpsD Ahy                 | S-protein secretion protein  | Aeromonas hydrophila                    | 737             | 2126227           | pirl39547                     |
| GspD Asa <sup>c</sup>    | General secretion protein    | Aeromonas salmoncida                    | 678             | 1170051           | spP45778                      |
| GspD Asa<br>GspD Aae     | General secretion protein    | Aquifex aeolicus                        | 625             | 2983708           | gbAE00073                     |
| Orf Aae                  | •                            | 1                                       | 705             | 2983222           | gbAE00073                     |
| /G4 BPf1                 | Pilin transport protein      | Aquifex aeolicus                        |                 |                   | •                             |
|                          | Gene IV protein secretion    | Bacteriophage f1                        | 426             | 138046            | spP03666                      |
| /G4 BPfd                 | Gene IV protein secretion    | Bacteriophage fd                        | 426             | 138047            | spP03664                      |
| /G4 BPfs2                | Gene IV protein secretion    | Bacteriophage fs-2                      | 500             | 3702216           | gbAB00263                     |
| /G4 BPI22                | Gene IV protein secretion    | Bacteriophage I2-2                      | 429             | 138048            | spP15420                      |
| /G4 BPIf1                | Gene IV protein secretion    | Bacteriophage If1                       | 429             | 3676288           | gbU02303                      |
| /G4 BPIke                | Gene IV protein secretion    | Bacteriophage Ike                       | 437             | 138049            | spP03667                      |
| /G4 BPM13                | Gene IV protein secretion    | Bacteriophage M13                       | 426             | 138050            | spP03665                      |
| /G4 BPPf3                | Gene IV protein secretion    | Bacteriophage Pf3                       | 430             | 138034            | spP03668                      |
| SspD Bps                 | General secretion protein    | Burkholderia pseudomallei               | 750             | 4139236           | gbAF11018                     |
| /scC Cpn <sup>c</sup>    | Type III secretion protein   | Chlamydia pneumoniae                    | 919             | 4377005           | gbAE00165                     |
| GspD Cpn <sup>c</sup>    | General secretion protein    | Chlamydia pneumoniae                    | 754             | 4377127           | gbAE00166                     |
| /scC Ctr                 | Type III secretion protein   | Chlamydia trachomatis                   | 921             | 3329125           | gbAE00133                     |
| GspD Ctr                 | General secretion protein    | Chlamydia trachomatis                   | 760             | 3329013           | gbAE00132                     |
| Exp Cli                  | Exporter protein             | Chlorobium limicola                     | 461             | 1688247           | gbU77780                      |
| Drf Cbu⁰                 | Hypothetical protein         | Coxiella burnetii                       | 171             | 3248946           | gbAF06949                     |
| HrcC Eam                 | Type III secretion protein   | Erwinia amylovora                       | 676             | 1336093           | gbU56662                      |
| GspD Eca                 | General secretion protein    | Erwinia carotovora                      | 659             | 2506491           | spP31701                      |
| HrcC Ech <sup>c</sup>    | Type III secretion protein   | Erwinia chrysanthemi                    | 691             | 1772618           | gbL39897                      |
| GspD Ech <sup>c</sup>    | General secretion protein    | Erwinia chrysanthemi                    | 712             | 399792            | spP31700                      |
| EscC Eco                 | Type III secretion protein   | Escherichia coli                        | 512             | 2897962           | gbAF02223                     |
| GspD Eco                 | General secretion protein    | Escherichia coli                        | 654             | 1170052           | spP45758                      |
|                          |                              | Escherichia coli                        | 585             |                   | gbY09824                      |
| EtpD Eco                 | Type II secretion protein    | Escherichia coli                        |                 | 2598401           | 0                             |
| HofQ Eco <sup>c</sup>    | Outer membrane transport     |                                         | 412             | 1170332           | spP34749                      |
| BfpB Eco                 | Bundle-forming pilus protein | Escherichia coli                        | 552             | 1314252           | gbU27184                      |
| ComE Hin                 | Outer membrane transport     | Haemophilus influenzae                  | 445             | 1169008           | spP31772                      |
| GspD Kpn                 | General secretion protein    | Klebsiella pneumoniae                   | 660             | 131592            | spP15644                      |
| PilQ Mxa                 | Pilin transport protein      | Myxococcus xanthus                      | 901             | 3978519           | gbAF10015                     |
| PilQ Ngo                 | Pilin transport protein      | Neisseria gonorrhoeae                   | 720             | 2120880           | pirS70838                     |
| PilQ Nme <sup>c</sup>    | Pilin transport protein      | Neisseria meningitidis                  | 766             | 4027986           | gbAF06605                     |
| PscC Pae                 | Type III secretion protein   | Pseudomonas aeruginosa                  | 600             | 1781385           | gbU56077                      |
| GspD Pae                 | General secretion protein    | Pseudomonas aeruginosa                  | 658             | 544439            | spP35818                      |
| (qhA Pae                 | Type II secretion protein    | Pseudomonas aeruginosa                  | 713             | 2853000           | gbAF04426                     |
| PilQ Pae                 | Pilin transport protein      | Pseudomonas aeruginosa                  | 714             | 464392            | spP34750                      |
| KcpQ Pal <sup>c</sup>    | Type II secretion protein    | Pseudomonas alcaligenes                 | 649             | 3978475           | gbAF09291                     |
| KcpQ Ppu <sup>c</sup>    | Type II secretion protein    | Pseudomonas putida                      | 591             | 2120685           | pirS64727                     |
| IrcC Psy                 | Type III secretion protein   | Pseudomonas syringae (syr)              | 701             | 2934881           | gbL01064                      |
| HrpA Rso                 | Type III secretion protein   | Ralstonia solanacearum                  | 568             | 2833448           | spQ52498                      |
| /4xJ Rhi                 | Type III secretion protein   | Rhizobium spp.                          | 423             | 2495099           | spP55702                      |
| NoIW Rhi                 | Nodulation protein           | Rhizobium spp.                          | 234             | 2495098           | spP55712                      |
| SpiA Sty                 | Type III secretion protein   | Salmonella typhimurium                  | 497             | 1498307           | gbU51927                      |
| nvG Sty                  | Type III secretion protein   | Salmonella typhimurium                  | 562             | 1170574           | spP35672                      |
| AxiD Sfl                 | Type III secretion protein   | Shigella flexneri                       | 566             | 547951            | spQ04641                      |
| AxiD Sso <sup>c</sup>    | Type III secretion protein   | Shigella sonnei                         | 566             | 2495097           | spQ55293                      |
| IolW Sfr <sup>c</sup>    |                              | Singella sonnei<br>Sinorhizobium fredii | 234             | 462733            |                               |
|                          | Nodulation protein           |                                         |                 |                   | spP33212                      |
| GspD Syn                 | General secretion protein    | Synechocystis spp.                      | 785             | 1653364           | gbD90913                      |
| SspD Vch                 | General secretion protein    | Vibrio cholerae                         | 674             | 1170053           | spP45779                      |
| cpC Vch                  | Pilin transport protein      | Vibrio cholerae                         | 489             | 267086            | spP29481                      |
| AspD Xca                 | General secretion protein    | Xanthomonas campestris                  | 759             | 129748            | spP29041                      |
| HrpA1 Xca                | Type III secretion protein   | Xanthomonas campestris                  | 607             | 462304            | spP80151                      |
| HrpA Xor <sup>c</sup>    | Type III secretion protein   | Xanthomonas oryzae                      | 37              | 4003501           | gbAF02619                     |
| rscC Yen                 | Type III secretion protein   | Yersinia enterocolitica                 | 607             | 4324359           | spQ01244                      |
| rscC Ype <sup>c</sup>    | Type III secretion protein   | Yersinia pestis                         | 607             | 3822061           | gbAF07461                     |



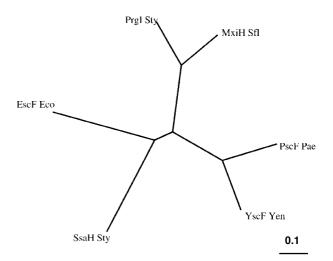



Figure 14. Phylogenetic tree for the YscF family.

Figure 13. Phylogenetic tree for the YscD family.

#### Table 13. YscD Family

| Designation <sup>a</sup> | Description                | Organism                | No. of residues | GenBank<br>GI No. | Accession<br>No. <sup>b</sup> |
|--------------------------|----------------------------|-------------------------|-----------------|-------------------|-------------------------------|
| HrpQ Eam                 | Type III secretion protein | Erwinia amylovora       | 310             | 1181168           | gbL25828                      |
| EscD Eco                 | Type III secretion protein | Escherichia coli        | 406             | 2897964           | gbAF022236                    |
| PscD Pae                 | Type III secretion protein | Pseudomonas aeruginosa  | 432             | 1781386           | qbU56077                      |
| SpiB Sty                 | Type III secretion protein | Salmonella typhimurium  | 323             | 1498308           | qbU51927                      |
| SsaD Sty                 | Type III secretion protein | Salmonella typhimurium  | 231             | 3776116           | gbAJ224892                    |
| HrpD5 Xca                | Type III secretion protein | Xanthomonas campestris  | 312             | 4494852           | gbAF056246                    |
| YscD Yen                 | Type III secretion protein | Yersinia enterocolitica | 418             | 4324360           | spQ01245                      |
| YscD Ype <sup>c</sup>    | Type III secretion protein | Yersinia pestis         | 419             | 155447            | gbM83225                      |

#### Table 14. YscF Family

| Designation <sup>a</sup> | Description                | Organisim               | No. of residues | GenBank<br>GI No. | Accession<br>No. <sup>b</sup> |
|--------------------------|----------------------------|-------------------------|-----------------|-------------------|-------------------------------|
| EscF Eco                 | Type III secretion protein | Escherichia coli        | 73              | 1929439           | gbL76581                      |
| PscF Pae                 | Type III secretion protein | Pseudomonas aeruginosa  | 85              | 1781388           | gbU56077                      |
| Pral Sty                 | Type III secretion protein | Salmonella typhimurium  | 80              | 1172613           | spP41784                      |
| SsaH Sty                 | Type III secretion protein | Salmonella typhimurium  | 71              | 2460267           | gbAF020808                    |
| MxiH Sfl                 | Type III secretion protein | Shigella flexneri       | 83              | 547953            | spQ06079                      |
| /scF Yen                 | Type III secretion protein | Yersinia enterocolitica | 87              | 267567            | spQ01247                      |
| YscF Ype <sup>c</sup>    | Type III secretion protein | Yersinia pestis         | 87              | 2996226           | qbAF053946                    |

Thus, lateral transfer of the genetic clusters encoding TIIIPS systems between Gram-negative pathogens has occurred repeatedly. Furthermore, the phylogenetic analyses confirm that such systems have virtually always been transferred intact without the formation of hybrid systems, even when more than one such system is present in a single bacterium (as for the *S. typhimurium* TIIIPS systems Inv/Spa and Ssa). Horizontal transfer of intact TIIIPS systems may have been facilitated by the presence of repeat sequences flanking the genetic apparatuses encoding these systems (Hueck, 1998) as well as by use of bacteriophage as DNA carriers (see Karaolis *et al.*, 1999 for illustration of such potential occurrences). Repeat sequences would allow

genetic recombination, promoting integration and removal of the encompassed circular DNA regions, just as plasmids and lysogenic phage integrate into and excise from bacterial chromosomes (Buchrieser *et al.*, 1998; Franco *et al.*, 1999). Such a mechanism would facilitate transfer of an entire TIIIPS system without introducing the possibility of hybrid system formation as noted above. Dependency of the intact system on numerous system-specific proteinprotein interactions would further insure the lack of hybrid system formation. The more divergent in sequence two systems are, the greater the restriction to hybrid formation would be expected to be. If two systems were very similar in sequence, the formation of hybrid systems would

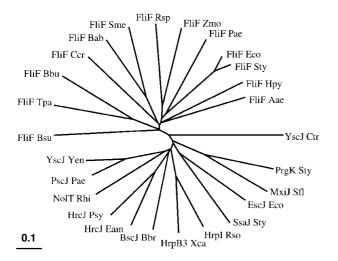



Figure 15. Phylogenetic tree for the YscJ/FliF family.

Table 15. YscJ/FliF Group

theoretically be possible without appreciable loss of activity, but phylogenetic analyses would not allow detection of such an event. Distinct regulatory constraints imposed upon two different systems within a single cell would tend to further prohibit hybrid interactions.

The nearly complete absence of lateral exchange of single TIIIPS constituents between different systems suggests that individual TIIIPS systems have evolved as

biochemically integrated units. Thus, we conclude that the secretion process occurs in a single cooperative step which relies on extensive structural and functional protein-protein interactions between inner and outer membrance components within the TIIIPS apparatus. Furthermore, the actual biochemical interactions between constituents of the secretory apparatus may differ between different TIIIPS systems. This notion is further supported by the fact that all TIIIPS systems comprise secretory genes which are not broadly conserved in other systems (see Figure 1).

Flagellar proteins that are homologous to TIIIPS system constituents cluster separately from the TIIIPS proteins. It can thus be concluded that the TIIIPS and Fla systems diverged from each other from a single primordial system very early, before divergence of each of these two types of systems occurred. In contrast to the TIIIPS constituents, the flagellar constituents do reflect the phylogenies of the source organisms, demonstrating that individual flagellar systems diverged predominantly by speciation while TIIIPS systems appear to have their evolutionary origin in duplication of the genetic apparatuses encoding these systems. The notion of subsequently independent evolution of the flagellar and TIIIPS systems is further supported by the fact that not all constituents of TIIIPS systems are found in the bacterial flagellum and vice versa (see Figure 1 and Table 2).

We suggest that the flagellar basal body was the evolutionary progenitor of the inner membrane components of the virulence-related TIIIPS system. The early appearance of flagelli is consistent with the facts that flagelli are found in both Gram-positive and Gram-negative

| Designation <sup>a</sup> | Description                | Organism                    | No. of residues | GenBank<br>GI No. | Accession<br>No. <sup>b</sup> |
|--------------------------|----------------------------|-----------------------------|-----------------|-------------------|-------------------------------|
| FliF Aae                 | Flagellar M-ring protein   | Aquifex aeolicus            | 289             | 2983628           | gbAE000727                    |
| FliF Bsu                 | Flagellar M-ring protein   | Bacillus subtilis           | 536             | 120324            | spP23447                      |
| BscJ Bbr                 | Type III secretion protein | Bordetella bronchiseptica   | 274             | 2935534           | gbAF049488                    |
| FliF Bbu                 | Flagellar M-ring protein   | Borrelia burgdorferi        | 569             | 3915695           | spQ44912                      |
| FliF Bab                 | Flagellar M-ring protein   | Brucella abortus            | 540             | 2832233           | gbAF019251                    |
| FliF Ccr                 | Flagellar M-ring protein   | Caulobacter crescentus      | 536             | 462109            | spQ04954                      |
| YscJ Cpn <sup>c</sup>    | Type III secretion protein | Chlamydia pneumoniae        | 335             | 4377140           | gbAE001663                    |
| ÝscJ Ctr                 | Type III secretion protein | Chlamydia trachomatis       | 326             | 3329000           | gbAE001327                    |
| HrcJ Eam                 | Type III secretion protein | Erwinia amylovora           | 260             | 1336088           | gbU56662                      |
| EscJ Eco                 | Type III secretion protein | Escherichia coli            | 190             | 2865286           | gbAF022236                    |
| FliF Eco                 | Flagellar M-ring protein   | Escherichia coli            | 552             | 2506421           | spP25798                      |
| FliF Hpy                 | Flagellar M-ring protein   | Helicobacter pylori         | 567             | 4154846           | gbAE001468                    |
| PscJ Pae                 | Type III secretion protein | Pseudomonas aeruginosa      | 248             | 1781392           | gbU56077                      |
| FliF Pae                 | Flagellar M-ring protein   | Pseudomonas aeruginosa      | 599             | 2494548           | spQ51463                      |
| HrcJ Psy                 | Type III secretion protein | Pseudomonas syringae (gly)  | 268             | 3603315           | gbAF06965                     |
| HrpC Psy <sup>c</sup>    | Type III secretion protein | Pseudomonas syringae (syr)  | 268             | 818896            | gbU25813                      |
| Hrpl Rso                 | Type III secretion protein | Ralstonia solanacearum      | 269             | 2120695           | pirS61855                     |
| NoIT Rhi                 | Nodulation protein         | Rhizobium spp.              | 289             | 2497732           | spP55714                      |
| FliF Rsp                 | Flagellar M-ring protein   | Rhodobacter sphaeroides     | 570             | 2494549           | spQ53151                      |
| SsaJ Sty                 | Type III secretion protein | Salmonella typhimurium      | 249             | 3024642           | spP74852                      |
| PrgK Sty                 | Type III secretion protein | Salmonella typhimurium      | 252             | 1172615           | spP41786                      |
| FliF Sty                 | Flagellar M-ring protein   | Salmonella typhimurium      | 560             | 120326            | spP15928                      |
| MxiJ Sfl                 | Type III secretion protein | Shigella flexneri           | 241             | 547955            | spQ06081                      |
| MxiJ Sso <sup>c</sup>    | Type III secretion protein | Shigella sonnei             | 241             | 2497731           | spQ55288                      |
| NoIT Sfr <sup>c</sup>    | Nodulation protein         | Sinorhizobium fredii        | 289             | 462730            | spP33209                      |
| FliF Sme                 | Flagellar M-ring protein   | Sinorhizobium meliloti      | 557             | 2916780           | gbAJ224445                    |
| FliF Tde <sup>c</sup>    | Flagellar M-ring protein   | Treponema denticola         | 567             | 2105148           | gbU78776                      |
| FliF Tpa                 | Flagellar M-ring protein   | Treponema pallidum          | 567             | 3322682           | gbAE001218                    |
| HrpB3 Xca                | Type III secretion protein | Xanthomonas campestris      | 253             | 462305            | spP80152                      |
| YscJ Yen                 | Type III secretion protein | Yersinia enterocolitica     | 244             | 267571            | spQ01251                      |
| YscJ Ype <sup>c</sup>    | Type III secretion protein | Yersinia pestis             | 236             | 3822055           | gbAF074612                    |
| YscJ Yps <sup>c</sup>    | Type III secretion protein | Yersinia pseudotuberculosis | 244             | 401692            | spQ00926                      |
| FliF Zmo                 | Flagellar M-ring protein   | Zymomonas mobilis           | 555             | 4378873           | gbAF124349                    |

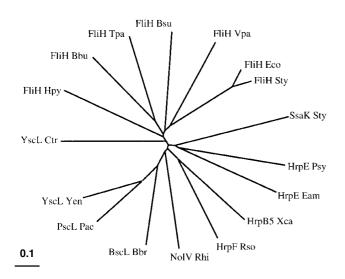



Figure 16. Phylogenetic tree for the YscL/FliH family.

bacteria (although not in archaea or eukaryotes) and that the homologous constituents of these organelles exhibit phylogenetic relationships that approximate those of the source organisms. The later appearance of virulencerelated TIIIPS systems from the flagellar apparatus of a Gram-negative bacterium is consistent with (1) the restriction of virulence-related TIIIPS systems to Gramnegative bacteria. (2) the assumption that TIIIPS systems were selected by parasitic or symbiotic interactions with eukaryotes, and (3) the fact that higher eukaryotes appeared only within the last billion years, long after the appearance of - probably flagellated - prokaryotes, about 4 billion years ago. This causal evolutionary relationship has recently been suggested independently in a brief commentary by MacNab (MacNab, 1999). However, the structural and potential functional homologies between the flagella export apparatus and TIIIPS systems are restricted to inner membrane components. The constitutive presence of the outer membrane secretins in TIIIPS systems (see below) clearly distinguishes TIIPS systems from the flagellar export apparatus. Thus, since TIIPS systems apparently function as integrated units, we do not agree with the notion that "the flagella pathway is a type III pathway" (MacNab, 1999). This argument is further supported by the fact that virulence-related TIIPS systems are apparently restricted to Gram-negative bacteria, while the homologous flagellar proteins are found in both Gram-negative and Gram-positive bacteria.

The absence of TIIIPS systems from Gram-positive bacteria may appear surprising at first sight, since lateral transfer and fixation of antibiotic resistance genes has occurred repeatedly between Gram-negative and Grampositive bacteria, and the acquisition of a TIIIPS system could have provided extreme evolutionary advantages for symbiotic and parasitic bacteria, e.g. by facilitating escape from immune recognition due to invasion of eukaryotic cells. We rationalize the restriction of TIIIPS systems to Gramnegative bacteria by assuming that these complex systems evolved for the purpose of protein secretion across three membranes of which the Gram-negative bacterial outer membrane is the crucial one. In the absence of an outer membrane, the outer membrane constituents of TIIIPS systems become superfluous, and in fact cannot be accommodated. Thus, any protein-protein interactions between inner membrane constituents and outer membrane constituents as well as between outer membrane constituents and host eukaryotic cell membrane constituents must be abolished if a type TIIIPS system is to function in a Gram-positive bacterium, and totally new types of interactions must be established. Such modifications to the system might require extensive periods of evolutionary time and would clearly provide a basis for restricting lateral transfer of TIIIPS systems to Grampositive bacteria, particularly if protein-protein interactions in the TIIIPS systems are cooperative. In this regard, it is relevant to note that all TIIIPS systems characterized to date include an outer membrane secretin. If the secretin is essential to overall function, the constitutive presence of secretins in TIIIPS systems provides a clue as to why type III protein secretion has not been found in Gram-positives, and the absence of type III secretion from Gram-positives

| Designation <sup>a</sup>          | Description                                              | Organism                                      | No. of<br>residues | GenBank<br>GI No.  | Accession<br>No. <sup>b</sup> |
|-----------------------------------|----------------------------------------------------------|-----------------------------------------------|--------------------|--------------------|-------------------------------|
| FliH Bsu                          | Flagellar assembly protein                               | Bacillus subtilis                             | 208                | 120329             | spP23449                      |
| BscL Bbr                          | Type III secretion protein                               | Bordetella bronchiseptica                     | 212                | 2935536            | gbAF049488                    |
| FliH Bbu                          | Flagellar assembly protein                               | Borrelia burgdorferi                          | 306                | 1706846            | spP52611                      |
| YscL Cpn <sup>c</sup>             | Type III secretion protein                               | Chlamydia pneumoniae                          | 233                | 4377138            | gbAE001663                    |
| YscL Ctr                          | Type III secretion protein                               | Chlamydia trachomatis                         | 223                | 3329002            | gbAE001327                    |
| FliH Eco                          | Flagellar assembly protein                               | Escherichia coli                              | 228                | 2506422            | spP31068                      |
| HrpE Eam                          | Type III secretion protein                               | Erwinia amylovora                             | 196                | 1336090            | gbU56662                      |
| FliH Hpy                          | Flagellar assembly protein                               | Helicobacter pylori                           | 258                | 4154848            | gbAE001468                    |
| PscL Pae                          | Type III secretion protein                               | Pseudomonas aeruginosa                        | 231                | 1781394            | gbU56077                      |
| HrpE Psy                          | Type III secretion protein                               | Pseudomonas syringae (gly)                    | 193                | 3603317            | gbAF069651                    |
| HrpF Rso                          | Type III secretion protein                               | Ralstonia solanacearum                        | 301                | 2120693            | pirS62087                     |
| NoIV Rhi                          | Nodulation protein                                       | Rhizobium spp.                                | 208                | 2498664            | spP55716                      |
| FliH Sty                          | Flagellar assembly protein                               | Salmonella typhimurium                        | 235                | 120330             | spP15934                      |
| SsaK Šty<br>FliH Tde <sup>c</sup> | Type III secretion protein<br>Flagellar assembly protein | Salmonella typhimurium<br>Treponema denticola | 314<br>307         | 3024643<br>2105150 | spP74853<br>gbU78776          |
| FliH Tpa                          | Flagellar assembly protein                               | Treponema pallidum                            | 309                | 3322684            | gbAE001218                    |
| FliH Vpa                          | Flagellar assembly protein                               | Vibrio parahaemolyticus                       | 266                | 4322016            | gbAF069392                    |
| HrpB5 Xca                         | Type III secretion protein                               | Xanthomonas campestris                        | 233                | 984882             | gbU33548                      |
| rscL Yen                          | Type III secretion protein                               | Yersinia enterocolitica                       | 223                | 267573             | spQ01253                      |
| YscL Ype <sup>c</sup>             | Type III secretion protein                               | Yersinia pestis                               | 221                | 3822053            | gbAF074612                    |
| YscL Yps <sup>c</sup>             | Type III secretion protein                               | Yersinia pseudotuberculosis                   | 221                | 401694             | spQ00928                      |

in turn supports the notion of cooperative function between inner and outer membrane components during the TIIIPS process.

Outer membrane pore-forming secretins serve a variety of functions in addition to functioning as constituents of TIIIPS systems (Marciano et al., 1999). Thus, although they are not constituents of bacterial flagelli, they are constituents of Type II protein secretion (TIIPS) systems (Nouwen et al., 1999), of phage processing systems (Marciano et al., 1999), of pilin (fimbrial) export systems, and of other systems such as the DNA uptake competence system of *H. influenzae*. These secretins generally segregate on their phylogenetic tree according to the type of system with which they interact, suggesting that secretins have not shuffled between the various types of systems for at least the past billion years. However, our phylogenetic analyses show that while the bacteriophage assembly secretins cluster tightly together, and the TIIIPS secretins cluster tightly together, the general secretory (TIIPS) secretins and the fimbrial secretins cluster only very loosely on the secretin phylogenetic tree (Figure 12). These facts are consistent with the interpretation that secretins evolved initially as components of the general TIIPS system and as fimbrial export systems, and that they only subsequently assumed functions as constituents of phage and TIIIPS export systems. This suggestion is fully consistent with the expectation that the general secretory system (TIIPS), and maybe fimbrial export systems as well, evolved for essential functions relatively early, and that the TIIIPS and phage assembly systems evolved later employing constituents of the former systems. Our results additionally suggest that intragenic rearrangements during the evolution of multidomain secretins (Guilvout et al., 1999) has been rare or even non-existent.

These observations and conclusions illustrate the utility of the phylogenetic approach for the purpose of understanding the evolutionary pressures that gave rise to multi-domain, multi-component enzyme transport complexes such as those that comprise the TIIIPS family.

#### Acknowledgements

We are grateful to Catherine A. Lee for critical and very fruitful discussion and to Mary Beth Hiller and Milda Simonaitis for their assistance in the preparation of this manuscript. Work in the laboratory of MHS was supported by USPHS grants 5RO1 Al21702 from the National Institutes of Allergy and Infectious Diseases and 9RO1 GM55434 from the National Institute of General Medical Sciences, as well as by the M.H. Saier, Sr. Memorial Research Fund.

#### References

- Anderson, D.M., Fout, D.E., Collmer, A., and Schneewind, 0. 1999. Reciprocal secretion of proteins by the bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals. Proc. Natl. Acad. Sci. USA. 96: 12839-12843.
- Bonas, U. 1994. hrp genes of phytopathogenic bacteria. Curr. Top. Microbiol. Immunol. 192: 79-98.
- Buchrieser, C., Brosch, R., Bach, S., Guiyoule, A., and Carniel, E. 1998. The high-pathogenicity island of *Yersinia pseudotuberculosis* can be inserted into any of the three chromosomal asn tRNA genes. Mol. Microbiol. 30: 965-978.
- Chen, Y. Smith M.R., Thirumalai, K., and Zychlinsky, A. 1996. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. Embo J. 15: 3853-3860.
- Cheng, L.W., and Schneewind, 0. 1999. Yersinia enterocolitica type III secretion. On the role of SycE in targeting YopE into HeLa cells. J. Biol. Chem. 274: 22102-22108.
- Collmer. A., and Bauer, D.W. 1994. Erwinia chrysanthemi and Pseudomonas

*syringae* plant puthogens trafficking in extracellular virulence proteins. Curr. Top. Microbiol. Immunol. 192: 43-78.

- Feng D.F., and Doolittle, R.F. 1990. Progressive alignment and phylogenetic tree construction of protein sequences. Meth. Enzymol. 183: 375-387.
- Franco, A.A., Cheng, R.K., Chung, G.T., Wu, S., Oh, H.B., and Sears, C.L. 1999. Molecular evolution of the pathogenicity island of enterotoxigenic *Bacteroides fragilis* strains. J Bacteriol. 181: 6623-6633.
- Frithz-Lindsten, F., Du, Y., Rosqvist, R., and Forsberg, A. 1997. Intracellular targeting of exoenzyme S of *Pseudomoucis aeruginosa* via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol. Microbiol. 25: 1125-1139.
- Fu, Y., and Galán, J.F. 1998. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol. Microbiol. 27: 359-68.
- Galán, J.E., and Collmer, A. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science. 284: 1322-1328.
- Galyov, E.E., Hakansson, S., Forsberg, A., and Wolf-Watz, H. 1993. A secreted protein kinase of *Yersinia pseudotuberculosis* is an indispensable virulence determinant. Nature. 361: 730-732.
- Groisman, F.A., and Ochman, H. 1993. Cognate gene clusters govern invasion of host epithelial cells by *Salmonella typhimurium* and *Shigella flexneri*. EMBO J. 12: 3779-3787.
- Groisman, E.A., and Ochman, H. 1997. How *Salmonella* became a pathogen. Trends Microbiol. 5: 343-349.
- Guan, K.L., and Dixon, J.E. 1990. Protein tyrosine phosphatase activity of an essential virulence determinant in *Yersinia*. Science. 249: 553-556.
- Guilvout, I., Hardie, K.R., Sauvonnet, N., and Pugsley, A.P. 1999. Genetic dissection of the outer membrane secretin PuID: are there distinct domains for multimerization and secretion specificity? J. Bacteriol. 181: 7212-7220.
- Hardt, W.D., Chen L.M., Schuebel, KE., Bustelo, X.R., and Galán, J.E. 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 93: 815-826.
- Hermant, D., Menard, R., Arricau, N., Parsot, C., and Popoff, M.Y. 1995. Functional conservation of the *Salmonella* and *Shigella* effectors of entry into epithelial cells. Mol. Microbiol. 17: 781-789.
- Hueck, C.J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379-433.
- Karaolis D.K., Sornara, S., Maneval, D.R., Jr., Johnson, J.A., and Kaper, J.B. 1999. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature. 399: 375-379.
- Lee, C.A. 1996. Pathogenicity islands and the evolution of bacterial pathogens. Infect. Agents Dis. 5: 1-7.
- Lee, C.A. 1997. Type III secretion systems: machines to deliver bacterial proteins into eukaryotic cells? Trends Microbiol. 5: 148-156.
- Lee, V.T., and Schneewind, 0. 1999. Type III machines of pathogenic yersiniae secrete virulence factors into the extracellular milieu. Mol. Microbiol. 31: 1619-1629.
- MacNab, R.M. 1999. The bacterial flagellum: reversible rotary propellor and type III export apparatus. J. Bacteriol. 181: 7149-7153.
- Marciano D.K., Russel, M., and Simon, S.M. 1999. An aqueous channel for filamentous phage export. Science. 284: 1516-1519.
- Mirold, S., Rabsch, W., Rohde, M., Stender, S., Tschäpe, H., Russmann, H., Igwe E., and Hardt, W.D. 1999. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic *Salmonella typhimurium* strain. Proc. Natl. Acad. Sci. USA. 96: 9845-9850.
- Mudgett, M.B., and Staskawicz, B.J. 1998. Protein signaling via type III secretion pathways in phytopathogenic bacteria. Curr. Opin. Microbiol. 1: 109-114.
- Norris, F.A., Wilson, M.P., Wallis, T.S., Galyov, E.E., and Majerus, P.W. 1998. SopB, a protein required for virulence of *Salmonella dublin*, is an inositol phosphate phosphatase. Proc. Natl. Acad. Sci. USA. 95: 14057-14059.
- Nouwen, N., Ranson, N., Saibil, H., Wolpensinger, B., Engel A., Ghazi, A., and Pugsley, A.P. 1999. Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc. Natl. Acad. Sci. USA. 96: 8173-8177.
- Olsen G.J., Woese, C.R., and Overbeek, R. 1994. The winds of evolutionary change: breathing new life into microbiology. J. Bacteriol. 176: 1-6.
- Rosqvist, R., Forsberg, A., and Wolf-Watz, H. 1991. Intracellular targeting of the *Yersinia* YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect. Immun. 59: 4562-4569.
- Rosqvist, R., Håkansson, S., Forsberg, Å., and Wolf-Watz, H. 1995. Functional conservation of the secretion and translocation machinery for virulence proteins of yersiniae, salmonellae and shigellae. EMBO J. 14: 4187-4195.
- Rossier, 0., Wengelnik, K., Hahn, K., and Bonas, U. 1999. The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial

pathogens. Proc. Natl. Acad. Sci. USA. 96: 9368-9373.

- Saier, M.H., Jr. 1998. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. In: Advances in Microbial Physiology. R. K. Poole, ed. Academic Press, San Diego, CA. p.81-136.
- Saier, M.H., Jr. 1999. Genome archeology leading to the characterization and classification of transport proteins. Curr. Opin. Microbiol, in press.
- Spiik, A.K., Meijer, L.K., Ridderstad, A., and Pettersson, S. 1999. Interference of eukaryotic signalling pathways by the bacteria *Yersinia* outer protein YopJ. Immunol. Lett. 68: 199-203.
- Thompson J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL\_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25: 4876-4882.
- Wachter, C., Beinke, C., Mattes, M., and Schmidt, M.A. 1999. Insertion of EspD into epithelial target cell membranes by infecting enteropathogenic *Escherichia coli*. Mol. Microbiol. 31: 1695-1707.
- Young, G.M. Schmiel, D.H., and Miller, V.L. 1999. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA. 96: 6456-6461.