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Abstract

Escherichia coli is mostly a commensal of birds and mammals, including humans, where it

can act as an opportunistic pathogen. It is also found in water and sediments. We investi-

gated the phylogeny, genetic diversification, and habitat-association of 1,294 isolates repre-

sentative of the phylogenetic diversity of more than 5,000 isolates from the Australian

continent. Since many previous studies focused on clinical isolates, we investigated mostly

other isolates originating from humans, poultry, wild animals and water. These strains repre-

sent the species genetic diversity and reveal widespread associations between phylogroups

and isolation sources. The analysis of strains from the same sequence types revealed very

rapid change of gene repertoires in the very early stages of divergence, driven by the acqui-

sition of many different types of mobile genetic elements. These elements also lead to rapid

variations in genome size, even if few of their genes rise to high frequency in the species.

Variations in genome size are associated with phylogroup and isolation sources, but the lat-

ter determine the number of MGEs, a marker of recent transfer, suggesting that gene flow

reinforces the association of certain genetic backgrounds with specific habitats. After a

while, the divergence of gene repertoires becomes linear with phylogenetic distance, pre-

sumably reflecting the continuous turnover of mobile element and the occasional acquisition

of adaptive genes. Surprisingly, the phylogroups with smallest genomes have the highest

rates of gene repertoire diversification and fewer but more diverse mobile genetic elements.

This suggests that smaller genomes are associated with higher, not lower, turnover of

genetic information. Many of these genomes are from freshwater isolates and have peculiar

traits, including a specific capsule, suggesting adaptation to this environment. Altogether,

these data contribute to explain why epidemiological clones tend to emerge from specific

phylogenetic groups in the presence of pervasive horizontal gene transfer across the

species.
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Author summary

Previous large scale studies on the evolution of E. coli focused on clinical isolates empha-

sizing virulence and antibiotic resistance in medically important lineages. Yet, most E. coli

strains are either human commensals or not associated with humans at all. Here, we ana-

lyzed a large collection of non-clinical isolates of the species to assess the mechanisms of

gene repertoire diversification in the light of isolation sources and phylogeny. We show

that gene repertoires evolve so rapidly by the high turnover of mobile genetic elements

that epidemiologically indistinguishable strains can be phenotypically extremely heteroge-

neous, illustrating the velocity of bacterial adaptation and the importance of accounting

for the information on the whole genome at the epidemiological scale. Phylogeny and

habitat shape the genetic diversification of E. coli to similar extents. Surprisingly, freshwa-

ter strains seem specifically adapted to this environment, breaking the paradigm that E.

coli environmental isolates are systematically fecal contaminations. As a consequence, the

evolution of this species is also shaped by environmental habitats, and it may diversify by

acquiring genes and mobile elements from environmental bacteria (and not just from gut

bacteria). This may facilitate the acquisition of virulence factors and antibiotic resistance

in the strains that become pathogenic.

Introduction

The integration of epidemiology and genomics has greatly contributed to our understanding

of the population genetics of epidemic clones of pathogenic bacteria. However, the forces driv-

ing the emergence of these lineages in species where most clades are dominated by commensal

or environmental strains remain unclear. Escherichia coli is a commensal of the gut microbiota

of mammals and birds (primary habitat) [1–3], and has been found in host-independent sec-

ondary habitats including soil, sediments, and water [4–7]. Yet, some E. coli strains produce

virulence factors endowing them with the ability to cause a broad range of intestinal or extra-

intestinal diseases (pathotypes) in humans and domestic animals [8–13]. Many of these are

becoming resistant to multiple antibiotics at a worrisome pace [14, 15].

Studies on E. coli were seminal in the development of bacterial population genetics [16].

They showed moderate levels of recombination in the species [3, 17–19], and a strong phyloge-

netic structure with eight main phylogroups, among which four (A, B1, B2 and D) represent

the majority of the strains and four others (C, E, F and G) are rarer [20–22]. Strains differ in

their phenotypic and genotypic characteristics within and across phylogroups [2, 3, 23, 24],

and their isolation frequency depends on factors such as host species, diet, sex, age [25–27],

body mass [28], but also climate [29, 30], and geographic location [31]. Strains of phylogroups

A and B1 appear to be more generalists since they can be isolated from all vertebrates [2] and

are often isolated from secondary habitats [7, 32–35]. E. coli strains able to survive and persist

in water environments usually belong to the B1 phylogroup [7, 33, 34]. In contrast, the extrain-

testinal pathogenic strains usually belong to phylogroups B2 and D [36–38]. Genome size also

differs among phylogroups, with A and B1 strains having smaller genomes than B2 or D

strains [23].

The phylogenetic vicinity of geographically remote E. coli isolates, and the co-isolation of

phylogenetically distant strains, supports the hypothesis that strains circulate rapidly across

the globe [39, 40]. The genome of the species is also remarkably plastic, since only about half of

the average genome is present across most strains of the species and the pan-genome vastly
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exceeds the size of the typical genome [41–44]. Interestingly, the rapid circulation of strains

and the high plasticity of their genomes have not erased the associations of certain clades with

certain isolation sources. These associations might reflect local adaptation to the isolation habi-

tat [16, 45], which would suggest frequent genetic interactions between the novel adaptive

changes and the strains’ genomic background.

Understanding how the evolution of gene repertoires is shaped by population structure and

habitats requires large-scale comparative genomics of samples with diverse sources of isolation

representative of natural populations of E. coli. Most of the efforts of genome sequencing have

been devoted to study pathogenic lineages and very few genomic data are available for com-

mensal strains, especially in wild animals, and environmental strains. Here, we analysed the

genomes of a large collection of E. coli strains collected across many human, domestic and

wild animal and environmental sources in different geographic locations from the Australian

continent. This collection is dominated by non-clinical isolates, corresponding to the main

habitats of the species. We sought to understand the dynamics of the evolution of gene reper-

toires and how it was driven by mobile genetic elements. The analysis of the isolation sources

in the light of phylogenetic structure and genome variation suggests that rates and mechanisms

of adaptation vary with the habitat and the phylogenomic background. This contributes to

explain why known epidemiological clones of the species emerge from specific phylogenetic

groups, even though virulence strongly depends on the acquisition of virulence factors by hori-

zontal gene transfer.

Results

The large and little known pan-genome of E. coli

We sequenced and annotated the genomes of 1,294 E. coli sensu stricto strains selected from

more than 3,300 non-human vertebrate hosts, 1,000 humans and 800 environmental samples

between 1993 and 2015, chosen to represent the phylogenetic diversity of the species (Materials

and Methods, Fig 1A, S1 Text). All samples were collected by a single team, spanning a 20

year-period, from different regions in a single isolated continent (Australia). The origin of

each strain was accurately characterized and the genomes were uniformly annotated and ana-

lyzed using the same bioinformatics processes. The strains were isolated from humans, domes-

ticated and wild animals, representing the primary habitat of E. coli, and from freshwater,

representing its secondary habitat [3]. Less than 22% of the samples were recovered from clini-

cal situations. A series of controls confirmed that the sequences were of high quality and con-

tained the known essential genes (S2 Text). The genomes varied widely in size from 4.2 to 6.0

Mb (average 5 Mb), but had similar densities of protein-coding sequences (~87%) and GC

content (50.6%, S1 Fig and S1 Table).

The pan-genome contains 75,890 gene families, which is over 16 times the average genome

size. The core genome is very small (295 genes), a feature typical of comparisons involving

many genomes. As a result, we have opted to focus, whenever possible, on the persistent

genome. This corresponds to gene families present in at least 99% of the genomes of the sam-

ple. This provides some flexibility to account for sequencing or assembling artifacts and to

account for the odd genome that may have recently lost a few core genes. The pan-genome

families were classified as part of the persistent genome (3%), singletons (44%, present in a sin-

gle genome), or accessory genome (the remaining) (Fig 1B, S2 Fig). The persistent gene families

are a tiny fraction of the pan-genome, but account for half of the average genome (Fig 1B).

They were used to build a robust phylogeny of the species (S3 Fig), which was rooted using

genomes from other species in the genus (S4 Fig). In contrast, singletons are almost half of the

gene families of the pan-genome, but less than 1% of the average genome. As a consequence,
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the pan-genome is open, as measured by the fit to a Heaps’ law model [46], and increases on

average by ~26 protein coding genes with the inclusion of a new genome (S2 Fig). Singletons

are smaller than the other genes and tend to be located at the edge of contigs (44%). Hence,

some of these singletons may result from sequencing and assembly artifacts (S3 Text and S5

Fig). When all the singletons were excluded, the pan-genome still remained open (S2 Fig).

Fig 1. The genetic diversity of Australian E. coli. A.Distribution of isolates per region and per source. B. The pan-genome is composed of 75,890 gene families,
of which 33,705 are singletons (in green, present in a single genome), 2,486 persistent (in gold, present in at least 99% of genomes), the remaining being accessory
(in grey). 29,657 gene families (39% of the pan-genome) were related to mobile genetic elements (MGE). C. Functional EggNOG categories of pan-genome gene
families. The ratio observed/expected (O/E) for the frequency of non-supervised orthologous groups (NOGs, shown as capitalized letters) is reported for all
comparisons with a color code ranging from blue (under-representation) to red (over-representation). The level of significance of each Fisher’s exact test was
indicated (P> = 0.05 : ns; P<0.05 : �; P<0.01 : ��; P<0.001 :���). It was performed on each 2�2 contingency table. Gene families lacking matches to the EggNOG
functional categories were discarded.D. Percentage of the different EggNOG categories (see insert) in the persistent, accessory and singleton gene families and
among genes associated to MGE.

https://doi.org/10.1371/journal.pgen.1008866.g001
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To obtain a better understanding of the functional classifications of genes in the pan-

genome, we annotated them using the EggNOG categories (Fig 1C). As expected, the persis-

tent genome over-represented typical housekeeping functions, whereas the accessory genome

over-represented cell motility, intracellular trafficking and secretion, carbohydrate transport

and metabolism and secondary metabolism. Singletons over-represented defense systems and

genes related with the cell envelope. Most singletons (80%) and accessory (74%) gene families,

but also a surprisingly high number of persistent gene families (24%), lacked a clear functional

assignment as given by the EggNOG database [47] (Fig 1D). Hence, we are still ignorant of the

function, or even the existence, of many genes of the species.

Very rapid initial divergence of gene repertoires becomes linear with time

Traditional epidemiological studies of E. coli focused on multilocus sequence types (ST) and/

or the O-serogroups and H-types (the O:H combination corresponding to the serotype). These

epidemiological units regroup strains in terms of sequence similarity in a few persistent genes

(ST) or in key traits related to the cell envelope (the LPS structure for the O-group and the fla-

gellum for the H-type). However, it is unclear if these types systematically regroup strains with

similar gene repertoires. We identified 442 distinct STs, of which 61% are represented by a sin-

gle strain. A few STs are very abundant in our dataset: 20 include more than 10 genomes each

and encompass 40% of the dataset. STs are usually regarded as very recently diverged strains.

Indeed, the intra-ST genetic distances are 10-times smaller those between the other pairs of

genomes (0.003 vs. 0.03, Fig 2A). Yet, 6% of intra-ST comparisons have more than 0.01 substi-

tutions per position showing extensive genetic diversity at the genome level (Fig 2B). Some O-

groups are abundant, e.g., O8, O2 and O1 (each present in>50 genomes) but almost half of

the groups occur in a single genome and 43% of the strains could not be assigned an O-group

(even when the wzm/wzt and wzx/wzy genes were present). In contrast, most H-types were

previously known (87%). We found 311 O:H serotypes among the 726 typeable genomes. Of

these, 64% are present in only one genome, 17% are in multiple STs and 7% in multiple phy-

logroups (e.g. O8:H10). Conversely, half of the 95 STs with more than one genome have multi-

ple O:H combinations, e.g. ST10 has 24. These results confirm that surface antigens and their

combinations change quickly and are homoplasic. They also show significant sequence diver-

gence in persistent genes within STs.

We then aimed at assessing if genomes within STs also show extensive variation of gene

repertoires. For this, we computed the gene repertoire relatedness (GRR) between genomes

(see Methods). Genes from the same gene family are on average 98.3% identical (S2 Fig). Since

the threshold to be part of the family is 80% identity, rapid sequence evolution will very rarely

lead a gene to be classed apart from its orthologs. As a result, variations in GRR result from

gain and loss of genes, not sequence divergence. The GRR values decrease very rapidly with

patristic distance (the sum of branch lengths in the path between two genomes in the phyloge-

netic tree) for closely related strains, as revealed by spline fits (Fig 2A). Similar results were

observed when removing singletons, which only account for on average 0.5% of the genes in

genomes, suggesting that this result is not due to annotation or sequencing errors (S6 Fig). As

a consequence, 85% of the intra-ST comparisons have a GRR lower than 95% (corresponding

to ~235 gene differences per genome pair), and some as little as 77% (Fig 2C). These results

reveal that even genomes of the same ST can differ substantially in terms of their gene

repertoires.

To check if the dataset is representative of the species and can be used to assess its diversity,

we compared it with the ECOR collection [48] and the complete genomes available in RefSeq

(Materials). All datasets had similar nucleotide diversity (S7A Fig and S1 Table). Using rarefied
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datasets, to compare sets of same size, ours had the largest pan-genome, partly because of a

larger number of singletons (S7 Fig). Our dataset also had the highest α-diversity for the three
typing schemes (STs, O-groups, H-types, S1 Table). Since the gene repertoire diversity of E.

coli in Australia is at least as high as that of ECOR and RefSeq, we studied the variation in gene

repertoires beyond the intra-ST level. After the rapid initial drop in GRR described above, the

values of this variable decrease linearly with phylogenetic distances (Fig 2A). The average val-

ues of GRR given by the regression vary between 90% for very close genomes and 80% for the

most distant ones. The variance around the regression line is constant and a spline fit shows

few deviations around the regression line. This is consistent with a model where initial diver-

gence in gene repertoires is driven by rapid turnover of novel genes. After this initial process,

divergence in gene repertoires increases linearly with patristic distance.

Rates of gene repertoire diversification vary across phylogroups

We used the species phylogeny to study the associations between phylogroups and genetic

diversity (Fig 3A). The tree showed seven main phylogenetic groups very clearly separated by

nodes with 100% bootstrap support. The 17 phylogroup C strains were all included within the

B1 phylogroup and were thus grouped with the latter in this study. For the rest, the analysis

showed a good correspondence between the assignment into the known phylogroups—A, B1,

B2, D, E, F, and G–and the different clades of the species tree. The tree splits the species ini-

tially in a clade with phylogroup B2, F and G on one side and the remaining on the other side.

In line with the literature [40], four major phylogroups were very abundant—A (24% of the

dataset), B1 (24%), B2 (25%) and D (14%)–whereas the others were rarer. The nucleotide

Fig 2. Evolution of Gene Repertoire Relatedness (GRR) with time. A. [Top] Violin plots of the patristic distance computed between pairs of intra-ST (in blue),
inter-ST (in purple), and inter-phylogroup (in water green) genomes. [Bottom] Association between GRR and the patristic distance across pairs of genomes. Due to
the large number of comparisons (points), we divided the plot area in regular hexagons. Color intensity is proportional to the number of cases (count) in each
hexagon. The linear fit (black solid line, linear model (lm)) was computed for the entire dataset (1,294 genomes, Y = 90.2–75.7�X, R2 = 0.49, P<10−4). The spline fit
(generalized additive model (gam)) was computed for the whole (in black dashed line) or the intra-ST (in blue solid line) comparisons. There was a significant
negative correlation between GRR and the patristic distance (Spearman’s rho = -0.67, P<10−4). B. Stacked bar plot of the number of intra-ST (in blue) and inter-ST
(in purple) comparisons at short evolutionary scales. C. Violin plots of the intra-ST, inter-ST and inter-phylogroup GRR (%). (A-B-C)All the distributions were
significantly different (Wilcoxon test, P<10−4), the same color code was used and described in panel A.

https://doi.org/10.1371/journal.pgen.1008866.g002
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diversity of the phylogroups is very dependent on their phylogenetic structure, since some

clades have more closely related clusters of strains than others (S8 Fig). Nevertheless, nucleo-

tide diversity, patristic distances, and Mash distances revealed similar trends: the phylogroup

D exhibited the highest genetic diversity, followed by F, E, and then by the most abundant

groups–A, B1 and B2 –which all have similar levels of diversity (S8 Fig). The phylogroup G

was the least diverse, but it is also poorly represented in our dataset (33 genomes from three

STs). Overall, genetic diversity is proportional to the depth of the phylogroup, i.e. the average

tip-to-MRCA distance, except for phylogroup F which is more diverse than expected (Fig 3B).

These results suggest that genetic diversity varies between phylogroups and that within phy-

logroups it is strongly affected by the time of divergence since the most recent common

ancestor.

The sets of genomes of each phylogroup have large and open pan-genomes (S9 Fig and S2

Table). The sizes of these pan-genomes differ widely across phylogroups and are partly corre-

lated to the number of genomes in the phylogroup, explaining why the phylogroup G has the

smallest pan-genome (S9 Fig). To control for the effect of sample size, we computed pan-

Fig 3. The genetic and ecological structure of Australian E. coli population. A. Phylogenetic tree of E. coli rooted using the genomes of other Escherichia (only shown
in S4 Fig for clarity). From the inside to the outside: the 7 main phylogroups (arcs covering the tree), the source of each genome (seven rows), and the size of the genomes
(outer row, see insert legend). B. Association between the nucleotide diversity per site (Pi, average and s.e) within phylogroup and their distance to their most recent
common ancestor (MRCA). In each pylogroup, we averaged the nucleotide diversity (π) obtained for 112 core-genes, and the length branches (from tip-to-MRCA) of the
species tree. C. Association between the rarefied pan- and persistent-genomes in each phylogroup. We used 1,000 permutations (genomes orderings) of 50 randomly
selected genomes (rarefied datasets) to compute the pan- and the persistent-genomes in each phylogroup (ignoring the G group), and then averaged the results.D.
Principal component analysis of the pan-genome (matrix of presence/absence of each gene family across genomes). Each dot corresponds to a genome in the two first
principal components (PC). The ellipse (90%) and barycenter of each phylogroup are reported. The percentages in the axis labels correspond to the fraction of variation
explained by the PC. All panels follow the color code of A.

https://doi.org/10.1371/journal.pgen.1008866.g003
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genomes from 1,000 random samples of 50 genomes for each phylogroup (ignoring the few

strains of the G phylogroup, Fig 3C and S2 Table). This revealed larger pan-genomes for phy-

logroups A, D, and B1 followed by E, B2 and F. Intriguingly, the larger the pan-genome of a

phylogroup, the smaller the fraction of its genes that are part of the persistent genome (Fig

3C). This suggests that differences of pan-genome sizes across phylogroups are caused by dif-

ferent rates of gene turnover, which seems to affect, at different extent, both genes present in

most strains and genes present in very few.

To quantify the similarities in gene repertoires, we analyzed the GRR values between phy-

logroups. The smallest values were observed when comparing B2 strains with the rest (S10A

Fig). Accordingly, a principal component analysis (PCA) of the presence/absence matrix of

the pan-genome shows a first axis (accounting for 23.6% of the variance) clearly separating the

B2 from the other phylogroups (Fig 3D). This shows that gene repertoires of B2 strains are the

most distinct from the other major phylogroups. The large phylogroups A and B1 are very

close in the GRR and in the PCA analyses, showing high similarity in terms of gene repertoires.

Interestingly, the phylogroups D and F, which are not close in the species tree, cluster together

in terms of gene repertoires. This may explain the conflicting results of our phylogenetic analy-

sis, which places with high confidence the phylogroup D in the same partition of A and B1,

and works based on ancestral gene repertoires that place them as a basal group in the tree (not

far from F and G) [49]. Hence, phylogroups differ in terms of their gene repertoires and in

their rates of genetic diversification, but while some are quite similar (A and B1), others (B2)

stand aside from the remaining phylogroups.

Mobile genetic elements drive rapid initial turnover of gene repertoires

Different mechanisms can drive the rapid initial diversification of gene repertoires. Mobile

genetic elements encoding the mechanisms for transmission between genomes (using virions

or conjugation) or within genomes (insertion sequences, integron cassettes) are known to

transfer at high rates and be rapidly lost [50–52]. We detected prophages using VirSorter [53],

plasmids using PlaScope [54], and conjugative systems using ConjScan [55] (S11–S13 Figs).

These analyses have the caveat that some mobile elements may be split in different contigs,

resulting in missed and/or artificially split elements. This is more frequent in the case of plas-

mids, since they tend to have many repeated elements [56]. Only two genomes lacked identifi-

able prophages and only 9% lacked plasmid contigs. We identified 929 conjugative systems,

with some genomes containing up to seven, most often of type MPFF, the type present in the F

plasmid. On average, prophages accounted for 5% and plasmids for 3% of the genomes (Fig

4A). Together they account for more than a third of the pan-genomes of each phylogroup. We

also searched for elements capable of mobilizing genes within genomes: Insertion Sequences,

with ISfinder [57], and Integrons, with IntegronFinder [58]. Even if ISs are often lost during

sequence assembly, some genomes had up to 152 identifiable ISs representing ~1% of the

genome (Fig 4A and S13 Fig). A fourth of the ISs were in plasmids and very few were within

prophages. We found integron integrases in 14% of the genomes, usually in a single copy. It is

interesting to note that even if the frequency of each type of MGE varies across strains, each of

them is strongly correlated with the frequency of the other elements (Fig 4B). Hence, the typi-

cal E. coli genome has at least one transposable element, a prophage and a plasmid, the key

tools to move genes between and within genomes. This means that when genomes are

enriched in one type of MGE, they tend to get simultaneously enriched in the remaining types

of MGEs.

What is the effect of these MGEs in the dynamics of E. coli genomes? First, none of the

MGEs gene families is present in more than 99% of the strains (i.e. none qualifies as persistent

PLOS GENETICS E. coli genetic diversification

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1008866 June 12, 2020 8 / 43

https://doi.org/10.1371/journal.pgen.1008866


genes) at the species or at the phylogroup level. Instead, they are systematically at low fre-

quency in the pan-genome, even at the phylogroup level. Hence, these genes rarely rise to high

frequency in the species. Second, when we inferred the events of gene gain and loss in the spe-

cies tree using Count (see Methods), we found that half of the recent gene acquisitions, i.e.,

those that took place at the level of the terminal branches of the species tree, were MGE genes.

Conversely, the acquisitions at the terminal branches correspond to 40% of the MGE genes of

the species. Third, the acquisition of MGEs affects the size of the genome. Those identified in

this study account for ~8% of the genome size (Fig 4C and S14 Fig), and the number of genes

associated with MGEs is strongly correlated with genome size for every type of element (Fig

4B). Fourth, MGEs increase the variability of genome sizes, since removing them decreases the

coefficient of variation of the size of gene repertoires by 34% (expected increase of 4% under a

Poisson model, Fig 4C). Fifth, the increase in variance in terms of genome size caused by

MGEs is amplified by their rapid loss after acquisition (short persistence times in the genome).

No MGE-associated gene family is sufficiently frequent to be part of the persistent genome,

and most (85%) are present in less than 1% of the genomes. For example, 41% of the IS gene

families are singletons (S14 Fig).

These results are consistent with the analysis of the variation in GRR with patristic distance,

where some genes have extremely rapid turnover. Here we show that many of them are MGEs.

The lack of fixation of MGE-associated genes suggests that the long-term cost of MGEs them-

selves is significant and/or their contribution to fitness is low (or temporary). But even if most

genes associated with MGEs are eventually lost, their cargo genes may be adaptive, remain in

the genomes for long periods and eventually become fixed. In conclusion, MGEs have a key

role in the initial rapid turnover of genes in genomes because they are aquired at high rates,

even if most of their genes are eventually lost.

The smallest genomes have the highest gene turnover

Is the distribution of specific MGEs and their rates of transfer strongly associated with specific

traits of genomes, like their phylogroup or isolation source? And if so, is this leading to

Fig 4. Frequency of mobile genetic elements (MGEs). A. Percentage of genes associated with MGEs per genome (sum in first graph). B. Spearman’s rank
correlation matrix between the number of genes related to MGE and the genome size (in Mb and number of genes). The shades of the grayscale and the size of the
circle are proportional to the correlation coefficients. All values are significantly positive (P<10−4). C.Differences in genome size when MGE genes are included
or removed.

https://doi.org/10.1371/journal.pgen.1008866.g004
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preferential paths of gene transfer within the species? It has been suggested that homologous

recombination is much rarer between than within phylogroups [18]. To test if this applies to

the transfer of MGEs, we analyzed the distribution of the pan-genome gene families that are

part of MGEs (excluding singletons, for the separate analysis of prophages and plasmids, see

S15 Fig). There is a small but significant tendency of gene families of MGEs to cluster in a sin-

gle phylogroup (Z-score>20, see Methods). However, 75% of the phage and plasmid gene fam-

ilies were found in more than one phylogroup and 8% were found in all phylogroups (Fig 5A).

Hence, MGEs are key players in genome diversification at the micro-evolutionary scale. Above

we showed that they were acquired independently multiple times and most of them have just

arrived in their host genome. We now show that they are often transferred across

phylogroups.

One might expect more genetic diversity in phylogroups with more MGEs and larger

genomes. In apparent agreement with this hypothesis, genomes from phylogroups A and B1

are significantly smaller than the others (Fig 5B, col 1, ANOM tests, P<10−3) and have fewer

MGE-associated genes (Fig 5B, col 2, ANOM tests, P<0.05). However, these phylogroups also

have the largest diversity of gene families associated to MGEs (Fig 5B, col 3, in both the full

and rarefied datasets, both ANOM tests, P<10−3), i.e. they encode fewer but more diverse

MGEs. Furthermore, the phylogroups A and B1, in spite of having among the most recent

common ancestors of the phylogroups (Fig 3B), have the largest pan-genomes, the smallest

persistent genomes, and the largest diversity of STs, and serotypes (Fig 5B, in both the full and

rarefied datasets, cols 4,5,9,10, ANOM tests, P<10−3). This intriguing pattern suggests that the

smallest genomes have the highest turnover of genes, not the lower rates of transfer. To test

this hypothesis, we took the quantification of gene gains and losses at the terminal branches of

Fig 5. Genetic diversification across phylogroups. A.Number of accessory gene families associated to MGE present in one (i.e., phylogroup-specific) to seven
phylogroups. The color code used corresponds to the Z-score obtained for the observed number (O) with respect to the expected distribution (E) (see Methods) for each
case with a color code ranging from blue (under-representation) to red (over-representation). The level of significance was reported: |Z-score|: � ([1.96–2.58[), �� ([2.58–
3.29[, ���([3.29). B.Heatmap where a cell represents the deviation (the difference) of the phylogroup to the rest. All values were standardized by column. The color code
ranging from blue (lower) to red (higher), with white (overall mean). The level of significance of each ANOM test was reported: � (P<0.05), �� (P<0.01), ��� (P<0.001).
C.Network of recent co-occurence of gains (co-gains) of accessory genes within and between phylogroups. Nodes are phylogroups and edges the O/E ratio of the
number of pairs of accessory genes (from the same gene family) acquired in the terminal branches of the tree. Only significant O/E values (and edges) are plotted (|Z-
score|>1.96). Under-represented values are in dash blue and over-represented in red (see Methods).

https://doi.org/10.1371/journal.pgen.1008866.g005
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the species tree, computed with Count (see above), and computed the number of these events

per phylogroup. We found that phylogroups A and B1 have the highest number of gene gains

and losses per terminal branch (Fig 5B, cols 6–7). Hence, these phylogroups have the smallest

genomes but the most frequent events of gene gain and loss.

To study recent gene flow between different phylogroups, we took the genes inferred to be

acquired in the terminal branches of the species trees. Among these recently acquired genes

we selected the gene pairs from the same gene family (co-gains) that were from the same phy-

logroup (Fig 5B, col 8) and those corresponding to recent acquisition of the same gene family

in two different phylogroups (see Methods, Fig 5C). The results were represented as a graph

where the edges represent significantly fewer (dashed lines) or higher (solid lines) number of

co-gains than expected by chance. We found that phylogroup B1 has significantly more co-

gains of genes with other phylogroups than expected, while the inverse was observed for phy-

logroup B2. We reached similar results when considering only the co-gains associated with

MGEs (S16 Fig). These results are consistent with the separation of the B2 phylogroup from

the others in the PCA analysis (Fig 3D). They show that such separation is due to lower rates

of transfer in B2, which leads to fewer co-gains within the phylogroup and between this and

the other phylogroups. In summary, phylogroups differ in terms of their genome size and in

their rates of genetic diversification, the two traits being inversely correlated within the

species.

Not everything is abundant everywhere: the interplay between phylogroups
and sources in genetic diversification

Frequent horizontal transfer across phylogroups could result in adaptation being independent

of the strain genetic background. While we observed that strains from all phylogroups could

be isolated in all different sources (Fig 6A), different phylogroups are typically over-repre-

sented in some sources and rare in others (Fig 6B). These observations match previous studies

[3], and show an association between the phylogenetic structure of populations and the natural

habitats of the strains.

How much of the variability in genome size is explained by the source of isolation of the

strains? Genome sizes vary significantly across isolation sources. Strains isolated from poultry

meat had the largest average genomes, followed by human ExPEC strains. In contrast, strains

from wild birds’ feces and freshwater had the smallest genomes (Fig 3A and Fig 6C, col 1,

ANOM tests, P<10−3). We showed above that genome size also varies across phylogroups. To

understand the relative role of the two variables, isolation source and phylogroup, we made

two complementary analyses. First, we compared the genome size of strains from different

sources within each phylogroup. Even if the statistical power was sometimes low, this revealed

trends similar to the ones observed across phylogroups (S17 Fig). Second, we used stepwise

multiple regressions to assess the effects of phylogroup and the strains’ source on its genome

size. Both variables contributed significantly, and in almost equal parts, to the statistical model

and together explained 36% of the variance (R2 = 0.36; P<10−4, S3 Table). We found similar

results after removing MGE-associated genes (Fig 6D and S4 Table). We conclude that both

isolation source and phylogroup are equally associated with genome size.

Adaptation to a habitat depends on HGT, which is driven by MGEs. This led us to study

the distribution of MGEs in relation to isolation sources. There are fewer MGE genes in strains

isolated from freshwater and wild birds’ feces, which have smaller genome sizes, and more in

strains from human ExPEC and poultry meat (Fig 6C, col 2, ANOM tests, P<10−3, and S5

Table). We observed similar trends within each phylogroup even if the statistical power was

low (S17 Fig). The analysis of the relative contribution of phylogroups and isolation sources to
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the number of MGE genes showed that the source of the strain accounted for the vast majority

of the explained variance (90%, full model: R2 = 0.19; P<10−4, Fig 6D and S6 Table). Accord-

ingly, the number of MGE gene families present in a single source of isolation was higher than

expected (Z-score>17, S15 Fig), and nearly one third of these were observed in multiple phy-

logroups. To quantify this trend, we counted recent independent gains (co-gains, see definition

above) of the same gene family (see Methods). This was done for pairs of genomes within the

Fig 6. Genetic diversification across sources. A.Distributions of the sources in each phylogroup. B. Association between phylogroups and sources. The ratio of the
number of observed (O) genomes divided by the expected (E) number was reported for all comparisons with a color code ranging from blue (under-representation) to
red (over-representation) (Fisher’s exact tests performed on each 2�2 contingency table). C.Heatmap showing the associations between isolation sources and a number
of traits. Each cell indicates the deviation (the difference) to the overall mean (in white). All values were standardized by column. Tests: standard ANOM (1), non-
parametric ANOM tests (2, in presence of deviations from Gaussian distributions), ANOM for proportions (3). We represented the (O/E) ratio of the co-occurrence of
gene pairs recently acquired (Co-gains) in each phylogroup with the same color code as in panel B (4).D. Contribution of each variable (phylogoup and source) to the
variance explained by the stepwise multiple regressions of genome size (for the component of MGEs or the remaining genome) on phylogroup and the isolation source.
E.Differences in diversity of gene families recently acquired across phylogroups (in black) and sources (in grey) for gene families associated to MGE or the remaining
gene families (Wilcoxon tests, red dots (means)). In all panels: the level of significance of each test was reported: � (P<0.05), �� (P<0.01), ��� (P<0.001).

https://doi.org/10.1371/journal.pgen.1008866.g006
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same source and between different sources. The analysis revealed that co-gains were more fre-

quent than expected within the same isolation source. (Fig 6C, col 16, see Methods). These

results suggest that the contribution of MGEs to genome size is primarily driven by the source

of the isolate rather than phylogroup membership.

The previous result could arise from preferential co-gains of MGEs in an isolation source

relative to a phylogroup, i.e. to frequent transfer of a fewMGEs in the multiple isolates from

the same type of source. To test this hypothesis, we used the results from Count and built a

matrix where for each gene family we indicate the acquisition or not of a gene in each of the

terminal branches of the phylogenetic tree. We then compared the clustering of these recent

acquisitions by phylogroup and by isolation source using Shannon indexes (see Methods). If

the hypothesis is correct, we expected higher clustering (lower diversity) across sources than

across phylogroups. We observed slightly higher clustering across phylogroups than across

sources, both for MGE and for the other genes (Fig 6E). We conclude that the contribution of

MGEs to genome size depends largely on the isolation source but that this does not reflect sys-

tematic gains of the same MGE genes in the same source. Instead, the higher frequency of

MGEs in genomes of certain sources may result from higher density of MGEs in those habitats

(higher infection rates), or from higher probability of acquiring MGEs with adaptive traits at

certain sources (higher selection rates).

It is tempting to speculate that the association between the number of MGE genes and isola-

tion sources reflects selection for the acquisition of locally adaptive functions that are trans-

ferred by these MGEs. To test this, we searched for the presence of a trait—antibiotic

resistance–that has become adaptive only recently and that is frequently transferred by MGEs.

We searched for antibiotic resistance genes (ARGs) in our dataset using the reference data-

bases. Many of these ARGs were in integrons (~3 per integron), which is well documented

[59], and genomes carrying integrons had more ARGs than the others (Wilcoxon test,

P<10−4, S18 Fig). Expectedly, integrons and ARGs were more prevalent in human ExPEC and

in poultry meat isolates (Fig 6C, cols 7–8) and S5 Table). Similar results were observed in the

analyses at the level of each phylogroup (S18 Fig). The clear association of integrons and ARGs

with human (or domesticated animals) isolates of E. coli independently of the phylogroups’

genetic background reinforces the idea that source-specific MGEs provide locally adaptive

traits.

Functional differences across phylogroups and isolation sources

Several of the previous results suggest an accumulation of adaptive genes as patristic distances

increase. We used a gene-based GWAS to search for functions enriched in phylogroups or in

isolation sources (see Methods). The first analysis revealed many gene families (2,754, S2 Data-

set) positively and negatively associated with the phylogroups (Fig 7A). While in most cases

these associations link a gene family to a phylogroup, the phylogroup A and B1, which are

close in the phylogeny (Fig 3A) and in terms of gene repertoires (Fig 3D), have many associa-

tions in common (53%). The phylogroup with the largest number of associated genes is B2,

which is also in accordance with the PCA analysis that revealed distinct gene repertoires in

this phylogroup (Fig 3D). We characterized the functional categories of these associated gene

families using EggNOG classification (as previously, S2 Dataset). In general, the categories

over-represented are related to genes involved in metabolism (Fig 7B), which is in agreement

with previous studies [60, 61].

The genes that were identified in the GWAS often concerned degradation processes, nota-

bly aromatic compound degradation (S2 Dataset) [62]. For example, PP (phenylpropionic

acid) and HPP/HCI (hydroxyphenylpropionic and hydroxycinnamic acid) degradation
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Fig 7. Genetic determinants of each phylogroup. A.Number of gene families positively (in red) and negatively (in blue) associated with each phylogroup. Altogether,
they represent 7% of the accessory gene families of the dataset (note that some gene families are associated with several phylogroups). B. Observed/expected (O/E) ratios
of non-supervised orthologous groups (NOGs, shown as capitalized letters, same code as shown in Fig 1C) in the positively or negatively associated gene families. For
example, in phylogroup A there is an over-represents of positive associations in class Q, whereas in class L for the same phylogroup A there is under-represention for
both positive and negative associations. The ratio (O/E) was reported for all comparisons with a color code ranging from blue (under-representation) to red (over-
representation). The level of significance of each Fisher’s exact test was indicated (P> = 0.05 : ns; P<0.05 : �; P<0.01 : ��; P<0.001 :���). It was performed on each 2�2
contingency table. Gene families lacking matches to the EggNOG functional categories (57%) were discarded. C.Genomic organization of some regions enriched in
genes positively (in red) or negatively (in blue) associated with a phylogroup (indicated on the left). Genes shown in grey are not significantly associated. The name of the
gene (when available) is shown above it, its EggNOG functional category (when known) below it.

https://doi.org/10.1371/journal.pgen.1008866.g007
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pathways are negatively associated with B2 strains, while PA (phenylacetate acid) and HPA

(hydroxyphenylacetic acid) degradation are positively associated with B1 strains (S2 Dataset,

Fig 7C). These results are consistent with recent phenotypic tests (growth on specific sub-

strates) [61]. Interestingly, B1 strains are positively associated with genes involved in rham-

nose, sucrose, xylose, glycerate, and tartrate degradation pathways, while B2 are negatively

associated with traits associated with plant colonization such as the Hyf system (involved in

control and pH control), melibiose, cyanate, putrescine, and D-malate degradation pathways

(S2 Dataset, Fig 7C). These pathways are involved in alternate carbon source metabolism, and

may reflect functional adaptations to different nutritional environments, as proposed previ-

ously [63]. These results suggest that B1 strains, contrary to B2, tend to carry traits facilitating

adaptation to environmental niches, such as soil and water (where aromatic compounds are

highly abundant) or to colonize plants, as previously suggested [64].

The same analysis made at the level of the isolation sources revealed fewer genes (Fig 8A).

The different fecal isolates almost lacked associated genes, presumably because this is the most

typical and the ancestral environment of the species and it may have adapted to it for a long

time. We therefore focused our analysis on genes involved in virulence. The analysis of human

ExPEC isolates revealed many associated genes (S2 Dataset), including well-known virulence

factors such as ABC-dependent capsule systems, the motility repressor papX, the P fimbriae,

yersiniabactin, colibactin and multiple type 5a protein secretion systems (Fig 8C). To comple-

ment this analysis, we searched specifically for known virulence factors from VFDB [65].

Indeed, they are more prevalent in human strains, and especially in ExPEC isolates (ANOM

test, P<10−3), while being rare in strains isolated from freshwater and wild birds’ feces

(ANOM test, P<10−3, Fig 6C, col 9). While these virulence factors are more concentrated in

phylogroups B2, D, E and F (ANOM test, P<10−2) as previously shown [37], the trends regard-

ing isolation sources are conserved within each phylogroup (S19 Fig). In particular, within

phylogroup B2, only human strains have a significantly higher average number of virulence

factors (S19 Fig) as previously suggested [26].

While virulence factors were associated with human isolates, we oberved associations

between certain isolate sources and mechanisms used in antagonistic interactions with other

bacteria. This includes overpresentation of type VI secretion systems (T6SSi) in ExPEC, type

5b secretion systems (often associated with contact-dependent inhibition) in poultry meat iso-

lates, and bacteriocins in several isolation sources (S2 Dataset). To detail these results, we

searched specifically for colicin gene clusters [66], using BAGEL3 [67] (some of which are also

included in VFDB). We found from an average of 2.8 genes in B2 strains to 0.4 in B1 strains.

Interestingly, the water isolates have the fewest colicin genes, presumably because free diffu-

sion of these proteins in water makes them inefficient tools of bacterial competition (Fig 6C,

col 10 and S19 Fig). Thus, local adaptations resulting from the acquisition of novel genes by

HGT, involving antagonistic interactions with other bacteria are associated preferably with

certain phylogroups.

E. coli from freshwater are different

E. coli has usually been regarded as a contaminant from animal, mostly human, sources and

used to test water quality. Yet, recent data suggests that some strains could inhabit aquatic

environments [68]. Given the contrast between the primary and secondary habitats of E. coli,

respectively guts of endotherms and aquatic environments, this would imply marked differ-

ences between the 285 freshwater strains and the others. Indeed, our results show that these

strains are systematically different. They are over-represented in phylogroup B1 (43%), a phy-

logroup under-represented in all other sources of isolation (Fig 6A and Fig 6B). On the other
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hand, they are under-represented in B2 (13%), a phylogroup over-represented in strains iso-

lated from humans (this study) and other mammals [2]. The genome size of freshwater strains’

is the smallest among all groups of isolates and across phylogroups (Fig 6C, col 1, S17 Fig).

Importantly, these strains show average pan-genome sizes in the rarefied dataset, suggesting

that adaptation is not exclusively due to genome reduction (Fig 6C, col 12). This is also sup-

ported by the high number of gains and losses observed (Fig 6C, cols 14,15), although these

genomes have the fewest MGEs and often lack plasmids (Fig 6C, cols 2–6). Consistent with

adaptation to this habitat, they have the smallest number of antibiotic resistance genes, viru-

lence factors, and bacteriocins (Fig 6C, cols 7–10, S18 and S19 Figs). In contrast, these strains

show the highest diversity of STs and O:H serotypes (Fig 6C, cols 17,18, and S5 Table), and the

highest number of capsule systems (Fig 6C, col 12, S20 Fig).

The extreme genomic traits of isolates from water strongly suggest they are not the result of

recent fecal contamination from other sources. Instead, they strongly suggest that these strains

have changed to adapt to water environments. This change seems to have involved the loss of

many genes, and this is apparent from the GWAS analysis, which shows many more negative

than positive associations with this isolation source (contrary to all the others) (Fig 8A). Many

of them correspond to the virulence factors described above (Fig 8C). The few gene families

positively associated with freshwater are over-represented in the EggNOG category M (cell

envelope, Fig 8B). Many of these correspond to genes encoding the Group IVe capsular genes

(Fig 8C), which contrasts with ABC-dependent capsules that are positively associated with

Human ExPEC strains (S2 Dataset). Capsules have been proposed to allow cells to withstand

biotic and abiotic challenges, and these results suggest that they are an important component

of E. coli adaptation to freshwater environments. Overall, these results show that E. coli in

these environments endured some horizontal gene transfer and important genome streamlin-

ing, i.e. a high turnover of gene repertoires that resulted in genomes smaller than the average

carrying a few specific adaptations to the environment.

Discussion

Many of the recent advances in the understanding of E. coli evolution focused on clinical iso-

lates and placed a lot of emphasis on virulence and antibiotic resistance in a few clinically

important lineages [69–74]. Yet, most strains of the species are commensal. Hence, most of the

evolution of the species takes place in biotic contexts not associated with pathogenesis. Fur-

thermore, while a lot of attention has been given to the rates of homologous recombination in

core genes, it is now clear that the acquisition of novel genes drives the evolution of virulence

[12, 42, 75, 76] and antibiotic resistance [77–79] in pathogenic strains as well as that of many

other traits in commensal strains [12]. For example, MGEs were recently shown to be more

important than point mutations for the colonization of the mouse gut by E. coli commensals

[80]. Here, we aimed at providing a global picture of the evolution of the E. coli genomes with

an emphasis on the variation of gene repertoires in strains from a variety of sources (environ-

mental and geographic) across a single continent. This allowed us to study the joint effect of

population structure and habitat on the variation of gene repertoires. Our study focused on E.

Fig 8. Genetic determinants of each isolation source. A.Number of gene families positively (in red) and negatively (in blue) associated with each source. B.Observed/
expected (O/E) ratios of non-supervised orthologous groups (NOGs, shown as capitalized letters, same as in Fig 1C) in the positively or negatively associated gene families.
The ratio (O/E) was reported for all comparisons with a color code ranging from blue (under-representation) to red (over-representation). The level of significance of each
Fisher’s exact test was indicated (P> = 0.05: ns; P<0.05: �; P<0.01: ��; P<0.001: ���). It was performed on each 2�2 contingency table. Only gene families with known
functions were considered in this analysis.Gene families lacking matches to the EggNOG functional categories were discarded.C. Genomic organization of regions
enriched in genes strongly positively (in red) or negatively (in blue) associated with a source. Genes shown in grey are not significantly associated. The name of the gene
(when available) is shown above it, its functional category (when known) below it.

https://doi.org/10.1371/journal.pgen.1008866.g008
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coli isolates from Australia, but its genetic diversity was higher or comparable to other world-

wide genome datasets, and its population structure was consistent with previous works [16, 40,

81]. This indicates that what we have observed is likely to be representative of the species as a

whole. It also confirms previous reports of the large genetic diversity of the species and of the

planetary circulation of all major lineages [39, 45, 82]. Finally, the functional annotation of the

pan-genome shows that in spite of over 375,000 papers citing E. coli in PubMed in 2019, we

are still far from having discovered the full genetic diversity of E. coli and from knowing the

function of many of its most frequent gene families.

We started our study by quantifying gene repertoire diversification, which we found to fol-

low a two-step dynamic. The very rapid initial diversification, where GRR quickly decreases to

~90%, implicates substantial heterogeneity in terms of gene repertoires for strains that are

from the same sequence type and are almost identical in the sequence of persistent genes.

Some of the rapid initial divergence of GRR may be due to genome sequencing or assembling

artifacts producing singletons and thus inflating pan-genomes. Yet, we have annotated all

genomes in the same way. We also confirmed key results by excluding singletons, by showing

that singletons represent only ~0.5% of a typical genome, and that many of them have homo-

logs in the databases. The frequency of singletons is only weakly correlated with the number of

contigs in draft assemblies, a further sign that they are not just caused by sequencing or assem-

bly issues (S3 Text). Furthermore, our analysis of ancestral genomes showed that a large frac-

tion of well-known MGEs, including phages, ISs and plasmids, were acquired very recently

(inferred acquisition at the terminal branches of the phylogenetic tree). Some of these are sin-

gletons, whereas others are present across a few genomes of many phylogroups. They contrib-

ute directly to the very rapid divergence of gene repertoires between separating lineages.

Hence, we do not think that technical issues alone explain the existence of rapid gene reper-

toire differentiation between recently divergent strains. This raises the question of how much

these processes reflect natural selection on incoming genes or high rates of gene loss by drift.

Previous population genetics models applied to other clades observed the existence of genes

that have rapid turnover in genomes, i.e. that are rapidly lost after being acquired [83, 84]. Our

results show that frequent acquisition of MGEs drives rapid diversification of gene repertoires

even between strains that are almost indistinguishable by classical typing schemes. In the pres-

ent context, this suggests that either many integrations of genetic material are deleterious and

get rapidly purged by natural selection or that they are of no lasting adaptive value and get rap-

idly deleted by genetic drift. The first hypothesis is consistent with the fitness costs associated

with the acquisition of many MGEs [85–87], with our observation that most MGEs present in

a genome were very recently acquired, and with the abovementioned rapid loss of GRR for

small patristic distances. The second hypothesis is consistent with previous works suggesting

the existence of mechanistic biases towards gene deletion in bacteria that quickly remove

genes without adaptive value from the genome [88, 89]. It is also consistent with the observa-

tion that some classes of functions, like defense systems [90] or specific components of the cell

envelope [91], are subject to fluctuating selection dynamics and become neutral or slightly del-

eterious (because costly) after a short period where they are selected for.

After the initial period of rapid GRR decrease with phylogenetic distance, GRR decreases

linearly with divergence time, a trend that was not quite clear when we first analyzed this ques-

tion a decade ago with a much smaller set of genomes [42]. Importantly, this linear decay is

not suggestive of the existence of a point beyond which relatedness and gene flow change

abruptly. Hence, these results do not suggest incipient sexual isolation within the species from

the point of view of horizontal gene transfer. This is confirmed by our analysis that some

MGEs are present in many phylogroups and by the finding that many gene families of the

pan-genome were recently acquired independently by distantly related strains. An interesting
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feature of the comparisons of GRR in function of phylogenetic distances is the large variance

around the regression line. This variance may result from very different processes. One of

them may be preferential transfer of genes across strains within the same habitat, as observed

for the isolates from the same type of source in this work. This type of transfer will lead to

pairs of strains with more similar gene repertoires than expected given their patristic distance.

Conversely, bacteria shifting from one habitat to another may endure an acceleration of their

divergence in terms of gene repertoires. This will be a consequence of selection for different

traits, acquired by HGT, and of changes in its preferential gene flow towards strains from the

novel habitat.

The rapid evolution of gene repertoires by HGT is consistent with the observation that plas-

mids, prophages and ISs are almost ubiquitous among E. coli. These elements contribute sig-

nificantly to genome size and even more to the variability of genome size across strains, which

supports our previous results [51, 92]. While most MGEs are quickly lost from lineages, or

drive the lineage extinct, the large influx of such elements can bring adaptive accessory traits

such as antibiotic resistance genes [78] and virulence factors [93, 94]. They also pave the way

for cooption processes [95]. The contribution of the MGE genes to genome size across the spe-

cies is more strongly associated with the isolation source of the strains than with the phy-

logroup. However, the recent co-acquisition of MGEs by different strains is also associated

with the phylogroup. This is consistent with a scenario where the abundance of MGEs in a

genome is strongly dependent on the habitat, but their diversity also depends on the phy-

logroup. Since most MGE genes arrived in the genome very recently, this suggests that habitat

exerts a strong constraint on the flow of gene exchanges across the species, in line with the

view that bacteria exchange more genes with those they coinhabit with [96, 97].

The adaptive novel genetic information being acquired with MGEs must be integrated in

the cell functioning. This need of favorable genetic backgrounds for certain local adaptation

processes could explain the observed over-representation of some phylogroups in certain isola-

tion sources. Virulence factors and antibiotic resistance genes provide relevant examples. In

our dataset, the plasmids encoding virulence factors are often conjugative and should be able

to circulate widely, but the virulent clones often concentrate in a few phylogroups. Selection

for antibiotic resistance is expected to be higher in human-associated clones, and especially the

virulent ones, because these are the most targeted in the clinic. Hence, they endure stronger

selection to keep the ARGs arriving in MGEs. These causal links result in preferential associa-

tions of genetic backgrounds with virulence factors and ARGs, and therefore with the fre-

quency of human isolates in a given phylogroup. It remains to be quantified the degree to

which these trends are due to epistatic interactions between novel genes and the genetic back-

ground and to the availability of specific genes by horizontal transfer in certain sources. In

conclusion, these results contribute to explain why epidemiological clones tend to emerge

from specific phylogenetic groups even in the presence of massive horizontal gene transfer.

Genetic diversity, created by HGT, recombination, or mutation, affects a species’ ability to

adapt to novel ecological opportunities. The higher the diversity of gene repertoires in a popu-

lation, the more likely that one of those genes will prove helpful in the face of environmental

challenges such as antibiotics. We observed that the generalist phylogroups, such as A and B1,

have larger pan-genomes than specialist phylogroups like B2. This was not expected based on

their smaller genome sizes or the lower frequency of MGEs in their genomes. We propose that

this reflects the high variability of the environments where they circulate—in terms of condi-

tions, other strains and MGEs—and the associated diversity of local adaptation processes. Phy-

logroup B1, in particular, is associated with the presence of a number of metabolic traits

suggesting interactions with plants. Phylogroup B2 strains, by comparison, have developed

specific traits that may let them take advantage of some particular resources, e.g. they are better

PLOS GENETICS E. coli genetic diversification

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1008866 June 12, 2020 19 / 43

https://doi.org/10.1371/journal.pgen.1008866


adapted to the mammal gut environment [2]. This has resulted in large genomes that are quite

different from the other major phylogroups of E. coli, as revealed by the phylogeny of the spe-

cies based on the polymorphism on persistent genes, the PCA analysis of the pan-genome

matrix, the GWAS analysis, and the large number of MGEs identified in their genomes. Yet,

they are overall more conserved (largest persistent-genome, smaller pan-genomes, fewer

recent gene acquisitions). This may explain why it has been suggested that strains from phy-

logroups A, D and B1 derived from an ancestral B2-like genetic background. The conservation

of a larger core genome is consistent with our quantification of genetic exchanges: B2 strains

exchange less genetic material with strains from its own and from other phylogroups than the

remaining large phylogroups. This has placed it apart in terms of gene repertoires and in terms

of preferential habitats. Altogether, these results suggest that the habitat and the phylogenetic

structure jointly determine the size of genomes. The results also suggest the hypothesis that the

large genomes of some phylogroups, like B2, may be caused by a relative decrease in the rate of

gene loss, and not necessarily by an increase in the rate of gene gain.

The integration of information on gene repertoires, population structure and isolation

sources sheds some light on the origin of environmental strains. This is illustrated by the iden-

tification of genomic traits in freshwater E. coli isolates that are very different from the average

traits of the species and that suggest adaptation of certain lineages to this environment. For

bacteria, freshwater environments are much more nutrient poor than the guts of endotherms,

and it’s interesting to note that strains associated with this environment have more streamlined

genomes. This may represent, at the micro-evolutionary scale, an adaptation similar to that

observed in other bacteria adapted to poor nutrient environments that also have small

genomes and few MGEs [98, 99]. These results are also consistent with recent studies showing

that E. coli B1 strains can persist longer in water than strains of the other phylogroups, and

that B1 strains isolated repeatedly in water often encode very few virulence factors and antibi-

otic resistance genes [7, 33, 34]. Interestingly these strains have been shown to be able to grow

at low temperatures [7]. The prevalence of B1 isolates has been observed in other environmen-

tal samples, such as drinking water and plants [64]. The characteristics observed in freshwater

isolates might be general to this environment, since they were observed in strains from the B1

and from other phylogroups (S16–S20 Figs). If some E. coli lineages are indeed adapted to

freshwater this radically changes the range of environments from where they can acquire

novel genes and the selection pressures that shape their subsequent fate. This finding also

implies that environmental isolates are not necessarily the result of source-sink dynamics

where E. coli strains evolve in relation to selection pressures linked to the host and environ-

mental strains are just sinks where such strains find evolutionary dead-ends. Instead, the envi-

ronment outside the host could have a significant impact on the evolution of E. coli

subsequently colonizing human hosts.

Materials andmethods

Strains

We used different collections of E. coli strains recovered in Australia between 1993 and 2015

(for a more detailed description, see S1 Text and S1 Dataset). The subset of strains selected for

whole genome sequencing includes: (1) faecal strains isolated from various birds (N = 195

strains), non-human mammals (N = 135), and humans living in Australia (N = 93); (2) clinical

strains isolated during intestinal biopsies of patients with inflammatory bowel disease

(N = 172), or corresponding to human ExPEC strains collected from urine or blood (N = 112);

(3) poultry meat strains isolated from chicken meat products from diverse supermarket chains
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and independent butcheries (N = 283); (4) and freshwater strains isolated from diverse loca-

tions across Australia (N = 285).

Sequencing

Of the 1,304 isolates, 70 were sequenced at Broad institute using the Roche 454 GS FLX system

(this was done 10 years ago, detailed in [100]), 70 were sequenced by GenoScreen (Lille,

France) using the HiSeq2000 platform. The rest were sequenced at the Australian Cancer

Research Foundation (ACRF) Biomolecular Resource Facility (BRF) of the Australian National

University, using the Nextera XT sample preparation kit (Illumina) and the Illumina Miseq

(paired-end sequencing), as detailed in [101].

Assembling

Paired-end read files were processed and assembled with CLC Genomics Workbench v.9.5.3

(Illumina) using their de novo assembly algorithm with default parameters.

All genomes sequenced by the Broad institute were available into the NCBI Assembly

(www.ncbi.nlm.nih.gov/assembly/) or SRA (www.ncbi.nlm.nih.gov/sra/) databases. While, the

rest of the assemblies was deposited into the European Nucleotide Archive (PRJEB34791). The

accession number of each genome is reported in S1 Dataset.

Datasets

We used 4 datasets in this study. (1) The Australian dataset described above is the main

(default) dataset. (2) RefSeq dataset: We retrieved 370 E. coli complete genomes from Gen-

Bank Refseq (available in February 2018). (3) ECOR dataset: We retrieved 72 draft genomes of

the E. coli reference (ECOR) collection from DDBJ/ENA/GenBank [48]. Strains in this collec-

tion were isolated from diverse hosts and geographic locations and have been used for more

than 30 years to represent the phylogenetic diversity of E. coli as they have been selected from

over 2,600 natural isolates based on MLEE data [17]. (4) Outgroup dataset: We retrieved 65

other closely related Escherichia genomes from ENA/GenBank and sequenced 21 others on

the Illumina MiSeq platorm (assembled as described above). They belong to Clade I (N = 14),

Clade II (N = 2), Clade III (N = 8), Clade IV (N = 2), Clade V (N = 14), E. fergusonii (N = 8)

and E. albertii (N = 38) species. Only five of them were complete, others were draft genomes.

In this study, these genomes (called hereafter outgroup genomes) were only used to root the

Australian E. coli species tree. The general genomic features and the sequencing status of these

1,832 genomes are reported in S1 Dataset.

Data formatting

In an attempt to overcome the bias from different annotations all genomes of the four datasets

were annotated using Prokka v.1.11 [102] which provided consistency across the entire data-

sets (with hmmer v.3.1b1, aragorn v.1.2.36, barrnap v.0.4.2, minced v.0.1.6, blast+ v.2.2.28,

prodigal v.2.60, infernal v.1.1, ncbi_toolbox v.20151127, and signalp v.4.0). We performed

three quality controls on genomic sequences of Australian and outgroup datasets (see S2

Text). A total of 10 E. coli draft genomes and one genome from clade V failed at least one of

these tests and were removed from further analysis, leading to a final dataset of 1,294 Austra-

lian E. coli genomes and 87 outgroup genomes. The main characteristics of each draft genome

are reported in S1 Dataset.

E. coli typing. Phylogroup. The phylogroup of each E. coli genome (from ECOR, RefSeq,

and Australian datasets) was determined using the in silico ClermonTyping method [20].
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Multilocus sequence typing (MLST). Sequence type (ST) was identified by the MLST scheme

of Achtman [10] using mlst v.2.16.1 (https://github.com/tseemann/mlst). We assigned STs for

a large majority of genomes, i.e., for 99%, 96% and 97% of the ECOR, RefSeq and Australian

genomes resp. Serotype. Serotype (O- and H-genotypes) was inferred with the EcOH database

[103] using ABRicate v.0.8.10 (https://github.com/tseemann/abricate)). Currently there are

220 E. coliO-groups and 53 H-types described in this database. While 99% of Australian

genomes had H-group assigned, only 57% had O-group assigned even if wzm/wzt and wzx/

wzy genes are present. All these results are reported in S1 Dataset.

Nucleotide diversity

The nucleotide diversity of the three datasets, i.e., ECOR, RefSeq and Australian, was com-

puted from the multiple alignments of 112 core gene families present in all E. coli genomes of

these three datasets, (see below), using the diversity.stats function from the PopGenome v.2.6.1

R package [104]. We also used these 112 core gene families to assess the nucleotide diversity

for each phylogroup of the Australian dataset.

ST and O:H diversity

The Shannon index was computed to assess the diversity of ST and O:H serotypes within each

phylogroup and source. For this, we calculated their relative frequency in each group and then

applied the function skbio.diversity.alpha_diversity from the skbio.diversity v.0.4.1 python

package (http://scikit-bio.org/docs/0.4.1/diversity.html).

Mash distances (M)

Genome similarity.Due to the high cost of computing ANI [105] via whole-genome align-

ment, we estimated genome similarity calculating the pairwise Mash distance (M) between all

Australian genomes using Mash v.2.0 [106]. Importantly, the correlation between the Mash

distances (M) and ANI in the range of 90–100% has been shown to be very strong, with M�

1-(ANI/100) [106]. All the resulting Mash distances between E. coli genomes are well below

0.05, in agreement with the assumption that they all belong to the same species. The median is

0.027 and the maximal value is 0.04 (S4 Fig). Australian E. coli reference genomes. The Mash

distance was strongly correlated to the patristic distance in our dataset (spearman’s rho = 0.92,

P<10−4). We used it to select 100 Australian E. coli strains representative of the species’ diver-

sity (called hereafter reference genomes). Such reference genomes were used to root the Austra-

lian E. coli tree (to drastically reduce the computational time required to build the rooted tree).

To select representative genomes, we performed a hierarchical WPGMA clustering from the

Mash distance matrix computed with all Australian E. coli genomes, and then we cut it off to

have only 100 clusters. In each of these clusters, the genome with the smallest L90 was selected.

This reference dataset contained all the phylogroups and was composed of: 15-A, 10-B1, 13-E,

39-D, 11-F, 10-B2 and 2-G genomes.

Identification of pan-genomes

Pan-genomes are the full complement of genes in the species (or dataset, or phylogroup) and

were built by clustering homologous proteins into families. We determined the lists of putative

homologs between pairs of genomes with MMseqs2 v.3.0 [107] by keeping only hits with at

least 80% identity and an alignment covering at least 80% of both proteins. Homologs proteins

were then clustered by single-linkage [108]. We computed independently the pan-genome of

each dataset, i.e., ECOR, RefSeq, Australian and of the 87 outgroups with the 100 Australian E.
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coli reference genomes. Each pan-genome was then used to compute a matrix of presence-

absence of gene families. Hence, gene copy number variations were not taken into account in

this part of the study. The alpha exponent of Heap’s Law was used to infer whether a pan-

genome is open or closed [46]. Thus, if α (alpha)< = 1, the pan-genome is open. In contrast, α
(alpha)> 1 represents a closed pan-genome. This coefficient was computed using the heaps

function of themicropan v.1.2 R package [109] with n.perm = 1000. Principal component

decomposition of the Australian pan-genome, i.e, the matrix of presence-absence of protein

families was computed using the prcomp function from the stats v.3.5.0 R package.

The pan-genome of each phylogroup and source was taken from the pan-genome of the

species. The pan-genome of the MGE (called Pan-MGE) was also taken from the species pan-

genome and contained only genes encoding for MGEs.

Rarefaction of pan-genomes

The number of singletons was strongly correlated to the number of genomes analyzed in each

phylogroup (Pearson’s correlation = 0.97, P<10−4), indicating that the pan-genomes size

depend on the number of genomes analyzed. Thus, to compare genetic diversity across data-

sets (e.g. phylogroups), we rarefied the genome datasets, i.e., each pan-genome was con-

structed with the same number of genomes in each comparison. To do this, 1,000 subsets of X

genomes (X depending on the analysis, specified in the results section) were randomly selected

for comparison in each group, resulting to datasets called hereafter rarefied datasets (S9 Fig).

Identification of persistent-genomes

Gene families that are persistent were taken from the analysis of pan-genomes. A gene family

was considered as persistent when it was present in a single copy in at least 99% of the

genomes. We found 2,486 persistent gene families when considering the 1,294 Australian

genomes, representing 52% of the average genome.

Identification of core-genome

The core genome was taken from the analysis of the pan-genome. A gene family was consid-

ered as core if it is present in one single copy in all the genomes. To assess the nucleotide diver-

sity, we built a core-genome with all the genomes of the ECOR, RefSeq, and Australian

datasets. It was composed of 112 core gene families. Each gene family was aligned with mafft

v.7.222 (using FFT-NS-2 method) [110], and used to compute the average nucleotide diversity

(π) in each dataset and within each phylogroup (see above).

Functional assignment of the pan-genome

Gene functional assignment was performed by searching for protein similarity with

hmmsearch from HMMer suite v.3.1b2 [111, 112] on the bactNOG subset of the EggNOG

v.4.5.1 database [47]. We have kept hits with an e-value lower than 10−5, a minimum alignment

coverage of 50% of the protein profile, and when the majority (>50%) of non-supervised

orthologous groups (NOGs) attributed to a given gene family pertained to the same functional

group (category). The gene families that cannot be classified into any existing EggNOG clus-

ters were grouped into the “unknown” category. Hits corresponding to poorly characterized

or unknown functional EggNOG clusters were grouped into the “poorly characterized”

category.
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Phylogenetic analyses

We built a rooted phylogeny of the species in two steps. The phylogenetic species tree of Aus-

tralian E. coli was reconstructed from the concatenated alignments of the 2,486 persistent

genes of the 1,294 Australian E. coli strains (see S3 Fig for a description of the method). The

alignment was done using the corresponding protein sequences with mafft v.7.222 (using

FFT-NS-2 method) [110]. Protein alignments are more accurate and produce codon-based

alignments that can be used for population genetics analysis. Since at this evolutionary dis-

tance the DNA sequences provide more phylogenetic signal than protein sequences, we back-

translated the alignments to DNA, as is standard usage. This involved replacing every amino

acid in the alignment by the original codon. Hence, the DNA sequence remains unchanged

after translation and back-translation. We built phylogenies from persistent genomes to avoid

the loss of signal associated with the small core genomes. When a genome lacked a member of

a persistent gene family, or when it had more than one member, we added a stretch of gaps

(‘-‘) of same length as the other genes for it in the multiple back-translated alignments. Adding

a few "-" has little impact on phylogeny reconstruction. For example, Filipski et al [113] showed

that adding up to 60% of missing data in the alignment matrix could be informative. In our

study, only 0.3% of the genes are missing in the matrix and the effect of missing data should be

negligible relative to the advantage of using the phylogenetic signal from 2,486 persistent genes

instead of only the one of 295 core genes (S3C Fig). We have not removed recombination

tracts from the multiple alignment because this has been shown to amplify errors in determin-

ing phylogenetic distances and it usually does not affect the topology of the tree [114, 115]. If

determination of the recombination was accurate in our>1,300 genomes dataset, this would

have led to the exclusion of almost all the genes. The length of the resulting alignment for the

species was 2,298,168 bp. Each tree was computed with IQ-TREE multicore v.1.6.7 [116]

under the GTR+F+I+G4 model. This model gave the lowest Bayesian Information Criterion

(BIC) among all models available (option–m TEST in IQ-TREE). We made 1,000 ultra-fast

bootstraps to evaluate node support (options–bb 1000 –wbtl in IQ-TREE) and to assess the

robustness of the topology of each tree [117].

The phylogenetic tree of Escherichia genus was inferred from the persistent-genome

obtained with the 87 outgroup genomes and the 100 E. coli reference genomes (see above)

using the same procedure as the species tree. In this case, the persistent-genome is composed

of 1,589 gene families, and the resulting alignment of 1,469,523 bp. The genus phylogenetic

tree was extremely well supported: all nodes had bootstrap support higher than 95%. Its topol-

ogy was consistent with a previous study [118] (S4C Fig). Then, we used it to precisely root the

species tree (S4D Fig).

The most recent common ancestor of each phylogroup: We identified the node corre-

sponding to the most recent common ancestor (MRCA) for each phylogroup from the rooted

species tree using the findMRCA function from the phytools v.0.6.44 R package. Then, the sub-

tree of each phylogroup was extracted using the extract.clade from the ape v.5.2 R package

[119]. The distance to the MRCA was computed from the length of branches in each subtree.

It corresponds to the average depth (distance from the MRCA) of all genomes (tips) within a

phylogroup and was inferred using the depthTips from the phylobase v.0.8.6 R package

(https://github.com/fmichonneau/phylobase).

Evolutionary distances

For each pair of genomes, we computed a number of measures of similarity: 1) The Patristic

distance was computed from the length of branches in the Australian E. coli species phyloge-

netic tree. The patristic distance is simply the sum of the lengths of the branches that link two
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genomes (tips) in the tree, and was inferred using the cophenetic function from the ape v.5.2 R

package [119]. They were computed between all pairs of genomes, of the same ST (intra-ST),

of different ST (inter-ST) within identical phylogroup, or of different phylogroups (inter-phy-

logroup). As expected, we found that the intra-phylogroup (both intra-ST and inter-ST) patristic

distances were significantly shorter than the inter-phylogroup (Wilcoxon test, P<10−4). 2) The

Gene Repertoire Relatedness index (GRR) between two genomes was defined as the number

of common gene families (the intersection) divided by the number of genes in the smallest

genome [120]. It is close to 100% if the gene repertoires are very similar (or one is a subset of

the other) and lower otherwise. 3) The Manhattan index between two genomes is the number

of different gene families. If two genomes have identical gene content, the corresponding Man-

hattan index is 0. 4) The Jaccard index between two genomes was defined as the number of

common gene families (the intersection) divided by the number of gene families in both (the

union). The Jaccard index between two genomes describes their degree of overlap with respect

to gene family content. If the Jaccard distance is 1, the two genomes contain identical protein

families. If it is 0 the two genomes are non-overlapping.

To characterize the genetic diversification of each phylogroup of the Australian dataset, we

computed the three different standard indexes: the GRR, the Jaccard, and the Manhattan

indexes. All these indexes were highly correlated (S10B Fig). Thus, only analyses with GRR

were reported and illustrated in the main text. Note that we always used the matrix of pres-

ence/absence of gene families to compute all these indexes, meaning that multiple occurrences

were not considered. This downplays the impact of IS on pan-genome size and makes more

conservative estimates of GRR divergence.

Reconstruction of the evolution of gene repertoires

We assessed the evolutionary dynamics of gene repertoires of the Australian genomes using

Count (downloaded in January 2018) [121] with the Wagner parsimony method. Due to the

size of our dataset it was not possible to do the analysis using birth-death models, but our pre-

vious analyses revealed very few differences between the two methods in smaller datasets

[122]. Wagner parsimony penalizes the loss and gain of individual family members (with rela-

tive penalty of gain with respect to loss of 1, option g = 1), and infers the history with the mini-

mum penalty. Thus, from the pan-genome, i.e., the matrix of presence-absence of gene

families, and the rooted species tree, Count inferred the most parsimonious gain/loss scenario

of each gene family along the tree. At each tree node, Count detailed information about indi-

vidual families: presence/absence, and family events on the edge leading to the node. Hence,

we have reconstructed the gene content of ancestral genome at each node. At each terminal

branch, the expected total number of recent acquisitions (HGT) was computed by summing

all family-specific gene gains obtained from the edge leading to the tip. Among them, we iden-

tified MGE associated genes that were recently acquired in each genome. We applied a similar

strategy to identify recent losses.

Distribution of accessory families across phylogroups (or sources)

We counted the number of MGE-associated gene families across phylogroups (Fig 5A) or

sources (S15 Fig). We excluded the singletons from this analysis to avoid over-estimation of

the number of families specific to one category. To test if some categories over-represented or

under-represented these genes, we made 1,000 simulations. In each simulation, we shuffled

the phylogroup (or source) assignment of the genomes while keeping the same number of taxa

in each category (phylogroups or sources). Thus, the presence of a gene family in a genome

and its frequency in the pan-genome remains the same, only the phylogroup (or the source) of
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genomes changes. The Z-score obtained for the observed number in the real data with respect

to the random distribution (from 1,000 simulations) was reported for each case with a color

code ranging from blue (under-representation, Z-score<-1.96) to red (over-representation, Z-

score>1.96).

Recent co-occurrence of gains (co-gains) of gene families within
phylogroups

We counted the number of recently acquired gene pairs (co-gains) from the same pan-genome

gene family (see above) within and between phylogroups. Recently acquired genes were

defined as those inferred as acquired in terminal branches using Count. To test if some phy-

logroups over-represented or under-represented these co-gains, we compared the observed

number (O) within each phylogroup to the expectation (E) given by 1,000 simulations. In each

simulation, we shuffle the phylogroup assignment of the taxa (same approach as for the acces-

sory gene families) and count the number of co-gains within and between phylogroups. For

each phylogroup, we then divided the number observed in the real data (O) by the average

number observed in the simulations (E), and computed the Z-score of the observed number

(O) with respect to the random distribution (E). We considered an over(under)-representation

significant when Z-score>1.96 (Z-score<-1.96). Note that the O and E numbers had to be pre-

viously normalized (divided by the total number of gene pairs, i.e. the sum of pairs within and

between phylogroups, in the real data, and in each simulation, resp.). We applied the same

approach (i) considering only gene pairs encoding for MGEs (similar result as in Fig 5), (ii) for

sources (instead of phylogroups, Fig 6).

Network of co-occurrence of gains (co-gains) of gene families across
phylogroups

All co-gains (see above) were split into all possible combinations of phylogroup pairs (21 com-

binations). To test if these co-gains are over- or under-represented between phylogroups, we

compared the observed number (O) between each phylogroup to the expectation (E) given by

1,000 simulations with the same strategy as above. As before, we normalized the observed and

expected numbers by the total number of co-gains in each simulation, calculated the (O/E)

ratio, and the Z-score of each observed value in the real data with respect to the random distri-

bution (E). The network was drawn using the igraph v.1.2.2 R package (https://igraph.org/r/)

with the circle layout option, where nodes are phylogroups, edges are (O/E) values for which

the Z-score is significantly different from zero. The width of the edges is proportional to the

(O/E) value and the color is blue for under- and red for over-representation (Fig 5C). We

applied the same approach considering only gene pairs encoding for MGEs (S16 Fig).

Gene family diversity

We computed Shannon indexes to assess the diversity of each gene family recently acquired

(terminal branches) across phylogroups and across sources (Fig 6E). If diversity is low, this

means that acquisitions are clustered by phylogroup or source (depending on the analysis).

For this, we calculated the relative frequency of each gene family recently acquired within each

phylogroup (vs. each source). It is simply the number of genomes (within a phylogroup) with

at least one acquisition divided by the total number of genomes in the phylogroup. We there-

fore obtained 2 vectors per gene family (one for phylogroups and one for sources) each con-

taining 7 frequencies (for each phylogroup or each source) and then applied for each vector

the function diversity from the vegan v.2.4.6 R package (https://github.com/vegandevs/vegan).
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If the index is 0, recent acquisitions of genes of the family are limited to a single group (phy-

logroup or source). The higher the index, the more scattered the acquisitions of the family’s

genes are (across phylogroups or sources).

GWAS

We studied the association between the pan-genome, i.e., the matrix of presence-absence of gene

families, and different phenotypes (i.e., phylogroups, and sources) using Scoary v.1.6.16 [123].

The method used the rooted species tree to correct for phylogenetic dependency. To correct for

multiple comparisons, only gene families with a Bonferroni-adjusted p-value< 10−10were

selected. In the case of phylogroups, more stringent thresholds were applied, i.e., p-value 10−20.

We used the odds ratio (R) to determine whether the gene is positively (R>1) or negatively (R< =

1) associated with the tested phenotype. Analyses of the whole pan-genome or excluding all single-

tons produced similar results. A complete list of gene families positively and negatively associated

with each phenotype is described in S2 Dataset. The sequence of one gene from each family is also

available in the S2 Dataset, to facilitate the use of these results by the community.

Statistics

All basic statistics were performed using R v 3.5.0, or JMP-13. (i) Analysis of means: We used

ANOM to compare group means to the overall mean, when the data were approximately nor-

mally distributed. In cases where the data were clearly non-Gaussian and could not be trans-

formed, we used the nonparametric version of the ANOM analysis, i.e., ANOMwith

Transformed Ranks. It compares each group’s mean transformed rank to the overall mean

transformed rank. In both, we used the methods implemented in JMP-13. (ii) Pairwise Wil-

coxon Rank Sum Tests were computed using the pairwise.wilcox.test function from the stats

v.3.5.0 R package. We used the Bonferroni correction during multiple comparison testing. (iii)

Fisher’s exact tests were computed using the fisher.test function from stats v.3.5.0 R package.

They were performed for testing the null of independence of rows (phylogroups) and columns

(sources) in a 2x2 contingency table. (iv) Correlation coefficients. Pearson’s and Spearman’s

rank correlation rho were computed using the cor function from stats v.3.5.0 R package. The

correlation matrices were represented using the corrplot v.0.84 R package (https://cran.r-

project.org/web/packages/corrplot/index.html). (v) Smooth regression: We used the general-

ized additive model (gam) smoothing method from themgcv v.1.8.23 R package (https://cran.

r-project.org/web/packages/mgcv/index.html). (vi) Stepwise multiple regressions were com-

puted with JMP-13. This standard statistical method consists in a stepwise integration of the

different variables in the regression by decreasing order of contribution to the explanation of

the variance of the data [124]. We used the forward algorithm and the BIC criterion for model

choice in the multiple stepwise regressions. The P-values associated with each variable were

assessed using an F-test.

Identification of Mobile Genetic Elements (MGEs)

Prophages: Prophages were predicted using VirSorter v.1.0.3 [53] with the RefSeqABVir data-

base in all genomes from Australian and RefSeq datasets, as a control. The least confident pre-

dictions, i.e., categories 3 and 6, were excluded from the analyses in both datasets. The

prophage-associated regions in drafts are more numerous and shorter than in complete RefSeq

genomes (S11 Fig). These results reveal that such regions are sometimes split in assemblies. In

complete genomes, the cumulative size of the prophage-associated regions (X) is highly corre-

lated with the number of prophages (Y) present in the genomes (Y = 1.2923362 + 1.6767.10−5

X, R2 = 0.91, P<10−4, S11 Fig). Hence, we used this linear equation to estimate the number of
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prophages in drafts using the cumulated size of prophage regions in the draft genomes. Plas-

mids: In the RefSeq dataset, all the extrachromosomal replicons were considered as plasmids.

In the Australian dataset, plasmid sequences were identified using PlaScope v.1.3 [54] with the

database dedicated to E. coli. PlaScope provides a method for plasmid and chromosome classi-

fication of E. coli contigs. It has the specificity to select a unique assignment to each contig of a

draft genome to plasmid, chromosome or unclassified. The number (~16, max: 124) and size

(~9 kb, max: 166 kb) of contigs predicted as plasmid were highly variable (S12 Fig) in the Aus-

tralian dataset. Their size is much smaller than that of the average plasmid in complete

genomes (~80 kb), reflecting the split of plasmids across different contigs because of the pres-

ence of repeated sequences, e.g. IS elements. Hence, we have not attempted to estimate the

exact number of plasmids per genome and focus our analysis on the number of genes pre-

dicted to be in plasmid contigs.MGEs (Plasmids + Prophages): We found 11,864 gene fami-

lies specifically related to plasmid elements, 14,188 to prophage elements, and 2,599 shared by

both (9% of the MGEs gene families). In complete genomes, prophage and plasmids elements

account for half of the pan-genome, of which 1 third were singletons. The large fraction of sin-

gletons fromMGEs confirms that these elements are extremely diverse and evolved very rap-

idly, which underlines the difficulty of accurately detecting them and probably leads to their

under-estimation in draft genomes. Loci encoding conjugative or mobilizable elements were

detected with the CONJscan module of MacSyFinder [125], using protein profiles and defini-

tions following a previous work [55, 126]. 87% of conjugative systems and 75% of putative

mobilizable elements were located on contigs predicted as plasmids by Plascope. Integrons

were identified using IntegronFinder v.1.5 with the–local_max option [58]. 186 integron-inte-

grase (intI) were detected with one quarter located at the edges of contigs. We only found one

copy per genome. They were often located on very short contigs (20 proteins on average), and

five make all the contigs. Most (86%) were located on contigs predicted as plasmid by Plascope,

the remaining were on unclassified contigs. Except for the latter, intI genes were always located

next to ARGs. IS elements were identified using ISfinder [57]. Only hits with an e-value lower

than 10−10, a minimum alignment coverage of 50% and with at least 70% identity were selected,

we extracted the IS name of the best hit. Therefore, we identified 47,592 genes encoded for IS

elements, among them 43% were located at the edges of contigs (20,329/47,592). They repre-

sented 1,006 gene families (~1% of the pan-genome), of which 41% were singletons. Only 13%

were multigenic protein families (i.e., with more than one member in at least one genome).

Among them, 9 protein families were found in more than 10 copies in at least one genome, i.e.,

ISEc1 (10 copies), IS1397 (11), ISSoEn2 (11), IS621 (11), IS2 (15), IS629 (17), IS200C (17)

IS1203 (18), and the most extreme case IS1F (107). Very large numbers of ISs, usually a sign of

recent proliferation, was restricted to a small number of genomes (S1 Dataset), but this may be

an under-estimate caused by the loss of ISs in the assembling process. ISs were often frag-

mented, characterized by numerous singletons, and six times more frequently present at the

edges of contigs than expected by chance. All the results are reported in S1 Dataset.

Capsule systems

We used CapsuleFinder as published in [127] to search for Group I (Wzy-dependent), Group

II and III (ABC-dependent), Group IV (subtypes e, f and s), synthase-dependent (subtypes

cps3-like and hyaluronic acid) and PGA (Poly-γ-d-glutamate) capsules in the genome data-

base. This allowed the detection of 2,829 systems: 1,236 Group I, 123 Group II, 777 Group IV e

and 693 Group IV s. All the results are reported in S1 Dataset.

Antibiotic resistance genes (ARG) were detected using 2 curated databases of antibiotic

resistance protein: Resfinder v.3.1 [128] and ARG-ANNOT v.3 [129]. Therefore, we used
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BlastP and selected the hits with an e-value lower than 10−5, with at least 90% of identity and a

minimum alignment coverage of 50%. We found a strong positive correlation between the

number of ARGs per genome using each database (pearson’s r = 0.97, P<10−4). The main dif-

ference is the additional detection of three ARGs by ARG-ANNOT, i.e., AmpC2, AmpH, Mfd,

which are persistent in Australian dataset and normally do not confer antibiotic resistance in

E. coli. All the results are reported in S1 Dataset.

Virulence factors (VF) were identified using VFDB (downloaded in February 2018, [65]).

The two databases, i.e., VFDB_setA and VFDB_setB were used independently. We used BlastP

and selected the hits with an e-value lower than 10−5, at least 70% of identity and minimum

alignment coverage of 50%.We found 1,332 (vs. 3481) gene families encoding virulence factors

with the setA (vs. setB). In spite of these differences, we found qualitatively similar conclusion

with the 2 sets because they are very correlated (pearson’s r = 0.97, P<10−4). All the results are

reported in S1 Dataset.
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S1 Dataset. The main characteristics of each genome of this study.

(XLSX)

S2 Dataset. Association of the pan-genome with phylogroups and isolation sources: results

of the GWAS analyses.

(XLSX)

S1 Fig. General genomic characteristics of the 1,294 Australian E. coli genomes. A. Histo-

gram and boxplot of genomic features, i.e., the genome size (Mb), the number (#) of genes

encoding proteins, the GC content (GC%), the gene density, the number of essential genes, the

number of contigs and the L90 (Methods). For each case, the dash line corresponds to the

smoothed curve, the red arrow to the median and the blue arrow to the average of each distri-

bution. B. Strong positive correlation between the genome size and the number of genes

(spearman’s rho = 0.98, P<10−4). C. Weak positive correlation between the genome size and

the number of contigs (spearman’s rho = 0.23, P<10−4). The genomes with the greatest num-

ber of contigs were not necessarily the largest. Linear regression (dash line) and statistics were

reported.

(EPS)

S2 Fig. The large Australian E. coli pan-genome. A. Number of gene families according to

their occurrence in genomes. Singletons (in green), i.e., genes present in a single genome, rep-

resent 44% of the pan-genome. Persistent gene families (in gold), i.e., present in at least 99% of

genomes, represent only 3% of the pan-genome. B. Fraction of gene families (%) according to

their frequency among the pan-genome and the average genome. Frequencies were repre-

sented by a color code ranging from light grey (present in less than 1% of genomes) to black

(up to 99%), persistent genes (>99%) were represented in gold. 82% of the gene families are

rare, i.e., present in less than 1% of genomes including the 33,705 singletons. Persistent gene

families represent 53% of the average genome, while singletons less than 1%. C. Rarefaction

curve of the full pan-genome and of the pan-genome after removing the 33,705 singletons (wo.

S). In each case, we used 1,000 permutations (genomes orderings) and then averaged the

results. The alpha (inferred using the heaps’ law model) is lower than 1 in both, indicating that

the pan-genome is open in both. D. Rarefaction curve of the persistent genome (in gold) and

of the core genome (in red), i.e., the cumulative number of gene families shared by 100% of the

genomes. The evolution of the average number of new genes per genome is also reported (in

green). When considering 1,294 genomes, there is on average 2,486 persistent proteins and

only 26 singletons per genome. E. Violin-plots of the average sequence identity [left, mean],

and the minimal sequence identity [right, min] observed in each of the 2,486 persistent gene

families. The observed average sequence identity is 98.3% across families of persistent genes.

The average minimal value observed across persistent gene families is 95.5%.

(EPS)

S3 Fig. Construction of the concatenated alignments of persistent gene families. A. Graphi-

cal representation of the different steps of the phylogenetic trees build process from the persis-

tent genome. Among persistent gene families, there are families that are core (present in 100%

of the genomes, in red) and the remaining that have missing genes (not-core, in gold). B.

Number of persistent gene families according to their number of missing genes in the Austra-

lian dataset. Only 12% of families are core, i.e., present in all genomes (in red). C. Violin-plot

of the number of missing genes per genome in the Australian dataset. On average, the number

of missing genes is around 8 per genome. It can reach up 93 in a single genome, but this repre-

sents less than 4% of persistent families.

(EPS)
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S4 Fig. The genus and species phylogenetic trees. A. Distance tree of 1,294 Australian E. coli

and 86 outgroups genomes performed from the matrix of mash distances computed between

all pairs of genomes using bionj. The number of genomes in each species (or clade) was indi-

cated. The different phylogroups of E. coli were displayed: A (in blue), B1 (in green), E (in pur-

ple), D (in yellow), F (in orange), G (in brown) and B2 (in red). B. Boxplot of the mash

distances computed between all pairs of genomes belonging to the same species (or clades). In

both cases, the maximal mash distance was lower than 0.05. For E. coli species, the median was

around 0.027 and the maximal value was 0.04. C. Phylogenetic tree of 100 Australian E. coli

genomes representative to the diversity of the dataset and 86 outgroups genomes performed

from the persistent-genome of the genus with IQ-TREE under the GTR+F+I+G4 model. We

made 1,000 ultra-fast boostrap to assess the robustness of the topology of the tree. We found

that all boostrap supports were higher than 95%. D. We rooted the species phylogenetic tree

from the genus phylogenetic tree. The resulting rooted species tree was reported, and for sim-

plicity, the main phylogenetic groups were collapsed.

(EPS)

S5 Fig. Singleton characterization. A. Boxplots of gene size (bp) in the three categories of

gene families, i.e., persistent (in gold), accessory (in grey) and singleton (in green). The average

was represented by a black dot. The pairwise Wilcoxon Rank Sum test with bonferroni correc-

tion was applied to all comparisons (P<0.001 :���). B. Same analysis as in A, but distinguishing

the genomic location of the gene of each set : inside of contigs (I, dark color) or at the edge of

contigs (E, light color). The average gene size for each case was reported in the table. C. Per-

centage of genes located inside contigs (dark color) or at the edge of contigs (light color) in the

3 sets. The last column corresponds to the fraction of the 3 sets located at the edge of contigs.

D. Heatmap of the observed/expected (O/E) ratios of genes located inside or at the edges of

contigs in the 3 sets. The ratio (O/E) was reported for all comparisons with a color code rang-

ing from blue (under-representation) to red (over-representation). The level of significance of

each Fisher’s exact test was also indicated (P<0.001 :���). It was performed on each 2�2 contin-

gency table. E. Fraction of singletons with no hit (in light gey), with a small domain (in grey)

or fully included (black) in larger accessory or persistent gene families (S3 Text). F. Violin

plots of the number of singletons (in green) or persistent (in gold) observed in the rarefied

Australian and RefSeq datasets. In each case, 1,000 permutations of 50 randomly selected

genomes were performed (i.e., we used rarefied datasets). The boxplot is in white and the

mean is represented by a black dot. While the average number of singletons is significantly

higher (30% more) in the rarefied Australian dataset (Wilcoxon test, P<10−4), the average

number of persistent is also significantly higher (5% more, P<10−4) than the rarefied RefSeq

dataset. Singletons represent 43%, and 35% of the rarefied Australian and RefSeq pan-

genomes, resp.

(EPS)

S6 Fig. Association between GRR (%, Gene Repertoire Relatedness) and the patristic dis-

tance of each pair of genomes.Here, the GRR were computed excluding singletons in all

genomes. Due to the large amount of comparisons (points), we divided the plot area in regular

hexagons. Color intensity is proportional to the number of cases (count) in each hexagon. The

linear fit (full line, linear model (lm)) and the spline fit (dash line, generalized additive model

(gam)) were reported for the whole (in black, all the species) or the intra-ST (in blue) compari-

sons. There was a significant negative correlation between GRR and the patristic distance

(spearman’s rho = -0.69, P<10−4). The summary of the linear fit was: Y = 90.722391–
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76.2919X, R2 = 0.50,P<10−4. Hence, with or without singletons, the results were similar.

(EPS)

S7 Fig. Comparison of Australian, ECOR and RefSeq datasets. A. Violin plots of the nucleo-

tide diversity per site in the 3 datasets computed from the multiple alignments of 112 core

gene families (see Methods). The pairwise Wilcoxon Rank Sum test with bonferroni correction

was applied to all comparisons (P>0.05:ns). B. Rarefaction curve of the full pan-genomes of

the 3 datasets. In each case, we used 1,000 permutations (genomes orderings) and then aver-

aged the results. C. Violin plots of the size of the pan-genomes computed from the three rare-

fied datasets: In each case, 1,000 permutations of 50 randomly selected genomes were

performed to calculated the rarefied pan-genomes. The pairwise Wilcoxon Rank Sum test with

bonferroni correction was applied to all comparisons (P<10−3 :���). D. Average number of

persistent (in gold), accessory (in grey) and singleton (in green) in the rarefied pan-genomes

of each dataset.

(EPS)

S8 Fig. Intra- and Inter-phylogroup genetic diversity. A. Violin plots of the nucleotide diver-

sity per site (left), the MASH (center) and the patristic distances (right) computed with/

between genomes belonging to the same phylogroup (intra-phylogroup, in seagreen), to differ-

ent phylogroups (inter-phylogroup, in purple), or all together (ALL, in darkgrey). In all cases,

intra- and inter-phylogroup distributions were significantly different (Wilcoxon tests,

P<10−4). B. Boxplots of the nucleotide diversity (left), the MASH (center) and the patristic dis-

tances (right) computed with/between genomes in each phylogroup. The pairwise Wilcoxon

Rank Sum test with bonferroni correction was applied to all comparisons. Here, only the non-

significant (ns : P> = 0.05) comparisons were indicated, all other were higly significant

P<10−4. C. Density of the patristic distances between all pairs of genomes of the same phy-

logroup (intra-phylogroup). The dash vertical line corresponds to the median of each distribu-

tion. (A-B-C) In all cases, similar results were obtained with rarefied datasets (i.e., comparing

50 randomly selected genomes in each groups, thus ignoring the small G phylogroup).

(EPS)

S9 Fig. Pan-genomes, Pan-MGE, and rarefied Pan-genomes of each phylogroup and isola-

tion source. A. Size of the pan-genome in each phylogroup and in each isolation source. The

pan-genome sizes were correlated to the number of genomes in each group, even after exclud-

ing the singletons from the analysis (both, adjusted R2
>0.88, P<10−4). The Rarefaction curve

of the pan-genomes of the full dataset was also reported (All, in black). B. Rarefaction curves of

the pan-genomes of each phylogroup and of the full dataset (All). C. Rarefaction curves of the

gene-families associated to MGE in each phylogroup and in the full dataset (All). D. Rarefac-

tion curves of the pan-genomes of each isolation sources. In each case, (i) we used 1,000 per-

mutations (genomes orderings) and then averaged the results (full line = mean, dash line = s.

d), (ii) the pan-genomes remained open (with an alpha lower than one, see methods) that we

considered them as a whole or without singletons, (iii) the boxplots of the rarefied pan-

genomes (using a number of genomes = 50) were reported. The color code used was displayed

in the insert (top right).

(EPS)

S10 Fig. Gene repertoire relatedness (GRR) within and between phylogroups. A. Average

GRR (%) computed between pairs of genomes belonging to the same phylogroup (intra-phy-

logroup) and to different phylogroups (inter-phylogroup). The color code used was displayed

in the insert (top right). B. Correlation between the different distances and indexes, i.e., GRR,

Manhattan, Jaccard, MASH and patristic, computed between pairs of genomes belonging to
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the same phylogroup (intra-phylogroup) with the whole dataset or excluding singletons (woS).

Spearman’s rank correlation rho matrix. Positive correlations were displayed in red and nega-

tive correlations in blue color. Color intensity and the size of the circle were proportional to

the correlation coefficients. The p-value of each correlation was highly significant (P<10−4).

We found similar results with rarefied datasets, i.e., considering only 50 randomly selected

genomes in each phylogroup. We also found higher correlation coefficients using all the com-

parisons (intra- and inter-phylogroup).

(EPS)

S11 Fig. Detection and Estimation of the number of prophages. A. Boxplot of the number

of regions detected as prophage-related by Virsorter in the 370 complete RefSeq GenBank

genomes and in the 1,294 draft Australian genomes. These distributions were significantly dif-

ferent, on average the number of regions detected was significantly higher in draft than in

complete genomes (Wilcoxon test, P<10−4). B. Boxplot and histogram of the size of the

detected regions in complete and draft genomes. These distributions were significantly differ-

ent (Wilcoxon test, P<10−4). On average the regions were almost 4 times larger in the com-

plete genomes than in draft genomes and few regions (644) in draft genomes had a typical size

of known dsDNA phages (around 44kb). (A-B) showed that prophage elements were less

assembled and were probably divided into several small contigs. The large regions (>60 kb) in

complete genomes corresponded to tandem elements (consecutive on the genomic sequence).

Thus, the number of detected regions did not correspond to the number of prophages either

in the complete genomes (due to tandem elements) or in the drafts genomes (the elements

being fragmented). C. Strong association between the cumulative size of the detected regions

(X) with the number of detected regions (Y). Linear regression (dash red line) and statistics

were reported. D. Boxplot of the predicted number of prophage elements in both the complete

and the draft genomes using the linear equation showed in (C) from the cumulative size of the

regions detected by VirSorter. These distributions were significantly different (Wilcoxon test,

P<10−4). On average, there was 6.0 prophages in complete genomes, and 4.25 in draft

genomes. The medians of the two data sets were closer reflecting probably the assembly prob-

lem related to the presence of prophages in tandem combined with the fact that they are often

genetically close (most of them are lambdoids). In each panel, the red arrow corresponds to

the median and the blue arrow to the average of each distribution.

(EPS)

S12 Fig. Detection of plasmid elements. A. Boxplot of the number of contigs classified as

plasmid by PlaScope in the 370 complete RefSeq GenBank (Complete) genomes and in the

1,294 draft Australian genomes (Draft). All the extrachromosomal replicons of the complete

genomes were perfectly identified as plasmid elements by PlaScope. Hence, results based on

the extrachromosomal replicons or on the contigs detected as plasmid by PlaScope were iden-

tical (Complete�). The average number of contigs was eight times larger in draft genomes than

in complete genomes (15.4 vs 1.9) and reached up to 124 contigs. B. Boxplot and histogram of

the size of the contigs detected as plasmid in complete and draft genomes. These distributions

were significantly different (Wilcoxon test, P<10−4). On average the contigs were almost 10

times larger in the complete genomes than in draft genomes (81 kb vs. 8.9 kb). We identified

2347, 562 and 53 contigs larger than 20, 50 and 100 kb, resp. (A-B) showed that plasmid ele-

ments were poorly assembled and probably divided into several small contigs. C. Boxplot of

the fraction of the proteome encoding plasmid elements per genome (i.e., the cumulative num-

ber of proteins located on contigs classified as plasmid divided by the total number of proteins

of the genome) in complete and draft genomes. These distributions were similar (Wilcoxon
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test, P>0.1) with an average of 3.2% in both.

(EPS)

S13 Fig. General genomic characteristics of the mobilome of Australian E. coli. Three types

of MGEs were detected, i.e., prophage (left column), plasmid (middle columns) and IS ele-

ments (right column). A. Histogram and boxplot of genomic features of each type of MGEs, i.

e, the cumulative size of the elements per genome (Kb), the total number (#) of genes encoded

by the elements per genome, the fraction of the genome encoding these elements per genome.

For each case, the dash line corresponds to the smoothed curve, the red arrow to the median

and the blue arrow to the average of each distribution. B. Histogram and boxplot of the num-

ber of conjugation systems per genome. C. Number of conjugative systems: (MPF) and iso-

lated relaxases (MOB) detected in our dataset. The different MPF types were indicated and

also their genomic location, i.e., located on a contig classified as plasmid or as chromosome by

PlaScope.

(EPS)

S14 Fig. Contribution of MGEs to genome size variation. A. Association between the

genome size (i.e., # of genes per genome) and the total number of genes associated to the MGE

elements. B. Histogram and boxplot of the genome size (in grey), and of the genome size with-

out MGE (in red), i.e., after removing all the genes encoding MGE elements (in red). These

distributions were significantly different (Wilcoxon test, P<10−4). C. Same representation as

in (a), but distinguishing the different types of MGEs, i.e., prophage, plasmid and IS elements.

(A-C) We found a strong correlation in each case. Linear regression (dash red line) and statis-

tics were reported. Similar results were obtained with the genome size (Mb). D. Number of

singletons (in green) and accessory gene families encoding MGEs. The fraction of the pan-

genome encoding such elements was reported in each case (%).

(EPS)

S15 Fig. Distribution of gene families related to MGEs across phylogroups and sources.

Number of accessory gene families associated to prophage and plasmid present in one (i.e.,

phylogroup-specific) to seven phylogroups (A), or in one (i.e., source specific) to seven sources

(B). The Z-score obtained for the observed number with respect to the expected distribution

(as in Fig 5A, we randomized 1,000 times, only the phylogroup (A) or the source (B) assign-

ment of genomes) was reported for each case with a color code ranging from blue (under-

representation) to red (over-representation). The frequency of these families (average number

of genomes) was also indicated in (C) for phylogroups, and in (D) for sources.

(EPS)

S16 Fig. Network of recent co-occurence of gains (co-gains) of MGE genes within and

between phylogroups.Nodes are phylogroups and edges the O/E ratio of the number of pairs

of MGE genes (from the same gene family) acquired in the terminal branches of the tree. Only

significant O/E values (and edges) are plottted (|Z-score|>1.96). Under-represented values are

in dash blue and over-represented in red (see Methods).

(EPS)

S17 Fig. Genome size and MGE content according to sources within each phylogroup. A.

Heatmap of the average genome size of strains from different sources in each phylogroup. The

deviation to the overall intra-phylogroup mean (i.e., the average genome size of all strains

belonging to a given phylogroup) was reported for all comparisons with a color code ranging

from blue (below average) to red (above average). The level of significance of each ANOM test

was indicated (P> = 0.05 : ns; P<0.05 : �; P<0.01 : ��; P<0.001 :���). It was performed within
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each phylogroup (each line). (B-C-D) Same representation as in (A), but in relation with the

average number of genes associated to MGEs (B), to prophage (C), or plasmid elements (D).

(EPS)

S18 Fig. Association of integrons and ARGs with human (or domesticated animals). A.

Violin plots of the number of ARGs in genomes encoding integron-integrase (int1+) or not

(int1-). The level of significance of the Wilcoxon test was indicated (P<10−3). B. Heatmap of

the proportion of genomes int1+ in each phylogroup and source. A cross marks the absence of

data. C. Same as in (B) but we merged sources related to human activity (with), or not directly

associated to human (without). The level of significance of each ANOM for proportions test

was indicated (P> = 0.05 : ns; P<0.05 : �; P<0.01 : ��; P<0.001 :���). Here, we compared

response proportions for the X levels to the overall response proportion from the contingency

table. This method uses the normal approximation to the binomial. Therefore, in some cases

sample sizes were too small to be tested. D. Heatmap of the average number of ARGs per

genome in each phylogroup and source. E. Heatmap of the average number of ARGs when we

merged sources related (with) or not (without) to human activity. The level of significance of

each non-parametric ANOM test (ANOM with Transformed Ranks) was indicated (P> = 0.05

: ns; P<0.05 : �; P<0.01 : ��; P<0.001 :���). The deviation to the overall mean (i.e., in all

genomes) was reported for all comparisons with a color code ranging from blue (below aver-

age) to red (above average). The color code used was displayed in the top of each panel.

(EPS)

S19 Fig. Distribution of VFs and Colicins MGEs across phylogroups and sources. (A-B).

Heatmap of the average number of VFs per strain from different sources in each phylogroup.

The deviation to the overall mean (i.e., whole dataset, in A) or to the intra-phylogroup mean

(i.e., the average number of all strains belonging to a given phylogroup, in B) was reported for

all comparisons with a color code ranging from blue (below average) to red (above average).

The level of significance of each ANOM test was indicated (P> = 0.05 : ns; P<0.05 : �; P<0.01 :
��; P<0.001 :���). It was performed within each phylogroup (each line, in B). C. Heatmap of

the average number of Colicins per genome in each phylogroup and source. D. Same represen-

tation as in (B), but in relation with the average number of Colicins per genome.

(EPS)

S20 Fig. Distribution of capsule systems across phylogroups and sources. A. Heatmap of

the average number of capsule systems per genome in each phylogroup and source. B. The

deviation to the intra-phylogroup mean (i.e., the average number of all strains belonging to a

given phylogroup) was reported for all comparisons with a color code ranging from blue

(below average) to red (above average). The level of significance of each ANOM test was indi-

cated (P> = 0.05 : ns; P<0.05 : �; P<0.01 : ��; P<0.001 :���). It was performed within each phy-

logroup (each line). C. Prevalence (%) of each capsule groups across phylogroups and sources.

(EPS)
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